Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785348

ABSTRACT

Hydroxysteroid (17ß) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Mice, Knockout , Testis , Testosterone , Animals , Male , Testis/metabolism , Testis/embryology , Mice , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/deficiency , Female , Testosterone/blood , Testosterone/metabolism , Fetus/metabolism , Estradiol Dehydrogenases/metabolism , Estradiol Dehydrogenases/genetics
2.
Nature ; 629(8014): 1082-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38750354

ABSTRACT

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Subject(s)
Adrenal Glands , Biological Evolution , Paternal Behavior , Peromyscus , Animals , Female , Male , 20-alpha-Dihydroprogesterone/metabolism , Adrenal Glands/cytology , Adrenal Glands/enzymology , Adrenal Glands/metabolism , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , GADD45 Proteins/genetics , Genetic Variation , Hybridization, Genetic , Peromyscus/classification , Peromyscus/genetics , Peromyscus/physiology , Progesterone/metabolism , Quantitative Trait Loci , Social Behavior , Tenascin/genetics
3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563206

ABSTRACT

Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.


Subject(s)
Adenomyosis , Adenomyosis/genetics , Adenomyosis/pathology , Animals , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Estrogens/metabolism , Female , Humans , Hydroxysteroids , Mice , Mice, Transgenic , Phenotype
4.
Reprod Biol Endocrinol ; 19(1): 74, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001150

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. METHODS: Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. RESULTS: The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. CONCLUSION: Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.


Subject(s)
Exosomes/metabolism , Follicular Fluid/chemistry , Ovulation Induction , Polycystic Ovary Syndrome/metabolism , Steroids/analysis , Adult , Aromatase/biosynthesis , Aromatase/genetics , Blastocyst/cytology , Cholesterol Side-Chain Cleavage Enzyme/biosynthesis , Cholesterol Side-Chain Cleavage Enzyme/genetics , Chromatography, Liquid , Embryonic Development , Estradiol/analysis , Estradiol Dehydrogenases/biosynthesis , Estradiol Dehydrogenases/genetics , Estriol/analysis , Exosomes/ultrastructure , Female , Humans , Nanoparticles , Oocyte Retrieval , Ovulation Induction/methods , Pregnenolone/analysis , Progesterone/analysis , RNA, Messenger/biosynthesis , Tandem Mass Spectrometry
5.
Mol Cell Endocrinol ; 528: 111241, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33711335

ABSTRACT

Modes of mammalian reproduction are diverse and not always conserved among related species. Progesterone is universally required to supports pregnancy but sites of synthesis and metabolic pathways vary widely. The steroid metabolome of mid-to late gestation was characterized, focusing on 5α-reduced pregnanes in species representing the Perissodactyla, Cetartiodactyla and Carnivora using mass spectrometry. Metabolomes and steroidogenic enzyme ortholog sequences were used in heirarchial analyses. Steroid metabolite profiles were similar within orders, whales within cetartiodactyls for instance, but with notable exceptions such as rhinoceros clustering with goats, and tapirs with pigs. Steroidogenic enzyme sequence clustering reflected expected evolutionary relationships but once again with exceptions. Human sequences (expected outgroups) clustered with perissodactyl CYP11A1, CYP17A1 and SRD5A1 gene orthologues, forming outgroups only for HSD17B1 and SRD5A2. Spotted hyena CYP19A1 clustered within the Perissodactyla, between rhinoceros and equid orthologues, whereas CYP17A1 clustered within the Carnivora. This variability highlights the random adoption of divergent physiological strategies as pregnancy evolved among genetically similar species.


Subject(s)
Artiodactyla/genetics , Carnivora/genetics , Enzymes/genetics , Metabolomics/methods , Perissodactyla/genetics , Steroids/chemistry , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Animals , Artiodactyla/classification , Artiodactyla/metabolism , Carnivora/classification , Carnivora/metabolism , Chromatography, Liquid , Cytochrome P-450 Enzyme System/genetics , Estradiol Dehydrogenases/genetics , Female , Perissodactyla/classification , Perissodactyla/metabolism , Phylogeny , Pregnancy , Reproduction , Species Specificity , Swine , Tandem Mass Spectrometry
6.
J Steroid Biochem Mol Biol ; 206: 105790, 2021 02.
Article in English | MEDLINE | ID: mdl-33246154

ABSTRACT

17ß-Hydroxysteroid dehydrogenase type 2 (17ß-HSD2) catalyzes the conversion of highly active estrogens and androgens into their less active forms using NAD+ as cofactor. Substrate and cofactor specificities of 17ß-HSD2 have been reported and potent 17ß-HSD2 inhibitors have been discovered in a ligand-based approach. However, the molecular basis and the amino acids involved in the enzymatic functionality are poorly understood, as no crystal structure of the membrane-associated 17ß-HSD2 exists. The functional properties of only few amino acids are known. The lack of topological information impedes structure-based drug design studies and limits the design of biochemical experiments. The aim of this work was the determination of the 17ß-HSD2 topology. For this, the first homology model of 17ß-HSD2 in complex with NAD+ and 17ß-estradiol was built, using a multi-fragment "patchwork" approach. To confirm the quality of the model, fifteen selected amino acids were exchanged one by one using site directed mutagenesis. The mutants' functional behavior demonstrated that the generated model was of very good quality and allowed the identification of several key amino acids involved in either ligand or internal structure stabilization. The final model is an optimal basis for further experiments like, for example, lead optimization.


Subject(s)
Estradiol Dehydrogenases/genetics , Mutagenesis, Site-Directed , Structure-Activity Relationship , Amino Acids/genetics , Catalysis , Enzyme Inhibitors/pharmacology , Estradiol Dehydrogenases/chemistry , Estradiol Dehydrogenases/ultrastructure , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation
7.
Int J Oncol ; 56(6): 1352-1372, 2020 06.
Article in English | MEDLINE | ID: mdl-32236582

ABSTRACT

Numerous studies have reported that oestrogens may contribute to the development of non­small cell lung cancer (NSCLC). Although different steroidogenic enzymes have been detected in the lung, the precise mechanism leading to an exaggerated accumulation of active oestrogens in NSCLC remains unexplained. 17­ß­Hydroxysteroid dehydrogenase type 2 (HSD17B2) is an enzyme involved in oestrogen and androgen inactivation by converting 17­ß­oestradiol into oestrone, and testosterone into 4­androstenedione. Therefore, the enzyme serves an important role in regulation of the intracellular availability of active sex steroids. This study aimed to determine the expression levels of HSD17B2 in lung cancer (LC) and adjacent histopathologically unchanged tissues obtained from 161 patients with NSCLC, and to analyse the association of HSD17B2 with clinicopathological features. For that purpose, reverse transcription­quantitative PCR, western blotting and immunohistochemistry were conducted. The results revealed that the mRNA and protein expression levels of HSD17B2 were significantly decreased in LC tissues compared with matched controls (P<10­6). Conversely, strong cytoplasmic staining of HSD17B2 was detected in the unchanged respiratory epithelium and in glandular cells. Notably, a strong association was detected between reduced HSD17B2 expression and advanced tumour stage, grade and size. Furthermore, it was revealed that HSD17B2 may have potential prognostic significance in NSCLC. A log­rank test revealed the benefit of high HSD17B2 protein expression for the overall survival (OS) of patients (P=0.0017), and multivariate analysis confirmed this finding (hazard ratio=0.21; 95% confidence interval=0.07­0.63; P=0.0043). Stratified analysis in the Kaplan­Meier Plotter database indicated that patients with higher HSD17B2 expression presented better OS and post­progression survival. This beneficial effect was particularly evident in patients with adenocarcinoma and during the early stages of NSCLC. Decreased expression of HSD17B2 appears to be a frequent feature in NSCLC. Retrospective analysis suggests that the HSD17B2 mRNA and protein status might be independent prognostic factors in NSCLC and should be further investigated.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Lung Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Cytoplasm/genetics , Cytoplasm/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies , Survival Analysis
8.
Toxicol Mech Methods ; 30(5): 336-349, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32166990

ABSTRACT

In cosmetics and food products, parabens are widely used as antimicrobial agents. Reports have suggested that parabens may be linked to infertility, owing to their effects on basal steroidogenesis properties or their capacity to inflict mitochondrial damage. Despite growing concerns about parabens as endocrine disruptors, it is unclear whether they affect any of these actions in humans, particularly at environmentally relevant concentrations. In this work, an in vitro primary culture of human granulosa cells was used to evaluate steroidogenesis, based on the assessment of progesterone production and regulation of critical steroidogenic genes: CYP11A1, HSD3B1, CYP19A1, and HSD17B1. The effects of two commercially relevant parabens, methylparaben (MPB) and butylparaben (BPB), were screened. Cells were exposed to multiple concentrations ranging from relatively low (typical environmental exposure) to relatively high. The effect was assessed by the parabens' ability to modify steroidogenic genes, progesterone or estradiol production, and on mitochondrial health, by evaluating mitochondrial activity as well as mtDNA content. Neither MPB nor BPB showed any effect over progesterone production or the expression of genes controlling steroid production. Only BPB affected the mitochondria, decreasing mtDNA content at supraphysiological concentrations (1000 nM). Prolonged exposure to these compounds produced no effects in neither of these parameters. In conclusion, neither MPB nor BPB significantly affected basal steroidogenesis in granulosa cells. Although evidence supporting paraben toxicity is prevalent, here we put forth evidence that suggests that parabens do not affect basal steroidogenesis in human granulosa cells.


Subject(s)
Endocrine Disruptors/toxicity , Granulosa Cells/drug effects , Parabens/toxicity , Progesterone/biosynthesis , Adult , Aromatase/genetics , Body Fluids/chemistry , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/genetics , DNA, Mitochondrial/metabolism , Dose-Response Relationship, Drug , Endocrine Disruptors/administration & dosage , Endocrine Disruptors/analysis , Estradiol Dehydrogenases/genetics , Female , Granulosa Cells/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Multienzyme Complexes/genetics , Parabens/administration & dosage , Parabens/analysis , Primary Cell Culture , Progesterone Reductase/genetics , Steroid Isomerases/genetics
9.
Eur Arch Otorhinolaryngol ; 277(4): 1121-1127, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31989268

ABSTRACT

OBJECTIVES: Puberphonia or mutational falsetto (MF) is seen more in males, and hormonal changes are considered to be among the aetiological causes. Therefore, the aim of this study was to investigate the molecules [G protein-coupled oestrogen receptor 1 (GPER-1), aromatase, 17-beta-hydroxysteroid dehydrogenase (17ß-HSD), cyclic adenosine monophosphate (cAMP) levels] related to receptors and pathways in patients with MF. METHODS: The study included 30 MF patients and a control group of 30 healthy individuals. Voice recordings were made of the MF patients and acoustic analyses were applied. The serum GPER-1, aromatase, 17ß-HSD, cAMP levels and TSH, estradiol, prolactin, progesterone, and testosterone levels were evaluated in venous blood samples. RESULTS: In the MF patients, the GPER-1 level determined of mean 3.68 (1.95-4.26) pg/ml, 17 beta dehydrogenase of 5.25 (2.73-6.77) ng/ml, and cAMP of 24.62 (11.62-30.35) ng/ml were statistically signficantly higher than those of the control group (p = 0.008, p = 0.002, p = 0.003, respectively). The aromatase level in the MF patients was found to be 3.48 (2.01-4.91) and the difference between the two groups was not statistically significant (p = 0.067). CONCLUSION: The GPER-1, 17ß-HSD, and cAMP levels were found to be higher in the MF patients than in the control group, suggesting that they could be of importance in the diagnosis and treatment of MF.


Subject(s)
Aromatase , Cyclic AMP , Estradiol Dehydrogenases/genetics , Estrogen Receptor alpha , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Voice Disorders/genetics , Aromatase/metabolism , Estradiol , Estrogens , GTP-Binding Proteins , Humans , Male , Mutation
10.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383933

ABSTRACT

As the outermost barrier of the body, skin is a major target of oxidative stress. In the brain, estrogen has been reported synthesized locally and protects neurons from oxidative stress. Here, we explored whether estrogen is also locally synthesized in the skin to protect from oxidative stress and whether aberrant local estrogen synthesis is involved in skin disorders. Enzymes and estrogen receptor expression in skin cells were examined first by quantitative real-time PCR and Western blot analyses. Interestingly, the estrogen synthesis enzyme was mainly localized in epidermal keratinocytes and estrogen receptors were mainly expressed in melanocytes among 13 kinds of cultured human skin cells. The most abundant estrogen synthesis enzyme expressed in the epidermis was 17ß-hydroxysteroid dehydrogenase 1 (HSD17ß1) localized in keratinocytes, and the most dominant estrogen receptor expressed in the epidermis was G protein-coupled estrogen receptor 1 (GPER1) in melanocytes. To investigate whether keratinocyte-derived estradiol could protect melanocytes from oxidative stress, cultured human primary epidermal melanocytes (HEMn-MPs) were treated with H2O2 in the presence or absence of 17ß estradiol or co-cultured with HSD17ß1 siRNA-transfected keratinocytes. Keratinocyte-derived estradiol exhibited protective effects against H2O2-induced cell death. Further, reduced expression of HSD17ß1 in the epidermis of skin from vitiligo patients was observed compared to the skin from healthy donors or in the normal portions of the skin in vitiligo patients. Our results suggest a possible new target for interventions that may be used in combination with current therapies for patients with vitiligo.


Subject(s)
Disease Susceptibility , Epidermis/metabolism , Estrogens/metabolism , Melanocytes/metabolism , Oxidative Stress , Vitiligo/etiology , Vitiligo/metabolism , Cell Count , Cell Death , Epidermal Cells/metabolism , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Gene Expression , Humans , Keratinocytes/metabolism , Melanins/biosynthesis , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
11.
J Hazard Mater ; 385: 121616, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31780289

ABSTRACT

The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17ß-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17ß-hydroxysteroid dehydrogenases (17ß-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.


Subject(s)
Bacterial Proteins/isolation & purification , Estradiol Dehydrogenases/isolation & purification , Estradiol/metabolism , Stenotrophomonas maltophilia/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Estradiol Dehydrogenases/chemistry , Estradiol Dehydrogenases/genetics , Kinetics , Octoxynol/pharmacology , Oxidation-Reduction , Polysorbates/pharmacology , Sequence Alignment , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/enzymology , Stenotrophomonas maltophilia/genetics , Surface-Active Agents/pharmacology
12.
Breast ; 49: 48-54, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31678641

ABSTRACT

BACKGROUND: Arthralgia is a common and debilitating toxicity of aromatase inhibitors (AI) that leads to premature drug discontinuation. We sought to evaluate the clinical and genetic risk factors associated with AI-associated arthralgia (AIAA). METHODS: We performed a cross-sectional study among postmenopausal women with stage 0-III breast cancer who were prescribed a third-generation AI for adjuvant therapy. The primary outcome was patient-reported AIAA occurrence. We extracted and assayed germline DNA for single nucleotide polymorphisms (SNPs) of genes implicated in estrogen and inflammation pathways. Multivariable logistic regression models examined the association between demographic, clinical, and genetic factors and AIAA. Analyses were restricted to White participants. RESULTS: Among 1049 White participants, 543 (52%) reported AIAA. In multivariable analyses, women who had a college education [Adjusted Odds Ratio (AOR) 1.49, 95% Confidence Interval (CI) 1.00-2.20], had a more recent transition into menopause (<10 years) (5-10 years AOR 1.55, 95% CI 1.09-2.22; <5 years AOR 1.78, 95% CI 1.18-2.67), were within one year of starting AIs (AOR 1.61, 95% CI 1.08-2.40), and those who received chemotherapy (AOR 1.38, 95% CI 1.02-1.88) were significantly more likely to report AIAA. Additionally, SNP rs11648233 (HSD17B2) was significantly associated with higher odds of AIAA (AOR 2.21, 95% CI 1.55-3.16). CONCLUSIONS: Time since menopause and start of AIs, prior chemotherapy, and SNP rs11648233 within the HSD17B2 gene in the estrogen pathway were significantly associated with patient-reported AIAA. These findings suggest that clinical and genetic factors involved in estrogen withdrawal increase the risk of AIAA in postmenopausal breast cancer survivors.


Subject(s)
Aromatase Inhibitors/adverse effects , Arthralgia/chemically induced , Breast Neoplasms/drug therapy , Genetic Predisposition to Disease , Adult , Aged , Aged, 80 and over , Aromatase Inhibitors/therapeutic use , Arthralgia/diagnosis , Arthralgia/genetics , Breast Neoplasms/genetics , Cross-Sectional Studies , Estradiol Dehydrogenases/genetics , Female , Genetic Markers , Humans , Logistic Models , Middle Aged , Polymorphism, Single Nucleotide , Postmenopause , Risk Factors
13.
J Steroid Biochem Mol Biol ; 195: 105471, 2019 12.
Article in English | MEDLINE | ID: mdl-31513846

ABSTRACT

Breast cancer is a major cause of cancer-related death for women in western countries. 17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17ß-HSD2 is responsible for oxidizing the sex hormones. We used microarray technology to analyze the effect of 17ß-HSD2 on the MCF-7 cell transcript profile after knocking down 17ß-HSD2. Five hundred forty-two genes were regulated 1.5-fold or higher after treatment with 17ß-HSD2 siRNA. Knocking down 17ß-HSD2 interrupted nucleosome assembly. Pathway-Act-Network analysis showed that the MAPK and apoptosis signaling pathways were most regulated. In the gene-gene interaction network analysis, UGT2B15, which is involved in hormone metabolism, was the most regulated core gene. FOS, GREB1, and CXCL12 were the most regulated genes, and CXCL12 was related to tumor migration. Following 17ß-HSD2 knock-down, the cell viability decreased to 75.9%. The S-phase percentage decreased by 19.4%, the Q2-phase percentage in cell apoptosis testing increased by 1.5 times, and cell migration decreased to 66.0%. These results were consistent with our gene chip analysis and indicated that 17ß-HSD2 plays both hormone-dependent and hormone-independent enzymatic roles. In-depth investigations of this enzyme on the genomic level will help clarify its related molecular mechanisms.


Subject(s)
Breast Neoplasms/genetics , Estradiol Dehydrogenases/genetics , Transcriptome , Apoptosis , Cell Cycle , Humans , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering/genetics
14.
Mol Cell Endocrinol ; 498: 110583, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31536780

ABSTRACT

In this study, we determined whether estragole and its isomer trans-anethole interfered with feto-placental steroidogenesis in a human co-culture model composed of fetal-like adrenocortical (H295R) and placental trophoblast-like (BeWo) cells. Estragole and trans-anethole are considered the biologically active compounds within basil and fennel seed essential oils, respectively. After a 24 h exposure of the co-culture to 2.5, 5.2 and 25 µM estragole or trans-anethole, hormone concentrations of estradiol, estrone, dehydroepiandrosterone, androstenedione, progesterone and estriol were significantly increased. Using RT-qPCR, estragole and trans-anethole were shown to significantly alter the expression of several key steroidogenic enzymes, such as those involved in cholesterol transport and steroid hormone biosynthesis, including StAR, CYP11A1, HSD3B1/2, SULT2A1, and HSD17B1, -4, and -5. Furthermore, we provided mechanistic insight into the ability of estragole and trans-anethole to stimulate promoter-specific expression of CYP19 through activation of the PKA pathway in H295R cells and the PKC pathway in BeWo cells, in both cases associated with increased cAMP levels. Moreover, we show new evidence suggesting a role for progesterone in regulating steroid hormone biosynthesis through regulation of the StAR gene.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Anisoles/pharmacology , Fetus/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Placenta/metabolism , Steroids/metabolism , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/metabolism , Adrenocortical Carcinoma/pathology , Allylbenzene Derivatives , Aromatase/genetics , Aromatase/metabolism , Cell Survival , Choriocarcinoma/drug therapy , Choriocarcinoma/metabolism , Choriocarcinoma/pathology , Coculture Techniques , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Female , Fetus/drug effects , Flavoring Agents/pharmacology , Humans , Oils, Volatile/pharmacology , Placenta/drug effects , Pregnancy , Tumor Cells, Cultured
15.
Genet Test Mol Biomarkers ; 23(2): 145-149, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30688541

ABSTRACT

AIMS: To correlate differences in estradiol levels in serum and follicular fluid with genetic variants and to determine if they play a role in the results following assisted reproductive technology (ART). PATIENTS AND METHODS: A cross-sectional study was developed at the Ideia Fértil Institute of Reproductive Health. Two hundred two female patients were selected and underwent controlled ovarian hyperstimulation cycles. Patients for this study were chosen based on their male partners' infertility. Genotypes of selected variants of CYP19A1, CYP17A1, HSD17, and COMT were compared to the estradiol measurements from follicular fluid and serum, as well as to the number and maturation status of the oocytes retrieved. RESULTS: Patients with the variant homozygous genotype AA of CYP19A1 (rs10046) showed increased serum concentrations of estradiol when compared to patients with other genotypes (p = 0.005). The same polymorphism effect was not observed in follicular fluid. This CYP19A1 variant did not affect the number of oocytes recovered nor their maturation level. CONCLUSION: The CYP19A1 variant is associated with an estradiol imbalance in serum. Other pathways, however, may contribute to the formation of the final estradiol metabolite in follicular fluid as well as its impact on the oocyte maturation.


Subject(s)
Aromatase/genetics , Estradiol/genetics , Adult , Alleles , Aromatase/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Cross-Sectional Studies , Estradiol/analysis , Estradiol/blood , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , Female , Fertilization in Vitro/methods , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/metabolism , Follicular Fluid , Gene Frequency/genetics , Genotype , Humans , Luteinizing Hormone/metabolism , Oocyte Retrieval/methods , Ovulation Induction/methods , Steroid 17-alpha-Hydroxylase/genetics , Steroid 17-alpha-Hydroxylase/metabolism , Young Adult
16.
Clin Cancer Res ; 25(4): 1291-1301, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30228209

ABSTRACT

PURPOSE: Steroidogenic enzymes are essential for prostate cancer development. Enzymes inactivating potent androgens were not investigated thoroughly, which leads to limited interference strategies for prostate cancer therapy. Here we characterized the clinical relevance, significance, and regulation mechanism of enzyme HSD17B2 in prostate cancer development. EXPERIMENTAL DESIGN: HSD17B2 expression was detected with patient specimens and prostate cancer cell lines. Function of HSD17B2 in steroidogenesis, androgen receptor (AR) signaling, and tumor growth was investigated with prostate cancer cell lines and a xenograft model. DNA methylation and mRNA alternative splicing were investigated to unveil the mechanisms of HSD17B2 regulation. RESULTS: HSD17B2 expression was reduced as prostate cancer progressed. 17ßHSD2 decreased potent androgen production by converting testosterone (T) or dihydrotestosterone (DHT) to each of their upstream precursors. HSD17B2 overexpression suppressed androgen-induced cell proliferation and xenograft growth. Multiple mechanisms were involved in HSD17B2 functional silencing including DNA methylation and mRNA alternative splicing. DNA methylation decreased the HSD17B2 mRNA level. Two new catalytic-deficient isoforms, generated by alternative splicing, bound to wild-type 17ßHSD2 and promoted its degradation. Splicing factors SRSF1 and SRSF5 participated in the generation of new isoforms. CONCLUSIONS: Our findings provide evidence of the clinical relevance, significance, and regulation of HSD17B2 in prostate cancer progression, which might provide new strategies for clinical management by targeting the functional silencing mechanisms of HSD17B2.See related commentary by Mostaghel, p. 1139.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Estradiol Dehydrogenases/genetics , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Heterografts , Humans , Male , Mice , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics
17.
Placenta ; 67: 38-44, 2018 07.
Article in English | MEDLINE | ID: mdl-29941172

ABSTRACT

INTRODUCTION: Estrogen-related receptor γ (ERRγ) and 17ß-hydroxysteroid dehydrogenase type 1 (HSD17B1) have important roles in cell invasion and in the proliferation of many types of cancer cells. However, it remains unknown whether ERRγ and HSD17B1 contribute to abnormal placental structure and dysfunction which characterize fetal growth restriction (FGR). Therefore, the aim of this study was to investigate the expression profiles of ERRγ and HSD17B1 in placenta tissues affected by FGR and to examine a possible molecular mechanism by which ERRγ is able to regulate HSD17B1 during development of FGR. METHODS: Placenta tissues were collected from women affected by FGR (n = 28) and from women with appropriately gestational age (AGA) (n = 30). Relative mRNA and protein levels of ERRγ and HSD17B1 in both groups were assessed by quantitative real-time PCR, immunohistochemistry, and Western blot analyses. The effect of ERRγ on trophoblast function and its associated mechanistic details were studied in the trophoblast cell line, HTR-8/SVneo, which was transfected with small interfering RNA (siRNA) targeting ERRγ. RESULTS: Both mRNA and protein levels of ERRγ and HSD17B1 were significantly lower in FGR placentae (P < 0.05). When ERRγ expression was knocked down in HTR-8/SVneo cells with siRNA, invasion and proliferation were inhibited. In addition, HSD17B1 expression was significantly decreased. In dual luciferase reporter assays, ERRγ stimulated transcription of HSD17B1 by targeting the ERRγ response element within its 5'-flanking promoter region. DISCUSSION: Aberrant ERRγ expression may contribute to the pathogenesis of FGR by regulating the transcriptional activity of HSD17B1.


Subject(s)
Estradiol Dehydrogenases/genetics , Fetal Growth Retardation/genetics , Receptors, Estrogen/physiology , Adult , Case-Control Studies , Cells, Cultured , Estradiol Dehydrogenases/metabolism , Female , Fetal Growth Retardation/metabolism , Gene Expression Regulation, Enzymologic , Humans , Infant, Newborn , Male , Placenta/enzymology , Placenta/metabolism , Pregnancy , Receptors, Estrogen/genetics , Trophoblasts/enzymology , Trophoblasts/metabolism , Young Adult
18.
mBio ; 9(3)2018 05 15.
Article in English | MEDLINE | ID: mdl-29764944

ABSTRACT

The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes, which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread.IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes, they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell.


Subject(s)
Estradiol Dehydrogenases/immunology , Hepatocytes/enzymology , Listeria monocytogenes/physiology , Listeriosis/enzymology , Oxidoreductases/metabolism , Animals , Cyclic AMP/metabolism , Estradiol Dehydrogenases/genetics , Hepatocytes/immunology , Hepatocytes/microbiology , Humans , Listeria monocytogenes/genetics , Listeriosis/immunology , Listeriosis/microbiology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , NF-kappa B/immunology , Oxidoreductases/genetics
19.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642629

ABSTRACT

Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17ß-hydroxysteroid dehydrogenase type 2 (17ß-HSD2), which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT) was found to induce 17ß-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA) tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17ß-HSD2 immunohistochemical status. We further examined the correlations between 17ß-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17ß-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17ß-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17ß-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17ß-HSD2 in endometrial cancer.


Subject(s)
Androgens/pharmacology , Carcinoma, Endometrioid/metabolism , Dihydrotestosterone/pharmacology , Endometrial Neoplasms/metabolism , Estradiol Dehydrogenases/metabolism , Signal Transduction , Aged , Androgens/metabolism , Carcinoma, Endometrioid/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dihydrotestosterone/metabolism , Endometrial Neoplasms/pathology , Estradiol Dehydrogenases/genetics , Female , Humans , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Ginekol Pol ; 89(3): 125-134, 2018.
Article in English | MEDLINE | ID: mdl-29664547

ABSTRACT

OBJECTIVES: The development of endometriosis is associated with changes in the expression of genes encoding the 3ß-hydroxysteroid dehydrogenase type II (HSD3B2) and 17ß-hydroxysteroid dehydrogenase type II (HSD17B2), estrogen receptors 1 (ESR1) and 2 (ESR2) and the androgen receptor (AR). However, little is known about the expression of HSD3B2, HSD17B1, HSD17B2, ESR1 ESR2 and AR during the endometrial phases in eutopic endometrium from infertile women with endometriosis. MATERIAL AND METHODS: Using RT-qPCR analysis, we assessed the expression of the studied genes in the follicular and luteal phases in eutopic endometrium from fertile women (n = 17) and infertile women (n = 35) with endometriosis. RESULTS: In the mid-follicular eutopic endometrium, we observed a significant increase in HSD3B2 transcript levels in all infertile women with endometriosis (p = 0.003), in infertile women with stage I/II endometriosis (p = 0.008) and in infertile women with stage III/IV endometriosis (p = 0.009) compared to all fertile women. There was a significant increase in ESR1 tran-scripts in all infertile women with endometriosis (p = 0.008) and in infertile women with stage I/II endometriosis (p = 0.019) and in infertile women with stage III/IV endometriosis (p = 0.023) compared to all fertile women. In the mid-luteal eutopic endometrium, we did not observe significant differences in HSD3B2, HSD17B1, HSD17B2, ESR1, ESR2 and AR transcripts between infertile women with endometriosis and fertile women. CONCLUSIONS: Observed significant increase in HSD3B2 and ESR1 transcripts in follicular eutopic endometrium from infer-tile women with endometriosis may be related to abnormal biological effect of E2 in endometrium, further affecting the development of human embryos.


Subject(s)
Endometriosis/genetics , Gene Expression , Infertility, Female/genetics , Endometriosis/complications , Estradiol Dehydrogenases/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Female , Follicular Phase , Humans , Infertility, Female/etiology , Luteal Phase , Progesterone Reductase/genetics , Receptors, Androgen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...