Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Sci Total Environ ; 824: 153653, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35151747

ABSTRACT

Recent attention to methane emissions from oil and gas infrastructure has increased interest in comparing measurements with inventory emission estimates. While measurement methods typically estimate emissions over a few periods that are seconds to hours in length, current inventory methods typically produce long-term average emission estimates. This temporal mis-alignment complicates comparisons and leads to underestimates in the uncertainty of measurement methods. This study describes a new temporally and spatially resolved inventory emission model (MEET), and demonstrates the model by application to compressor station emissions - the key facility type in midstream natural gas operations The study looks at three common facility measurement methods: tracer flux methods for measuring station emissions, the use of ethane-methane ratios for source attribution of basin-scale estimates, and the behavior of continuous monitoring for leak detection at stations. Simulation results indicate that measurement methods likely underestimate uncertainties in emission estimates by failing to account for the variability in normal facility emissions and variations in ethane/methane ratios. A tracer-based measurement campaign could estimate emissions outside the 95% confidence interval of annual emissions 30% of the time, while ethane/methane ratios could be mis-estimated by as much as 50%. Use of MEET also highlights the need to improve data reporting from measurement campaigns to better capture the temporal and spatial variation in observed emissions.


Subject(s)
Air Pollutants , Methane , Air Pollutants/analysis , Ethane/analysis , Methane/analysis , Natural Gas/analysis
2.
Opt Express ; 29(8): 12381-12397, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984999

ABSTRACT

We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution of 1 GHz in 6 seconds. It has a detection sensitivity of a few hundred of ppbv Hz-1/2 for different gas species. We study the performance of the developed spectrometer in terms of precision, linearity, long-term stability, and multi-species detection. We use the spectrometer for measuring fruit-produced volatiles under different atmospheric conditions and compare the performance with a previously developed scanning grating-based spectrometer.


Subject(s)
Gases/analysis , Malus/chemistry , Malus/physiology , Spectroscopy, Fourier Transform Infrared/instrumentation , Acetaldehyde/analysis , Acetates/analysis , Acetone/analysis , Equipment Design , Ethane/analysis , Ethanol/analysis , Ethylenes/analysis , Fourier Analysis , Methanol/analysis , Spectroscopy, Fourier Transform Infrared/methods
3.
Environ Sci Technol ; 55(5): 3210-3218, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33576222

ABSTRACT

Atmospheric emissions from oil and gas production operations are composed of multiple hydrocarbons and can have large variations in composition. Accurate estimates of emission compositions are needed to estimate the fate and impacts of emissions and to attribute emissions to sources. This work presents a database, constructed with empirical data and thermodynamic models, that can be queried to estimate hydrocarbon compositions from emission sources present at oil and gas production sites. The database can be searched for matches using between two and seven well parameters as query inputs (gas-to-oil ratio, API gravity, separator pressure, separator temperature, methane molar fraction in produced gas, ethane molar fraction of produced gas, and propane molar fraction in produced gas). Database query performance was characterized by comparing returns from database queries to a test data set. Application of the database to well parameters for tens of thousands of wells in the Barnett, Eagle Ford, and Fayetteville production regions demonstrates variations in emission compositions. Ethane to methane ratio varies by more than an order of magnitude from well to well and source to source. VOC to methane ratios are comparable in variability to ethane to methane ratios for most emission sources, but have a higher variability for emissions from flashing of liquid hydrocarbon tanks.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Ethane/analysis , Hydrocarbons/analysis , Methane/analysis , Natural Gas , Oil and Gas Fields , Water Wells
4.
Environ Sci Technol ; 55(5): 2811-2819, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33587606

ABSTRACT

The methane emission intensity (methane emitted/gas produced or methane emitted/methane produced) of individual unconventional oil and gas production sites in the United States has a characteristic temporal behavior, exhibiting a brief period of decrease followed by a steady increase, with intensities after 10 years of production reaching levels that are 2-10 times the 10 year production-weighted average. Temporal patterns for methane emission intensity for entire production regions are more complex. Historical production data and facility data were used with a detailed basin-wide methane emission model to simulate the collective behavior of tens of thousands of wells and associated midstream facilities. For production regions with few to no new wells being brought to production, and existing wells having reached a mature stage, as in the Barnett Shale production region in north central Texas, the methane emission intensity gradually increases, as natural gas production decreases faster than emissions decrease, following the general pattern exhibited by individual wells. In production regions that are rapidly evolving, either with large numbers of new wells being put into production or with the introduction of source-specific regulations, the behavior is more complex. In the Eagle Ford Shale, which has had both a large number of new wells and the introduction of source-specific regulations, the methane emission intensity stays within relatively narrow bounds but the distribution of sources varies. As source distributions vary, basin-wide propane-to-methane and ethane-to-methane emission ratios vary, impacting methods used in source attribution.


Subject(s)
Air Pollutants , Methane , Air Pollutants/analysis , Ethane/analysis , Methane/analysis , Natural Gas/analysis , Oil and Gas Fields , Texas , United States
5.
Molecules ; 25(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260601

ABSTRACT

We report on a fiber-coupled, quartz-enhanced photoacoustic spectroscopy (QEPAS) near-IR sensor for sequential detection of methane (CH4 or C1) and ethane (C2H6 or C2) in air. With the aim of developing a lightweight, compact, low-power-consumption sensor suitable for unmanned aerial vehicles (UAVs)-empowered environmental monitoring, an all-fiber configuration was designed and realized. Two laser diodes emitting at 1653.7 nm and 1684 nm for CH4 and C2H6 detection, respectively, were fiber-combined and fiber-coupled to the collimator port of the acoustic detection module. No cross talk between methane and ethane QEPAS signal was observed, and the related peak signals were well resolved. The QEPAS sensor was calibrated using gas samples generated from certified concentrations of 1% CH4 in N2 and 1% C2H6 in N2. At a lock-in integration time of 100 ms, minimum detection limits of 0.76 ppm and 34 ppm for methane and ethane were achieved, respectively. The relaxation rate of CH4 in standard air has been investigated considering the effects of H2O, N2 and O2 molecules. No influence on the CH4 QEPAS signal is expected when the water vapor concentration level present in air varies in the range 0.6-3%.


Subject(s)
Environmental Monitoring/methods , Ethane/analysis , Methane/analysis , Photoacoustic Techniques/methods , Quartz/chemistry , Spectroscopy, Near-Infrared/methods
6.
Molecules ; 25(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403410

ABSTRACT

We report, to our knowledge, the first optical detection scheme for short-chained hydrocarbon isotopologues. The sensor system is based on photoacoustic spectroscopy (PAS). Two continuous wave, thermoelectrically cooled, distributed feedback interband cascade lasers (DFB-ICLs) with emission wavelengths around 3.33 and 3.38 µm, respectively, served as light sources. The investigations comprised the main stable carbon isotopologues of methane (12CH4, 13CH4), ethane (12CH3-12CH3, 13CH3-12CH3, 13CH3-13CH3), and propane (12CH3-12CH2-12CH3, 13CH3-12CH2-12CH3). They were selected because of their importance for numerous applications from climate and planetary research to natural gas exploration. Multiple measurements of single components in nitrogen and synthetic mixtures were conducted at room temperature and atmospheric pressure. Depending on the investigated hydrocarbon isotopologue, detection limits ranging from 0.043 ppmv to 3.4 ppmv were achieved. For a selective concentration determination, multivariate analysis (MVA) was applied. Partial least-squares regression (PLSR) was used to calculate concentrations from the PA spectra. The implementation of MVA has shown that the PA setup in principle works reliably and that the selective concentration determination of short-chained hydrocarbon isotopologues is possible.


Subject(s)
Hydrocarbons/analysis , Isotopes/analysis , Multivariate Analysis , Natural Gas/analysis , Photoacoustic Techniques/methods , Spectrum Analysis/methods , Atmospheric Pressure , Ethane/analysis , Hydrocarbons/chemistry , Lasers , Least-Squares Analysis , Methane/analysis , Nitrogen/analysis , Photoacoustic Techniques/instrumentation , Propane/analysis , Spectrum Analysis/instrumentation , Temperature
7.
Environ Pollut ; 255(Pt 1): 113211, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31541836

ABSTRACT

Once released into the environment, engineered nanomaterials can significantly influence the transformation and fate of organic contaminants. To date, the abilities of composite nanomaterials to catalyze environmentally relevant abiotic transformation reactions of organic contaminants are largely unknown. Herein, we investigated the effects of two nanocomposites - consisting of anatase titanium dioxide (TiO2) with different predominantly exposed crystal facets (i.e., {101} or {001} facets) anchored to hydroxylated multi-walled carbon nanotubes (OH-MWCNT) - on the hydrolysis of 1,1,2,2-tetrachloroethane (TeCA), a common groundwater contaminant, at ambient pH (6, 7 and 8). Both OH-MWCNT/TiO2 nanocomposites were more effective in catalyzing the dehydrochlorination of TeCA than the respective component materials (i.e., bare OH-MWCNT and bare TiO2). Moreover, the synergistic effect of the two components was evident, in that the incorporation of OH-MWCNT increased the TeCA adsorption capacity of the nanocomposites, significantly enhancing the catalytic effect of the deprotonated hydroxyl and carboxyl groups on nanocomposite surfaces, which served as the main catalytic sites for TeCA hydrolysis. The findings may have important implications for the understanding of the environmental implications of composite nanomaterials and may shed light on the design of high-performance nanocomposites for enhanced contaminant removal.


Subject(s)
Environmental Restoration and Remediation/methods , Ethane/analogs & derivatives , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/chemistry , Nanotubes, Carbon/chemistry , Titanium/chemistry , Adsorption , Catalysis , Ethane/analysis , Ethane/chemistry , Groundwater/chemistry , Hydrolysis , Nanocomposites/chemistry
8.
Environ Pollut ; 252(Pt A): 256-269, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31153030

ABSTRACT

We investigate the distribution of volatile organic compounds (VOCs) over Indian subcontinent during a winter month of January 2011 combining the regional model WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) with ground- and space-based observations and chemical reanalysis. WRF-Chem simulated VOCs are found to be comparable with ground-based observations over contrasting environments of the Indian subcontinent. WRF-Chem results reveal the elevated levels of VOCs (e. g. propane) over the Indo-Gangetic Plain (16 ppbv), followed by the Northeast region (9.1 ppbv) in comparison with other parts of the Indian subcontinent (1.3-8.2 ppbv). Higher relative abundances of propane (27-31%) and ethane (13-17%) are simulated across the Indian subcontinent. WRF-Chem simulated formaldehyde and glyoxal show the western coast, Eastern India and the Indo-Gangetic Plain as the regional hotspots, in a qualitative agreement with the MACC (Monitoring Atmospheric Composition and Climate) reanalysis and satellite-based observations. Lower values of RGF (ratio of glyoxal to formaldehyde <0.04) suggest dominant influences of the anthropogenic emissions on the distribution of VOCs over Indian subcontinent, except the northeastern region where higher RGF (∼0.06) indicates the role of biogenic emissions, in addition to anthropogenic emissions. Analysis of HCHO/NO2 ratio shows a NOx-limited ozone production over India, with a NOx-to-VOC transition regime over central India and IGP. The study highlights a need to initiate in situ observations of VOCs over regional hotspots (Northeast, Central India, and the western coast) based on WRF-Chem results, where different satellite-based observations differ significantly.


Subject(s)
Air Pollutants/analysis , Computer Simulation , Environmental Monitoring/methods , Ozone/analysis , Satellite Imagery , Volatile Organic Compounds/analysis , Climate , Ethane/analysis , Forecasting , Formaldehyde/analysis , Glyoxal/analysis , India , Propane/analysis , Seasons , Weather
9.
Chemosphere ; 220: 314-323, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30590297

ABSTRACT

Nitrogenous classes of disinfection by-products (DBPs), such as haloacetamides (HAAms), haloacetonitriles (HANs) and halonitromethanes (HNMs), while generally present at lower concentrations in disinfected waters than carbonaceous DBPs, such as trihalomethanes or haloacetic acids, have been shown to be more detrimental to human health. While several methods have been shown to be suitable for the analysis of some nitrogenous DBPs (N-DBPs) in disinfected waters, many are unable to quantify HAAms, the most detrimental to health of these three N-DBP classes. Here, we report the first method for the simultaneous analysis of twenty-five N-DBPs (nine HANs, nine HNMs and seven HAAms) in disinfected waters using liquid-liquid extraction followed by gas chromatography-mass spectrometry. The use of a programmable temperature vaporiser injector minimises degradation of the thermally labile HNMs, while avoiding the concomitant decreases in HANs and HAAms which occur when using lower injector temperatures. Extraction parameters, including sample pH, solvent volume, salt addition and sample pre-concentration, were investigated to determine the optimal conditions across all target N-DBPs. Good detection limits were achieved for all analytes (0.8-1.7 µg L-1) and both laboratory and instrumental runtimes were significantly reduced compared to previous methods. The method was validated for the analysis of N-DBPs in drinking, swimming pool and spa waters, and concentrations of up to 41 µg L-1 of some N-DBPs were measured in some pools.


Subject(s)
Acetamides/analysis , Acetonitriles/analysis , Ethane/analogs & derivatives , Gas Chromatography-Mass Spectrometry/methods , Nitro Compounds/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Disinfectants/chemistry , Disinfection/methods , Ethane/analysis , Halogenation , Humans
10.
J Contam Hydrol ; 212: 96-114, 2018 05.
Article in English | MEDLINE | ID: mdl-29530334

ABSTRACT

Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i.e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes.


Subject(s)
Models, Theoretical , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Acetylene/analysis , California , Diffusion , Ethane/analysis , Ethylenes/analysis , Groundwater/chemistry , Halogenation , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Water Wells
11.
J Air Waste Manag Assoc ; 68(7): 671-684, 2018 07.
Article in English | MEDLINE | ID: mdl-29513645

ABSTRACT

Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. IMPLICATIONS: Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Oil and Gas Industry , Alberta , Environmental Monitoring , Ethane/analysis , Propane/analysis , Saskatchewan , Silicon Dioxide , Uncertainty
12.
Biodegradation ; 28(5-6): 453-468, 2017 12.
Article in English | MEDLINE | ID: mdl-29022194

ABSTRACT

The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.


Subject(s)
Bacteria/metabolism , Dioxanes/metabolism , Ethane/metabolism , Methane/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biodegradation, Environmental , Dioxanes/chemistry , Ethane/analysis , Ethylenes/analysis , Ethylenes/metabolism , Groundwater , Methane/analysis , Oxygenases/chemistry , Oxygenases/metabolism , Water Pollutants, Chemical/chemistry
13.
Chemosphere ; 158: 184-92, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27269993

ABSTRACT

Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter.


Subject(s)
Environmental Monitoring/methods , Oxidants/chemistry , Sulfates/chemistry , Ethane/analogs & derivatives , Ethane/analysis , Groundwater , Hydrocarbons, Chlorinated/analysis , Hydroxyl Radical/chemistry , Manganese Compounds/analysis , Manganese Compounds/chemistry , Oxidation-Reduction , Oxides/analysis , Oxides/chemistry , Phenol/analysis , Reactive Oxygen Species/chemistry , Reducing Agents/chemistry , Soil/chemistry , Soil Pollutants/analysis , Trichloroethylene/analysis , Trichloroethylene/chemistry
14.
Sci Total Environ ; 560-561: 36-43, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27093121

ABSTRACT

UNLABELLED: To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. ONE SENTENCE SUMMARY: A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid.


Subject(s)
Acetamides/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Herbicides/analysis , Sulfonic Acids/analysis , Water Pollutants, Chemical/analysis , Agriculture , Ethane/analysis
15.
Environ Sci Technol ; 50(4): 2099-107, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26824407

ABSTRACT

There is a need for continued assessment of methane (CH4) emissions associated with natural gas (NG) production, especially as recent advancements in horizontal drilling combined with staged hydraulic fracturing technologies have dramatically increased NG production (we refer to these wells as "unconventional" NG wells). In this study, we measured facility-level CH4 emissions rates from the NG production sector in the Marcellus region, and compared CH4 emissions between unconventional NG (UNG) well pad sites and the relatively smaller and older "conventional" NG (CvNG) sites that consist of wells drilled vertically into permeable geologic formations. A top-down tracer-flux CH4 measurement approach utilizing mobile downwind intercepts of CH4, ethane, and tracer (nitrous oxide and acetylene) plumes was performed at 18 CvNG sites (19 individual wells) and 17 UNG sites (88 individual wells). The 17 UNG sites included four sites undergoing completion flowback (FB). The mean facility-level CH4 emission rate among UNG well pad sites in routine production (18.8 kg/h (95% confidence interval (CI) on the mean of 12.0-26.8 kg/h)) was 23 times greater than the mean CH4 emissions from CvNG sites. These differences were attributed, in part, to the large size (based on number of wells and ancillary NG production equipment) and the significantly higher production rate of UNG sites. However, CvNG sites generally had much higher production-normalized CH4 emission rates (median: 11%; range: 0.35-91%) compared to UNG sites (median: 0.13%, range: 0.01-1.2%), likely resulting from a greater prevalence of avoidable process operating conditions (e.g., unresolved equipment maintenance issues). At the regional scale, we estimate that total annual CH4 emissions from 88 500 combined CvNG well pads in Pennsylvania and West Virginia (660 Gg (95% CI: 500 to 800 Gg)) exceeded that from 3390 UNG well pads by 170 Gg, reflecting the large number of CvNG wells and the comparably large fraction of CH4 lost per unit production. The new emissions data suggest that the recently instituted Pennsylvania CH4 emissions inventory substantially underestimates measured facility-level CH4 emissions by >10-40 times for five UNG sites in this study.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Oil and Gas Fields , Oil and Gas Industry , Ethane/analysis , Natural Gas , Nitrous Oxide/analysis , Pennsylvania , West Virginia
16.
J Occup Environ Hyg ; 13(5): 356-71, 2016.
Article in English | MEDLINE | ID: mdl-26698920

ABSTRACT

Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance.


Subject(s)
Air Pollutants, Occupational/analysis , Aircraft , Chromium/analysis , Isocyanates/analysis , Occupational Exposure/prevention & control , Paint , Particulate Matter/analysis , Butanones/analysis , California , Ethane/analogs & derivatives , Ethane/analysis , Metals/analysis , Methyl n-Butyl Ketone/analysis , Military Personnel , Nitroparaffins/analysis , Occupational Exposure/analysis , Ventilation
17.
J Chromatogr A ; 1424: 118-26, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26603996

ABSTRACT

In this paper, heart-cutting two-dimensional GC/MS (GC-GC/MS) method in combination with a simple sample collection procedure was developed for the determination of 6 nitroalkanes in mainstream cigarette smoke. The method could remove large amounts of impurities on-line in the first polar column by heart-cuts and separate from the left interferences in a second mid-polar column. And the target compounds could be focused at the inlet of the second column by cryo-concentration. Compared to conventional GC/MS, GC-GC/MS achieved a lower noise level and sensitivity at least an order of magnitude higher. Furthermore, the GC-GC/MS method could avoid the false negative and false positive results that appeared in the compared conventional GC/MS analysis. By trapping the vapor phase of 20 cigarettes smoke, the LODs and LOQs of the nitroalkanes were 1.3 to 9.8 and 4.3 to 32.6ng/cigarette, respectively, and all linear correlation efficiencies were larger than 0.999. The validation results also indicate that the method has high accuracy (spiked recoveries between 84% and 102%) and good repeatability (RSD between 7.2% and 9.4%). The developed method was applied to analyze 1 Kentucky reference cigarette (3R4F) and 10 Chinese commercial brands of cigarettes. The research results indicated that nitromethane, nitroethane, 2-nitropropane and 1-nitro-n-pentane were detected in mainstream cigarette smoke, but 1-nitro-n-butane and 2-nitropropane, which were reported by one previous study, were not detected in all cigarette samples.


Subject(s)
Nicotiana/chemistry , Smoke/analysis , Ethane/analogs & derivatives , Ethane/analysis , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Methane/analogs & derivatives , Methane/analysis , Nitroparaffins/analysis , Propane/analogs & derivatives , Propane/analysis , Tobacco Products
18.
Pol Merkur Lekarski ; 39(231): 134-41, 2015 Sep.
Article in Polish | MEDLINE | ID: mdl-26449573

ABSTRACT

UNLABELLED: Great interest of scientific community is observed recently over non-invasive tests methods dedicated to diagnose disease states using biomarkers. The ability to detect these substances in the human breath can provide valuable information about disorder of biochemical processes in the body. Breath analysis is non-invasive, painless and can provide a quick answer about the existence of the disease. In addition, the sampling process is carried out comfortably for both the patient and the medical staff. AIM: The aim of the study was to present opportunity of application the optoelectronic methods for screening tests in medical diagnostics. The results of the researches carried out at the Institute of Experimental Physics, Department of Physics UW and at the Institute of Optoelectronics MUT are presented. MATERIALS AND METHODS: For the detection of methane and ammonia in breath the Multipass Spectroscopic Absorption Cells (MUPASS ) were used. In the case of nitric oxide and ethane observation, Cavity Enhanced Absorption Spectroscopy (CEAS) was applied. During the investigation modern tunable and sophisticated infrared radiation sources were used: single mode diode lasers (for CH4, NH3 detection), quantum cascade laser (NO sensing), and optical parametric generator (PG711/DFG) for ethane measurements. The investigations of developed sensors were conducted with use of reference samples of biomarkers, which were prepared with gas standards generator 491M from KIN-TEK company. RESULTS: Experiments showed that sensitivities of the sensors are suitable for human breath analyzing. In case of methane sensor, the detection limit (sensitivity) of ~ 0.1 ppm was obtained. This value is significantly lower than the upper limit of methane concentration in the breath of healthy humans (10 ppm). Therefore, our system well satisfies the requirements for diseases screening (e.g. intestines diseases ) and for methane monitoring in healthy human breath. Ammonia sensor is characterized with linear response in the concentration range higher than 1 ppm. The upper limit of ammonia concentration in healthy human breath is approx. 2 ppm, so this system is well suited for the determination of disease states (e.g. liver diseases). During the observation of nitrogen oxide the detection limit of 30 ppb was obtained. According to the ATS recommendation such NO detection limit is sufficient to monitor people's health state and for the detection of respiratory diseases like asthma or chronic bronchitis. For ethane detection with a wavelength of 3.348 microns the detection limit of 20 ppb was obtained. CONCLUSIONS: Developed sensors are characterized by high sensitivity (ppb-level) and high selectivity, simple and fast measurement procedure. Therefore, they can be applied as medical screening tools enabling biomarkers detection in exhaled air at the molecular level.


Subject(s)
Breath Tests/instrumentation , Breath Tests/methods , Ethane/analysis , Nitric Oxide/analysis , Spectrum Analysis/instrumentation , Asthma/diagnosis , Biomarkers/analysis , Bronchitis/diagnosis , Chronic Disease , Humans , Respiratory Tract Diseases/diagnosis , Spectrum Analysis/methods
19.
Environ Sci Technol ; 49(13): 8158-66, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26148554

ABSTRACT

We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.


Subject(s)
Air Pollutants/analysis , Ethane/analysis , Geologic Sediments/chemistry , Methane/analysis , Computer Simulation , Fossil Fuels , Texas
20.
Environ Sci Technol ; 49(13): 8175-82, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26148556

ABSTRACT

A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.


Subject(s)
Air Pollutants/analysis , Geologic Sediments/chemistry , Hydraulic Fracking , Methane/analysis , Carbon Isotopes , Ethane/analysis , Geography , Hydrocarbons/analysis , Natural Gas/analysis , Oil and Gas Fields , Propane/analysis , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...