Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
Toxicology ; 506: 153873, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986729

ABSTRACT

Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17ß-hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42 µM) to hexylparaben with the strongest inhibition (2.05 µM) on human 17ß-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 µM) to the most potent inhibition for hexylparaben (0.87 µM), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17ß-HSD1 and the NADPH binding site of rat 17ß-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone synthesis.


Subject(s)
Estradiol , Molecular Docking Simulation , Parabens , Placenta , Parabens/toxicity , Animals , Humans , Rats , Female , Placenta/drug effects , Placenta/metabolism , Placenta/enzymology , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , Pregnancy , Preservatives, Pharmaceutical , Ovary/drug effects , Ovary/metabolism , Ovary/enzymology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Binding Sites , Estradiol Dehydrogenases/antagonists & inhibitors , Estradiol Dehydrogenases/metabolism
2.
Iran Biomed J ; 28(2&3): 120-31, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38850011

ABSTRACT

Background: The 17beta-hydroxysteroid dehydrogenase type 1 (HSD17B) family has been implicated in the prognosis and treatment prediction of various malignancies; however, its association with bladder cancer (BLCA) remains unclear. This study aimed to evaluate the potential of HSD17B1, as a prognostic biomarker, for the survival of patients with BLCA and to determine its effectiveness as a supplemental biomarker for BLCA. Methods: A series of bioinformatics techniques were applied to investigate the expression of HSD17B1 in different types of cancer and its potential association with the prognosis of BLCA patients using diverse databases. The UALCAN, Human Protein Atlas, cBioPortal, Metascape, GEPIA, MethSurv, and TIMER were employed to analyze expression differences, mutation status, enrichment analysis, overall survival, methylation, and immune-infiltrating cells. The real-time reverse transcription-PCR (qRT-PCR) was implemented to detect the messenger ribonucleic acid (mRNA) expression levels of HSD17B1 in vitro. Results: Elevated mRNA and protein levels of HSD17B1, surpassing normal levels, were observed in BLCA samples. In addition, the BLCA patients with higher mRNA expression level of HSD17B1 significantly reduced the overall survival. Also, several immune infiltrating cells, including mast cell resting CIBERSORT-ABS, have been identified as tumor-associated biomarker genes, with the potential to significantly influence the immunological environment. Finally, qRT-PCR analysis revealed a significant upregulation of HSD17B1 mRNA expression level in the cancer cells compared to the human 293T cells, which was consistent with the bioinformatics data. Conclusion: There is a strong correlation between the elevated HSD17B1 expression and positive prognosis in patients with BLCA. Therefore, HSD17B1 can be used as a prognostic biomarker in these patients.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Prognosis , Cell Line, Tumor , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology/methods
3.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785348

ABSTRACT

Hydroxysteroid (17ß) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Mice, Knockout , Testis , Testosterone , Animals , Male , Testis/metabolism , Testis/embryology , Mice , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/deficiency , Female , Testosterone/blood , Testosterone/metabolism , Fetus/metabolism , Estradiol Dehydrogenases/metabolism , Estradiol Dehydrogenases/genetics
4.
Biol Reprod ; 111(2): 436-447, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38780059

ABSTRACT

Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) is a steroid synthetic enzyme expressed in ovarian granulosa cells and placental syncytiotrophoblasts. Here, HSD17B1 serum concentration was measured with a validated immunoassay during pregnancy at three time points (12-14, 18-20 and 26-28 weeks of gestation). The concentration increased 2.5-fold (P < 0.0001) and 1.7-fold (P = 0.0019) during the follow-up period for control women and women who later developed preeclampsia (PE), respectively, and a significant difference was observed at weeks 26-28 (P = 0.0266). HSD17B1 concentration at all the three time points positively correlated with serum PAPPA measured at the first time point (first time point r = 0.38, P = 1.1 × 10-10; second time point r = 0.27, P = 5.9 × 10-6 and third timepoint r = 0.26, P = 2.3 × 10-5). No correlation was observed between HSD17B1 and placental growth factor (PLGF). Serum HSD17B1 negatively correlated with the mother's weight and body mass index (BMI), mirroring the pattern observed for PAPPA. The univariable logistic regression identified a weak association between HSD17B1 at 26-28 weeks and later development of PE (P = 0.04). The best multivariable model obtained using penalized logistic regression with stable iterative variable selection at 26-28 weeks included HSD17B1, together with PLGF, PAPPA and mother's BMI. While the area under the receiver operating characteristic curve of the model was higher than that of the adjusted PLGF, the difference was not statistically significant. In summary, the serum concentration of HSD17B1 correlated with PAPPA, another protein expressed in syncytiotrophoblasts, and with mother's weight and BMI but could not be considered as an independent marker for PE.


Subject(s)
Biomarkers , Pre-Eclampsia , Pregnancy-Associated Plasma Protein-A , Adult , Female , Humans , Pregnancy , Biomarkers/blood , Estradiol Dehydrogenases/blood , Pre-Eclampsia/blood , Pre-Eclampsia/diagnosis , Pregnancy-Associated Plasma Protein-A/metabolism , Pregnancy-Associated Plasma Protein-A/analysis
5.
Nature ; 629(8014): 1082-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38750354

ABSTRACT

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Subject(s)
Adrenal Glands , Biological Evolution , Paternal Behavior , Peromyscus , Animals , Female , Male , 20-alpha-Dihydroprogesterone/metabolism , Adrenal Glands/cytology , Adrenal Glands/enzymology , Adrenal Glands/metabolism , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , GADD45 Proteins/genetics , Genetic Variation , Hybridization, Genetic , Peromyscus/classification , Peromyscus/genetics , Peromyscus/physiology , Progesterone/metabolism , Quantitative Trait Loci , Social Behavior , Tenascin/genetics
6.
Cancer Lett ; 566: 216244, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37244445

ABSTRACT

Castration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance. We described the single-cell transcriptional landscape of PCa. Higher cancer heterogeneity was explored in CRPC, with stronger cell cycling status and heavier copy number variant burden of luminal cells. Cancer-associated fibroblasts (CAFs), which are one of the most critical components of TME, demonstrated unique expression and cell-cell communication features in CRPC. A CAFs subtype with high expression of HSD17B2 in CRPC was identified with inflammatory features. HSD17B2 catalyses the conversion of testosterone and dihydrotestosterone to their less active forms, which was associated with steroid hormone metabolism in PCa tumour cells. However, the characteristics of HSD17B2 in PCa fibroblasts remained unknown. We found that HSD17B2 knockdown in CRPC-CAFs could inhibit migration, invasion, and castration resistance of PCa cells in vitro. Further study showed that HSD17B2 could regulate CAFs functions and promote PCa migration through the AR/ITGBL1 axis. Overall, our study revealed the important role of CAFs in the formation of CRPC. HSD17B2 in CAFs regulated AR activation and subsequent ITGBL1 secretion to promote the malignant behaviour of PCa cells. HSD17B2 in CAFs could serve as a promising therapeutic target for CRPC.


Subject(s)
Cancer-Associated Fibroblasts , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Cancer-Associated Fibroblasts/metabolism , Sequence Analysis, RNA , Hormones/metabolism , Cell Line, Tumor , Receptors, Androgen/metabolism , Tumor Microenvironment , Estradiol Dehydrogenases , Integrin beta1/metabolism
7.
J Transl Med ; 21(1): 204, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932403

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological malignancies globally, and the development of innovative, effective drugs against EC remains a key issue. Phytoestrogen kaempferol exhibits anti-cancer effects, but the action mechanisms are still unclear. METHOD: MTT assays, colony-forming assays, flow cytometry, scratch healing, and transwell assays were used to evaluate the proliferation, apoptosis, cell cycle, migration, and invasion of both ER-subtype EC cells. Xenograft experiments were used to assess the effects of kaempferol inhibition on tumor growth. Next-generation RNA sequencing was used to compare the gene expression levels in vehicle-treated versus kaempferol-treated Ishikawa and HEC-1-A cells. A network pharmacology and molecular docking technique were applied to identify the anti-cancer mechanism of kaempferol, including the building of target-pathway network. GO analysis and KEGG pathway enrichment analysis were used to identify cancer-related targets. Finally, the study validated the mRNA and protein expression using real-time quantitative PCR, western blotting, and immunohistochemical analysis. RESULTS: Kaempferol was found to suppress the proliferation, promote apoptosis, and limit the tumor-forming, scratch healing, invasion, and migration capacities of EC cells. Kaempferol inhibited tumor growth and promotes apoptosis in a human endometrial cancer xenograft mouse model. No significant toxicity of kaempferol was found in human monocytes and normal cell lines at non-cytotoxic concentrations. No adverse effects or significant changes in body weight or organ coefficients were observed in 3-7 weeks' kaempferol-treated animals. The RNA sequencing, network pharmacology, and molecular docking approaches identified the overall survival-related differentially expressed gene HSD17B1. Interestingly, kaempferol upregulated HSD17B1 expression and sensitivity in ER-negative EC cells. Kaempferol differentially regulated PPARG expression in EC cells of different ER subtypes, independent of its effect on ESR1. HSD17B1 and HSD17B1-associated genes, such as ESR1, ESRRA, PPARG, AKT1, and AKR1C1\2\3, were involved in several estrogen metabolism pathways, such as steroid binding, 17-beta-hydroxysteroid dehydrogenase (NADP+) activity, steroid hormone biosynthesis, and regulation of hormone levels. The molecular basis of the effects of kaempferol treatment was evaluated. CONCLUSIONS: Kaempferol is a novel therapeutic candidate for EC via HSD17B1-related estrogen metabolism pathways. These results provide new insights into the efficiency of the medical translation of phytoestrogens.


Subject(s)
Endometrial Neoplasms , Estradiol Dehydrogenases , Kaempferols , Network Pharmacology , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Estrogens/metabolism , Kaempferols/pharmacology , Molecular Docking Simulation , PPAR gamma/metabolism , Steroids/metabolism , Estradiol Dehydrogenases/metabolism
8.
J Steroid Biochem Mol Biol ; 222: 106136, 2022 09.
Article in English | MEDLINE | ID: mdl-35691460

ABSTRACT

Endometriosis is a gynecological disorder affecting about 10% of women and can lead to invalidating painful symptoms and infertility. Since there is no current definitive cure for this disease, new therapeutic options are necessary. 17ß-Hydroxysteroid dehydrogenase type 1 (17ß-HSD1) is involved in the production of estradiol (E2), the most potent estrogen in women, and of 5-androstene-3ß,17ß-diol (5-diol), a weaker estrogen than E2, but whose importance increases after menopause. 17ß-HSD1 is therefore a pharmacological target of choice for the treatment of estrogen-dependent diseases such as endometriosis. We developed a targeted-covalent (irreversible) and non-estrogenic inhibitor of 17ß-HSD1, a molecule named PBRM, and herein evaluated its efficiency for the treatment of endometriosis. In a cell-free assay containing estrone (E1), the natural substrate of 17ß-HSD1, PBRM was able to block the formation of E2 in a collection of 50 human endometriosis lesions from a different clinical feature type, location, and phase. When given orally by gavage at 15 mg/kg to baboons, the resulting plasmatic concentration of PBRM was found to be sufficiently high (up to 125 ng/mL) for an efficacy study in a non-human primate (baboon) endometriosis model. After 2 months of treatment, the number of lesions/adhesions decreased in 60% of animals (3/5) in the PBRM-treated group, compared to the placebo group which showed an increase in the number of lesion/adhesions in 60% (3/5) of animals. Indeed, the total number of lesions/adhesions decreased in treated group (-6.5 or -19% when excluding one animal) while it increased in the control group receiving a placebo (+11%). Analysis of specific endometriotic lesions revealed that PBRM decreased the number of red lesions (-67%; 8/12) and white lesions (-35%; 11/31), but not of blue-black lesions. Similarly, PBRM decreased the surface area of dense adhesions and filmy adhesions, as compared to placebo. Also, PBRM treatment did not significantly affect the number of menstrual days. Finally, this targeted covalent inhibitor showed no adverse effects and no apparent toxicity for the duration of the treatment. These data indicate that 17ß-HSD1 inhibitor PBRM is a promising candidate for therapy targeting endometriosis and supports the need of additional efforts toward clinical trials.


Subject(s)
Endometriosis , Estradiol , 17-Hydroxysteroid Dehydrogenases , Animals , Endometriosis/drug therapy , Enzyme Inhibitors/pharmacology , Estradiol/chemistry , Estradiol/pharmacology , Estradiol Dehydrogenases , Estrogens , Female , Humans , Primates
9.
Biosci Rep ; 42(5)2022 05 27.
Article in English | MEDLINE | ID: mdl-35510872

ABSTRACT

Vitamin D (VD) exerts a wide variety of actions via gene regulation mediated by the nuclear vitamin D receptor (VDR) under physiological and pathological settings. However, the known target genes of VDR appear unlikely to account for all VD actions. We used in silico and transcriptomic approaches in human cell lines to search for non-coding RNAs transcriptionally regulated by VD directly. Four long non-coding RNAs (lncRNAs), but no microRNAs (miRNAs), were found, supported by the presence of consensus VDR-binding motifs in the coding regions. One of these lncRNAs (AS-HSD17ß2) is transcribed from the antisense strand of the HSD17ß2 locus, which is also a direct VD target. AS-HSD17ß2 attenuated HSD17ß2 expression. Thus, AS-HSD17ß2 represents a direct lncRNA target of VD.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Estradiol Dehydrogenases , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Vitamin D/genetics , Vitamin D/pharmacology , Vitamins
10.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563206

ABSTRACT

Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.


Subject(s)
Adenomyosis , Adenomyosis/genetics , Adenomyosis/pathology , Animals , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Estrogens/metabolism , Female , Humans , Hydroxysteroids , Mice , Mice, Transgenic , Phenotype
11.
Biol Reprod ; 106(1): 95-107, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34672344

ABSTRACT

Key biomolecular processes, which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries, are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial (PrF), primary (PF), and secondary follicle (SF) samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here, we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localization was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolizing enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localized FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells, whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in SFs. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimized as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early SFs supported its potential for producing sex steroids.


Subject(s)
Cats/physiology , Gonadal Steroid Hormones/metabolism , Gonadotropins/metabolism , Ovarian Follicle/physiology , Signal Transduction/physiology , 17-Hydroxysteroid Dehydrogenases/analysis , 17-Hydroxysteroid Dehydrogenases/genetics , Animals , Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/genetics , Estradiol Dehydrogenases , Female , Gene Expression Regulation , Gonadal Steroid Hormones/biosynthesis , Ovarian Follicle/enzymology , Receptors, Gonadotropin/analysis , Receptors, Gonadotropin/genetics , Receptors, Gonadotropin/physiology , Receptors, Steroid/analysis , Receptors, Steroid/genetics , Receptors, Steroid/physiology , Sequence Analysis, RNA
12.
J Clin Endocrinol Metab ; 107(3): 660-667, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34718643

ABSTRACT

CONTEXT: Adrenal-derived 11-oxygenated androgens (11oAs) are known important contributors to human physiology and disease but have not been studied in pregnancy. OBJECTIVE: We characterize 11oAs in normal human pregnancy and neonatal period and assess the ratios between 11oAs and compare with ratios of other steroids that undergo placental metabolism. DESIGN: Prospective cohort study, 2010-2018. SETTING: Academic institution. PATIENTS: Pairs of pregnant women and newborns (n = 120) were studied. Inclusion criteria were maternal age between 18 and 42 years old, spontaneous singleton pregnancies, and intention to deliver at University of Michigan. INTERVENTION: Maternal venous blood was collected during first trimester and at term. Neonatal cord blood was collected following delivery. Steroids were measured via liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES: Levels of 11ß-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11KA4), 11ß-hydroxytestosterone, and 11-ketotestoterone (11KT) in maternal first trimester, maternal term, and neonatal cord blood were compared. 11OHA4-to-11KA4 ratios were correlated with cortisol-to-cortisone ratios. RESULTS: Dominant 11oAs in pregnancy and the cord blood are 11OHA4 and 11KA4, compared to 11OHA4 and 11KT in adult men and nonpregnant women. We found a rise in 11oA concentrations, particularly 11KA4, from first to third trimester. In cord blood, the concentration of 11KA4 exceeded those of both 11OHA4 and 11KT, reflecting placental 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) and 17ß-hydroxysteroid dehydrogenase (17ßHSD2) activities, respectively. 11OHA4-to-11KA4 ratios are concordant with cortisol-to-cortisone ratios across all maternal and fetal compartments, reflecting placental 11ßHSD2 activity. CONCLUSIONS: Placental 17ßHSD2 activity defends the fetus against the androgen 11KT. Our normative values may be used in future studies of 11oAs in complicated pregnancies.


Subject(s)
Androstenes/blood , Estradiol Dehydrogenases/metabolism , Fetal Blood/chemistry , Adult , Androstenes/metabolism , Female , Humans , Infant, Newborn , Male , Placenta/enzymology , Pregnancy , Pregnancy Trimester, First/blood , Prospective Studies
13.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 23-32, 2021 12.
Article in English | MEDLINE | ID: mdl-34890031

ABSTRACT

Adipocytes express various enzymes, such as aldo-keto reductases (AKR1C), 11ß-hydroxysteroid dehydrogenase (11ß-HSD), aromatase, 5α-reductases, 3ß-HSD, and 17ß-HSDs involved in steroid hormone metabolism in adipose tissues. Increased activity of AKR1C enzymes and their expression in mature adipocytes might indicate the association of these enzymes with subcutaneous adipose tissue deposition. The inactivation of androgens by AKR1C enzymes increases adipogenesis and fat mass, particularly subcutaneous fat. AKR1C also causes reduction of estrone, a weak estrogen, to produce 17ß-estradiol, a potent estrogen and, in addition, it plays a role in progesterone metabolism. Functional impairments of adipose tissue and imbalance of steroid biosynthesis could lead to metabolic disturbances. In this review, we will focus on the enzymes involved in steroid metabolism and fat tissue deposition.


Subject(s)
20-Hydroxysteroid Dehydrogenases/metabolism , Adipogenesis/physiology , Adipose Tissue/enzymology , Body Fat Distribution , 11-beta-Hydroxysteroid Dehydrogenases/analysis , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , 20-Hydroxysteroid Dehydrogenases/analysis , Adipose Tissue/chemistry , Animals , Aromatase/analysis , Aromatase/metabolism , Estradiol Dehydrogenases/analysis , Estradiol Dehydrogenases/metabolism , Humans
14.
Reprod Biol Endocrinol ; 19(1): 74, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001150

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. METHODS: Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. RESULTS: The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. CONCLUSION: Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.


Subject(s)
Exosomes/metabolism , Follicular Fluid/chemistry , Ovulation Induction , Polycystic Ovary Syndrome/metabolism , Steroids/analysis , Adult , Aromatase/biosynthesis , Aromatase/genetics , Blastocyst/cytology , Cholesterol Side-Chain Cleavage Enzyme/biosynthesis , Cholesterol Side-Chain Cleavage Enzyme/genetics , Chromatography, Liquid , Embryonic Development , Estradiol/analysis , Estradiol Dehydrogenases/biosynthesis , Estradiol Dehydrogenases/genetics , Estriol/analysis , Exosomes/ultrastructure , Female , Humans , Nanoparticles , Oocyte Retrieval , Ovulation Induction/methods , Pregnenolone/analysis , Progesterone/analysis , RNA, Messenger/biosynthesis , Tandem Mass Spectrometry
15.
Mol Cell Endocrinol ; 528: 111241, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33711335

ABSTRACT

Modes of mammalian reproduction are diverse and not always conserved among related species. Progesterone is universally required to supports pregnancy but sites of synthesis and metabolic pathways vary widely. The steroid metabolome of mid-to late gestation was characterized, focusing on 5α-reduced pregnanes in species representing the Perissodactyla, Cetartiodactyla and Carnivora using mass spectrometry. Metabolomes and steroidogenic enzyme ortholog sequences were used in heirarchial analyses. Steroid metabolite profiles were similar within orders, whales within cetartiodactyls for instance, but with notable exceptions such as rhinoceros clustering with goats, and tapirs with pigs. Steroidogenic enzyme sequence clustering reflected expected evolutionary relationships but once again with exceptions. Human sequences (expected outgroups) clustered with perissodactyl CYP11A1, CYP17A1 and SRD5A1 gene orthologues, forming outgroups only for HSD17B1 and SRD5A2. Spotted hyena CYP19A1 clustered within the Perissodactyla, between rhinoceros and equid orthologues, whereas CYP17A1 clustered within the Carnivora. This variability highlights the random adoption of divergent physiological strategies as pregnancy evolved among genetically similar species.


Subject(s)
Artiodactyla/genetics , Carnivora/genetics , Enzymes/genetics , Metabolomics/methods , Perissodactyla/genetics , Steroids/chemistry , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Animals , Artiodactyla/classification , Artiodactyla/metabolism , Carnivora/classification , Carnivora/metabolism , Chromatography, Liquid , Cytochrome P-450 Enzyme System/genetics , Estradiol Dehydrogenases/genetics , Female , Perissodactyla/classification , Perissodactyla/metabolism , Phylogeny , Pregnancy , Reproduction , Species Specificity , Swine , Tandem Mass Spectrometry
16.
Cancer Lett ; 508: 18-29, 2021 06 28.
Article in English | MEDLINE | ID: mdl-33762202

ABSTRACT

Endometrial cancer (EC) is the most common gynaecological tumor in developed countries and its incidence is increasing. Approximately 80% of newly diagnosed EC cases are estrogen-dependent. Type 1 17ß-hydroxysteroid dehydrogenase (17ß-HSD-1) is the enzyme that catalyzes the final step in estrogen biosynthesis by reducing the weak estrogen estrone (E1) to the potent estrogen 17ß-estradiol (E2), and previous studies showed that this enzyme is implicated in the intratumoral E2 generation in EC. In the present study we employed a recently developed orthotopic and estrogen-dependent xenograft mouse model of EC to show that pharmacological inhibition of the 17ß-HSD-1 enzyme inhibits disease development. Tumors were induced in one uterine horn of athymic nude mice by intrauterine injection of the well-differentiated human endometrial adenocarcinoma Ishikawa cell line, modified to express human 17ß-HSD-1 in levels comparable to EC, and the luciferase and green fluorescent protein reporter genes. Controlled estrogen exposure in ovariectomized mice was achieved using subcutaneous MedRod implants that released either the low active estrone (E1) precursor or vehicle. A subgroup of E1 supplemented mice received daily oral gavage of FP4643, a well-characterized 17ß-HSD-1 inhibitor. Bioluminescence imaging (BLI) was used to measure tumor growth non-invasively. At sacrifice, mice receiving E1 and treated with the FP4643 inhibitor showed a significant reduction in tumor growth by approximately 65% compared to mice receiving E1. Tumors exhibited metastatic spread to the peritoneum, to the lymphovascular space (LVI), and to the thoracic cavity. Metastatic spread and LVI invasion were both significantly reduced in the inhibitor-treated group. Transcriptional profiling of tumors indicated that FP4643 treatment reduced the oncogenic potential at the mRNA level. In conclusion, we show that 17ß-HSD-1 inhibition represents a promising novel endocrine treatment for EC.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Endometrial Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Estradiol Dehydrogenases/antagonists & inhibitors , Animals , Cell Growth Processes/drug effects , Cell Line, Tumor , Endometrial Neoplasms/enzymology , Estrone/analogs & derivatives , Estrone/pharmacology , Female , Humans , Mice, Nude , Random Allocation , Xenograft Model Antitumor Assays
17.
J Steroid Biochem Mol Biol ; 206: 105790, 2021 02.
Article in English | MEDLINE | ID: mdl-33246154

ABSTRACT

17ß-Hydroxysteroid dehydrogenase type 2 (17ß-HSD2) catalyzes the conversion of highly active estrogens and androgens into their less active forms using NAD+ as cofactor. Substrate and cofactor specificities of 17ß-HSD2 have been reported and potent 17ß-HSD2 inhibitors have been discovered in a ligand-based approach. However, the molecular basis and the amino acids involved in the enzymatic functionality are poorly understood, as no crystal structure of the membrane-associated 17ß-HSD2 exists. The functional properties of only few amino acids are known. The lack of topological information impedes structure-based drug design studies and limits the design of biochemical experiments. The aim of this work was the determination of the 17ß-HSD2 topology. For this, the first homology model of 17ß-HSD2 in complex with NAD+ and 17ß-estradiol was built, using a multi-fragment "patchwork" approach. To confirm the quality of the model, fifteen selected amino acids were exchanged one by one using site directed mutagenesis. The mutants' functional behavior demonstrated that the generated model was of very good quality and allowed the identification of several key amino acids involved in either ligand or internal structure stabilization. The final model is an optimal basis for further experiments like, for example, lead optimization.


Subject(s)
Estradiol Dehydrogenases/genetics , Mutagenesis, Site-Directed , Structure-Activity Relationship , Amino Acids/genetics , Catalysis , Enzyme Inhibitors/pharmacology , Estradiol Dehydrogenases/chemistry , Estradiol Dehydrogenases/ultrastructure , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation
18.
J Reprod Immunol ; 142: 103191, 2020 11.
Article in English | MEDLINE | ID: mdl-32937223

ABSTRACT

OBJECTIVE: Follicular development can be disturbed due to many factors, including having polycystic ovaries. Aberrant expression of genes involved in steroidogenesis pathway could lead to aberrant oocyte development. In this study, the gene expression levels of a number of genes that is functioning in steroidogenesis pathway were investigated. MATERIALS AND METHODS: The spare oocytes were collected from NEU Hospital IVF Center following controlled ovarian stimulation cycle. RNA was extracted using RNA/DNA Purification Kit (Norgen, Canada) and reverse transcription was performed using TruScript First Strand cDNA Synthesis Kit (Norgen, Canada). Real time PCR was conducted using LightCycler® 480 SYBR Green I Master (Roche, UK). RESULTS AND CONCLUSION: The expression levels of CYP11, CYP17, CYP19, HSD17B1, HSD3B2 and ACTB were detected in human MII stage oocytes obtained from oocyte donors aged between 18-30 years. The number of follicles and oocytes collected from the patients with polycystic ovaries were slightly higher compared to the control group. The expression level of CYP11A1 was shown to be statistically different in the oocytes obtained from the patients who do not have polycystic ovaries (p < 0.05), whereas statistically significant expression levels were observed for CYP17 in the oocytes obtained from patients with polycystic ovaries (p < 0.05). The expression level of HSD17B1 was also shown to be statistically different in the oocytes (p < 0.05). The extrapolation of the results indicates that the genes involved in steroidogenesis pathway are altered in cases of polycystic ovaries. Thus, it may have a role in the development of polycystic ovaries.


Subject(s)
Androgens/biosynthesis , Hyperandrogenism/pathology , Oocytes/enzymology , Polycystic Ovary Syndrome/complications , Adolescent , Adult , Case-Control Studies , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Estradiol Dehydrogenases/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Humans , Oocytes/growth & development , Oocytes/pathology , Oogenesis , Ovarian Follicle/pathology , Polycystic Ovary Syndrome/pathology , Steroid 17-alpha-Hydroxylase/metabolism , Young Adult
19.
Mol Nutr Food Res ; 64(16): e2000289, 2020 08.
Article in English | MEDLINE | ID: mdl-32640069

ABSTRACT

SCOPE: Urolithin A and B are gut metabolites of ellagic acid and ellagitannins associated with many beneficial effects. Evidence in vitro pointed to their potential as estrogenic modulators. However, both molecular mechanisms and biological targets involved in such activity are still poorly characterized, preventing a comprehensive understanding of their bioactivity in living organisms. This study aimed at rationally identifying novel biological targets underlying the estrogenic-modulatory activity of urolithins. METHODS AND RESULTS: The work relies on an in silico/in vitro target fishing study coupling molecular modeling with biochemical and cell-based assays. Estrogen sulfotransferase and 17ß-hydroxysteroid dehydrogenase are identified as potentially subject to inhibition by the investigated urolithins. The inhibition of the latter undergoes experimental confirmation either in a cell-free or cell-based assay, validating computational outcomes. CONCLUSIONS: The work describes target fishing as an effective tool to identify unexpected targets of food bioactives detailing the interaction at a molecular level. Specifically, it described, for the first time, 17ß-hydroxysteroid dehydrogenase as a target of urolithins and highlighted the need of further investigations to widen the understanding of urolithins as estrogen modulators in living organisms.


Subject(s)
Coumarins/pharmacology , Enzyme Inhibitors/pharmacology , Estradiol Dehydrogenases/antagonists & inhibitors , Proteins/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , 17-Hydroxysteroid Dehydrogenases/metabolism , Cell-Free System , Computer Simulation , Coumarins/chemistry , Coumarins/metabolism , Humans , Ligands , MCF-7 Cells , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteins/chemistry , Sulfotransferases/chemistry , Sulfotransferases/metabolism
20.
Article in English | MEDLINE | ID: mdl-32547495

ABSTRACT

Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17ß-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/prevention & control , Estrogens/metabolism , Estrogens/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Aromatase/metabolism , Brain Injuries, Traumatic/complications , Encephalitis/etiology , Encephalitis/prevention & control , Estradiol Dehydrogenases/metabolism , Humans , Steryl-Sulfatase/metabolism , Sulfotransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL