Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.176
Filter
1.
J Environ Sci (China) ; 147: 244-258, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003044

ABSTRACT

4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, ß-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.


Subject(s)
Caenorhabditis elegans , Estrogens , Nitrophenols , Reproduction , Signal Transduction , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Reproduction/drug effects , Signal Transduction/drug effects , Nitrophenols/toxicity , Estrogens/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
2.
Aquat Toxicol ; 273: 107022, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032423

ABSTRACT

Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.


Subject(s)
Estrogens , Gonads , MicroRNAs , Takifugu , Animals , Takifugu/genetics , Female , Male , Estrogens/toxicity , Gonads/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Estradiol , Feminization/chemically induced , Feminization/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , Sex Differentiation/drug effects , Sex Differentiation/genetics , Transcriptome/drug effects , Gene Expression Regulation/drug effects
3.
J Hazard Mater ; 476: 135102, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39003805

ABSTRACT

The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.


Subject(s)
Daphnia , Estrogens , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Humans , Estrogens/toxicity , Estrogens/chemistry , Daphnia/drug effects , Animals , Bioaccumulation , Androgens/toxicity , Androgens/chemistry , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Hydrogen/chemistry
4.
J Hazard Mater ; 477: 135371, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39084014

ABSTRACT

Salicylic esters (SEs), the widely used ultraviolet (UV) absorbers in sunscreen products, have been found to have health risks such as skin sensitization and estrogenic effects. This study aims to design SE substitutes that maintain high UV absorbance while reducing estrogenicity. Using molecular docking and Gaussian09 software for initial assessments and further application of a combination of two-dimensional and three-dimensional quantitative structure-activity relationships (2D-QSAR and 3D-QSAR, respectively) models, we designed 73 substitutes. The best-performing molecules, ethylhexyl salicylate (EHS)-5 and EHS-15, significantly reduced estrogenicity (44.54 % and 17.60 %, respectively) and enhanced UV absorbance (249.56 % and 46.94 %, respectively). Through screening for human health risks, we found that EHS-5 and EHS-15 were free from skin sensitivity and eye irritation and exhibited reduced skin permeability compared with EHS. Furthermore, the photolysis and synthetic pathways of EHS-5 and EHS-15 were deduced, demonstrating their good photodegradability and potential synthesizability. In addition, we analyzed the mechanisms underlying the changes in estrogenic effects and UV absorption properties. We identified covalent hydrogen bond basicity and acidity Propgen value for atomic molecular properties and the highest occupied molecular orbital eigenvalue as the main factors affecting the estrogenic effect and UV absorbance of SEs, respectively. This study focuses on the design and screening of SEs, exhibiting enhanced functionality, reduced health risks, and synthetic feasibility.


Subject(s)
Estrogens , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Salicylates , Sunscreening Agents , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Salicylates/chemistry , Salicylates/toxicity , Estrogens/chemistry , Estrogens/toxicity , Humans , Ultraviolet Rays , Photolysis , Animals , Skin/drug effects , Skin/radiation effects
5.
Environ Toxicol Chem ; 43(9): 1962-1972, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39031710

ABSTRACT

Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;43:1962-1972. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anti-Bacterial Agents , Estrogens , Mutagens , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Estrogens/toxicity , Mutagens/toxicity , Mutagenicity Tests
6.
Food Chem Toxicol ; 190: 114787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838754

ABSTRACT

Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 µg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.


Subject(s)
Benzhydryl Compounds , Estrogens , Lignin , Phenols , Animals , Phenols/toxicity , Phenols/chemistry , Humans , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Lignin/chemistry , Chick Embryo , Estrogens/toxicity , Estrogens/chemistry , MCF-7 Cells , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Cell Proliferation/drug effects , Receptors, Estrogen/metabolism , Receptors, Estrogen/drug effects , Chickens
7.
Chemosphere ; 361: 142501, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825244

ABSTRACT

In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.


Subject(s)
Endocrine Disruptors , Estrogens , Metabolome , Microplastics , Ostreidae , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Ostreidae/metabolism , Ostreidae/drug effects , Estrogens/toxicity , Estrogens/metabolism , Endocrine Disruptors/toxicity , Metabolome/drug effects , Polyethylene/toxicity , Female
8.
Aquat Toxicol ; 273: 107002, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936242

ABSTRACT

This study aimed to investigate the toxicity and endocrine disrupting potential of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) in the estrogen pathway using hepatocytes of Nile tilapia Oreochromis niloticus, the hepatocytes were exposed to various concentrations of the PAH mixture, and multiple endpoints were evaluated to assess their effects on cell viability, gene expression, oxidative stress markers, and efflux activity. The results revealed that the PAH mixture had limited effects on hepatocyte metabolism and cell adhesion, as indicated by the non-significant changes observed in MTT metabolism, neutral red retention, and crystal violet staining. However, significant alterations were observed in the expression of genes related to the estrogen pathway. Specifically, vitellogenin (vtg) exhibited a substantial increase of approximately 120% compared to the control group. Similarly, estrogen receptor 2 (esr2) showed a significant upregulation of approximately 90%. In contrast, no significant differences were observed in the expression of estrogen receptor 1 (esr1) and the G protein-coupled estrogen receptor 1 (gper1). Furthermore, the PAH mixture elicited complex responses in oxidative stress markers. While reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels remained unchanged, the activity of catalase (Cat) was significantly reduced, whereas superoxide dismutase (Sod) activity, glutathione S-transferase (Gst) activity, and non-protein thiols levels were significantly elevated. In addition, the PAH mixture significantly influenced efflux activity, as evidenced by the increased efflux of rhodamine and calcein, indicating alterations in multixenobiotic resistance (MXR)-associated proteins. Overall, these findings, associated with bioinformatic analysis, highlight the potential of the PAH mixture to modulate the estrogen pathway and induce oxidative stress in O. niloticus hepatocytes. Understanding the mechanisms underlying these effects is crucial for assessing the ecological risks of PAH exposure and developing appropriate strategies to mitigate their adverse impacts on aquatic organisms.


Subject(s)
Cichlids , Endocrine Disruptors , Estrogens , Hepatocytes , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Cichlids/metabolism , Cichlids/genetics , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Oxidative Stress/drug effects , Estrogens/toxicity , Cell Survival/drug effects , Vitellogenins/metabolism , Vitellogenins/genetics , Reactive Oxygen Species/metabolism
9.
Aquat Toxicol ; 273: 107008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941808

ABSTRACT

Environmental estrogens (EEs) are found extensively in natural waters and negatively affect fish reproduction. Research on the reproductive toxicity of EEs mixtures in fish at environmentally relevant concentrations is scarce. In this study, adult male zebrafish were exposed for 60 days to EES (a mixture of EEs), EE2-low (5.55 ng/L, with an estrogenic potency equal to EES), and EE2-high (11.1 ng/L). After exposure, the expression levels of vtg1, vtg3, and esr1 in the livers in EES-treated fish remained unaltered, whereas they were significantly increased in EE2-treated fish. Both EE2-high and EES exposures notably reduced the gonad somatic index and sperm count. A disrupted spermatogenesis was also observed in the testes of EE2-high- and EES-exposed fish, along with an alteration in the expression of genes associated with spermatogonial proliferation (pcna, nanog), cell cycle transition (cyclinb1, cyclind1), and meiosis (aldh1a2, cyp26a1, sycp3). Both EE2 and EES significantly lowered plasma 11-ketotestosterone levels in males, likely by inhibiting the expression level of genes for its synthesis (scc, cyp17a1 and cyp11b2), and increased 17ß-estradiol (E2) levels, possibly through upregulating the expression of cyp19a1a. A significant increase in tnfrsf1a expression and the tnfrsf1a/tnfrsf1b ratio in EE2-high and EES-treated males also suggests increased apoptosis via the extrinsic pathway. Further investigation showed that both EE2-high and EES diminished the sexual behavior of male fish, accompanied with reduced E2 levels in the brain and the expression of genes in the kisspeptin/gonadotropin-releasing hormone system. Interestingly, the sexual behavior of unexposed females paired with treated males was also reduced, indicating a synergistic effect. This study suggests that EES have a more severe impact on reproduction than EE2-low, and EEs could interfere not only with spermatogenesis in fish, but also with the sexual behaviors of both exposed males and their female partners, thereby leading to a more significant disruption in fish reproduction.


Subject(s)
Estrogens , Spermatogenesis , Water Pollutants, Chemical , Zebrafish , Animals , Male , Zebrafish/physiology , Spermatogenesis/drug effects , Female , Water Pollutants, Chemical/toxicity , Estrogens/toxicity , Sexual Behavior, Animal/drug effects , Testis/drug effects , Testosterone/blood , Testosterone/analogs & derivatives
10.
Chemosphere ; 362: 142601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880263

ABSTRACT

In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.


Subject(s)
Bass , Endocrine Disruptors , Estrogens , Water Pollutants, Chemical , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Estrogens/toxicity , Estrogens/analysis , Receptors, Estrogen/metabolism , Biological Assay , Environmental Monitoring/methods , Genes, Reporter , Humans
11.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669872

ABSTRACT

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Subject(s)
Endocrine Disruptors , Estrogens , Phenols , Receptors, Androgen , Thyroid Hormones , Vitellogenins , Water Pollutants, Chemical , Zebrafish , Animals , Phenols/toxicity , Male , Water Pollutants, Chemical/toxicity , Female , Vitellogenins/metabolism , Endocrine Disruptors/toxicity , Thyroid Hormones/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Estrogens/toxicity , Estradiol/toxicity , Androgen Antagonists/toxicity , Testosterone/metabolism , Testosterone/analogs & derivatives , Hydrocortisone
12.
Mycotoxin Res ; 40(3): 331-346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587710

ABSTRACT

Zearalenone (ZEN) and deoxynivalenol (DON) and their derivatives are well-known mycotoxins, which can occur not only in crops but also in water bodies, including drinking water sources. In vitro bioassays can be used to detect biological effects of hazardous compounds in water. To this, when studying biological effects and toxicity in vitro, metabolism is important to consider. In this study, ZEN, α-zearalenol (α-ZEL), DON, 3-acetyl DON, and 15-acetyl DON were evaluated in vitro for hormone receptor-mediated effects (estrogen receptor [ER] and androgen receptor [AR]) and genotoxicity (micronucleus assay) in the presence of an exogenous metabolic activation system (MAS). The ER bioassay proved to be a highly sensitive method to detect low concentrations of the ZEN compounds (EC10 values of 31.4 pM for ZEN, 3.59 pM for α-ZEL) in aqueous solutions. In the presence of the MAS, reduced estrogenic effects were observed for both ZEN compounds (EC10 values of 6.47 × 103 pM for ZEN, 1.55 × 102 pM for α-ZEL). Of the DON compounds, only 3-acetyl DON was estrogenic (EC10 of 0.31 µM), and the effect was removed in the presence of the MAS. Anti-androgenic effects of the ZEN compounds and androgenic effects of the DON compounds were detected in the micromolar range. No induction of genotoxicity was detected for ZEN or DON in the presence of the MAS. Our study highlighted that inclusion of exogenous MAS is a useful tool to detect biological effects of metabolites in in vitro bioassays.


Subject(s)
Biological Assay , Trichothecenes , Zearalenone , Zearalenone/toxicity , Trichothecenes/toxicity , Trichothecenes/metabolism , Biological Assay/methods , Receptors, Androgen/metabolism , Androgens/metabolism , Androgens/toxicity , Humans , Mutagens/toxicity , Mutagens/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/drug effects , Estrogens/metabolism , Estrogens/toxicity , Micronucleus Tests
13.
Anal Bioanal Chem ; 416(15): 3519-3532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656365

ABSTRACT

The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.


Subject(s)
Biological Assay , Biological Assay/methods , Chromatography, Thin Layer/methods , Phenols/toxicity , Phenols/analysis , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Estrogens/analysis , Estrogens/toxicity
14.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Article in English | MEDLINE | ID: mdl-38477699

ABSTRACT

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Subject(s)
Estrogens , Steroid 17-alpha-Hydroxylase , Vitellogenins , Zebrafish , Animals , Male , Steroid 17-alpha-Hydroxylase/genetics , Vitellogenins/genetics , Estrogens/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Benzhydryl Compounds/toxicity , Estradiol , Phenols/toxicity , Female , Fluorocarbons/toxicity , Testis/drug effects , Testis/metabolism
15.
Sci Total Environ ; 924: 171608, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38492588

ABSTRACT

The ubiquitous presence of emerging contaminants (ECs) in the environment and their associated adverse effects has raised concerns about their potential risks. The increased toxicity observed during the environmental transformation of ECs is often linked to the formation of their transformation products (TPs). However, comprehension of their formation mechanisms and contribution to the increased toxicity remains an unresolved challenge. To address this gap, by combining quantum chemical and molecular simulations with photochemical experiments in water, this study investigated the formation of TPs and their molecular interactions related to estrogenic effect using the photochemical degradation of benzylparaben (BZP) preservative as a representative example. A non-targeted analysis was carried out and three previously unknown TPs were identified during the transformation of BZP. Noteworthy, two of these novel TPs, namely oligomers BZP-o-phenol and BZP-m-phenol, exhibited higher estrogenic activities compared to the parent BZP. Their IC50 values of 0.26 and 0.50 µM, respectively, were found to be lower than that of the parent BZP (6.42 µM). The binding free energies (ΔGbind) of BZP-o-phenol and BZP-m-phenol (-29.71 to -23.28 kcal·mol-1) were lower than that of the parent BZP (-20.86 kcal·mol-1), confirming their stronger binding affinities toward the estrogen receptor (ER) α-ligand binding domain. Subsequent analysis unveiled that these hydrophobic residues contributed most favorably to ER binding, with van der Waals interactions playing a significant role. In-depth examination of the formation mechanisms indicated that these toxic TPs primarily originated from the successive cleavage of ester bonds (OCH2C6H5 and COO group), followed by their combination with BZP*. This study provides valuable insight into the mechanisms underlying the formation of toxic TPs and their binding interactions causing the endocrine-disrupting effects. It offers a crucial framework for elucidating the toxicological patterns of ECs with similar structures.


Subject(s)
Estrogens , Water Pollutants, Chemical , Estrogens/toxicity , Parabens/toxicity , Parabens/analysis , Photolysis , Preservatives, Pharmaceutical/toxicity , Water Pollutants, Chemical/analysis
16.
Reprod Toxicol ; 123: 108517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040386

ABSTRACT

Estrogenic chemicals are common pollutants in wastewater and current effluent treatment processes are not typically effective in removing these compounds. Tetra-amido macrocyclic ligands (TAMLs) are catalysts that mimic endogenous peroxidases that may provide a solution to remove environmental pollutants including low concentrations of estrogenic compounds. Yet relatively little is known about the toxicity of TAMLs, and few studies have evaluated whether they may have endocrine disrupting properties. We administered one of three doses of a TAML, NT7, to mice via drinking water throughout pregnancy and lactation. Two pharmacologically active compounds, ethinyl estradiol (EE2) and flutamide were also included to give comparator data for estrogen receptor agonist and androgen receptor antagonist activities. Male pups were evaluated for several outcomes at weaning, puberty, and early adulthood. We found that EE2 exposures during gestation and the perinatal period induced numerous effects that were observed across the three ages including changes to spleen and testis weight and drastic effects on the morphology of the mammary gland. Flutamide had fewer effects but altered anogenital distance at weaning as well as spleen, liver, and kidney weight. In contrast, relatively few effects of NT7 were observed, but included alterations to spleen weight and modest changes to adult testis weight and morphology of the mammary gland at weaning. Collectively, these results provide some of the first evidence suggesting that NT7 may alter some hormone-sensitive outcomes, but that the effects were distinct from either EE2 or flutamide. Additional studies are needed to characterize the biological activity of this and other TAML catalysts.


Subject(s)
Flutamide , Sexual Maturation , Pregnancy , Female , Mice , Animals , Male , Flutamide/toxicity , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Lactation
17.
Chemosphere ; 349: 140926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092168

ABSTRACT

The concerns regarding the potential health threats caused by estrogenic endocrine-disrupting chemicals (EDCs) and their mixtures manufactured by the chemical industry are increasing worldwide. Conventional experimental tests for understanding the estrogenic activity of mixtures are expensive and time-consuming. Although non-testing methods using computational modeling approaches have been developed to reduce the number of traditional tests, they are unsuitable for predicting synergistic effects because current prediction models consider only a single chemical. Thus, the development of predictive models is essential for predicting the mixture toxicity, including chemical interactions. However, selecting suitable computational modeling approaches to develop a high-performance prediction model requires considerable time and effort. In this study, we provide a suitable computational approach to develop a predictive model for the synergistic effects of estrogenic activity. We collected datasets on mixture toxicity based on the synergistic effect of estrogen agonistic activity in binary mixtures. Using the model deviation ratio approach, we classified the labels of the binary mixtures as synergistic or non-synergistic effects. We assessed five molecular descriptors, four machine learning-based algorithms, and a deep learning-based algorithm to provide a suitable computational modeling approach. Compared with other modeling approaches, the prediction model using the deep learning-based algorithm and chemical-protein network descriptors exhibited the best performance in predicting the synergistic effects. In conclusion, we developed a new high-performance binary classification model using a deep neural network and chemical-protein network-based descriptors. The developed model will be helpful for the preliminary screening of the synergistic effects of binary mixtures during the development process of chemical products.


Subject(s)
Algorithms , Estrogens , Estrogens/toxicity , Computer Simulation , Neural Networks, Computer , Machine Learning
18.
Article in English | MEDLINE | ID: mdl-38128895

ABSTRACT

The current study investigated the effect of single and binary exposure to distinct xenoestrogens, including diethylstilbestrol (DES) and zearalenone (ZEN), on zebrafish embryos subjected to continuous exposure for 4 days starting from 4 h post fertilization. Noteworthy impact on cumulative mortality, hatchability, spinal and tail curvature, pericardial edema, and reduction in blood circulation were observed in DES-treated embryos, with lower incidence and intensity shown for ZEN at the same nominal concentration (3 µM). An interactive effect was seen for the combined exposure to DES and ZEN, in which deformities and circulatory failure mediated by DES were mitigated by co-treatment with low concentrations of ZEN. Similarly, ZEN-induced spinal and tail curvature, pericardial edema, and blood flow reduction declined dramatically following DES co-exposure at low concentrations. A significant counteracting effect has been observed against DES- and ZEN-induced developmental anomalies following co-treatment with an estrogen receptor (ER) antagonist, fulvestrant (FUL). The assessment of the aromatase gene (CYP19A1b) showed that DES strongly upregulated mRNA expression of CYP19A1b with a lower EC50 (1.1 × 10-3 nM) than a natural estrogen, 17ß-estradiol (2.5 nM). Similarly, ZEN induced CYP19A1b mRNA expression with an EC50 of 57 nM. Exposure to 10 or 20 µM FUL inhibited the expression of CYP19A1b induced by a single treatment of DES or ZEN. Overall, the competitive action against ER could be the main mechanism underlying the developmental toxicity induced by DES and ZEN.


Subject(s)
Endocrine Disruptors , Zebrafish , Animals , Zebrafish/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Estrogens/toxicity , Estrone , RNA, Messenger/metabolism , Edema
19.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068882

ABSTRACT

This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.


Subject(s)
Endocrine Disruptors , Reproductive Health , Animals , Male , Humans , Female , Estrogens/toxicity , Reproduction , Neurosecretory Systems , Sexual Behavior , Endocrine Disruptors/toxicity
20.
Sci Rep ; 13(1): 18536, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898679

ABSTRACT

Lilial (also called lysmeral) is a fragrance ingredient presented in many everyday cosmetics and household products. The concentrations of lilial in the final products is rather low. Its maximum concentration in cosmetics was limited and recently, its use in cosmetics products was prohibited in the EU due to the classification as reproductive toxicant. Additionally, according to the European Chemicals Agency, it was under assessment as one of the potential endocrine disruptors, i.e. a substance that may alter the function of the endocrine system and, as a result, cause health problems. Its ability to act as an androgen receptor agonist and the estrogenic and androgenic activity of its metabolites, to the best of our knowledge, have not yet been tested. The aim of this work was to determine the intestinal absorption, cytotoxicity, nephrotoxicity, mutagenicity, activation of cellular stress-related signal pathways and, most importantly, to test the ability to disrupt the endocrine system of lilial and its Phase I metabolites. This was tested using set of in vitro assays including resazurin assay, the CHO/HPRT mutation assay, γH2AX biomarker-based genotoxicity assay, qPCR and in vitro reporter assays based on luminescence of luciferase for estrogen, androgen, NF-κB and NRF2 signalling pathway. It was determined that neither lilial nor its metabolites have a negative effect on cell viability in the concentration range from 1 nM to 100 µM. Using human cell lines HeLa9903 and MDA-kb2, it was verified that this substance did not have agonistic activity towards estrogen or androgen receptor, respectively. Lilial metabolites, generated by incubation with the rat liver S9 fraction, did not show the ability to bind to estrogen or androgen receptors. Neither lilial nor its metabolites showed a nephrotoxic effect on human renal tubular cells (RPTEC/TERT1 line) and at the same time they were unable to activate the NF-κB and NRF2 signalling pathway at a concentration of 50 µM (HEK 293/pGL4.32 or pGL4.37). Neither lilial nor its metabolites showed mutagenic activity in the HPRT gene mutation test in CHO-K1 cells, nor were they able to cause double-strand breaks in DNA (γH2AX biomarker) in CHO-K1 and HeLa cells. In our study, no negative effects of lilial or its in vitro metabolites were observed up to 100 µM using different in vitro tests.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , NF-kappa B , Humans , Rats , Animals , HeLa Cells , HEK293 Cells , NF-E2-Related Factor 2 , Estrogens/toxicity , Estrogens/metabolism , Androgens , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL