Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Nature ; 618(7966): 767-773, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286610

ABSTRACT

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Subject(s)
Biological Evolution , Eukaryota , Fossils , Bacteria/chemistry , Bacteria/metabolism , Eukaryota/chemistry , Eukaryota/classification , Eukaryota/metabolism , Eukaryotic Cells/chemistry , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Sterols/analysis , Sterols/biosynthesis , Sterols/isolation & purification , Sterols/metabolism , Geologic Sediments/chemistry , Biosynthetic Pathways , Aquatic Organisms/chemistry , Aquatic Organisms/classification , Aquatic Organisms/metabolism , Biota , Phylogeny , History, Ancient
2.
Nature ; 618(7967): 992-999, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316666

ABSTRACT

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Subject(s)
Archaea , Eukaryota , Phylogeny , Archaea/classification , Archaea/cytology , Archaea/genetics , Eukaryota/classification , Eukaryota/cytology , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Prokaryotic Cells/classification , Prokaryotic Cells/cytology , Datasets as Topic , Gene Duplication , Evolution, Molecular
3.
Nature ; 612(7941): 714-719, 2022 12.
Article in English | MEDLINE | ID: mdl-36477531

ABSTRACT

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Subject(s)
Eukaryota , Food Chain , Microbiology , Phylogeny , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/ultrastructure , Biodiversity , Ecology , Eukaryota/classification , Eukaryota/genetics , Eukaryota/ultrastructure , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Predatory Behavior , Species Specificity
4.
Nat Commun ; 12(1): 5556, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548483

ABSTRACT

Single cell technologies are rapidly generating large amounts of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell types not present in the training data because it uses the Cell Ontology graph to infer cell type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell ontology categories, regardless of whether the cell types are present or absent in the training data, suggesting that OnClass goes beyond a simple annotation tool for single cell datasets, being the first algorithm capable to identify marker genes specific to all terms of the Cell Ontology and offering the possibility of refining the Cell Ontology using a data-centric approach.


Subject(s)
Cell Lineage/genetics , Eukaryotic Cells/classification , Software , Terminology as Topic , Vocabulary, Controlled , Algorithms , Animals , Biomarkers/metabolism , Datasets as Topic , Gene Expression , Humans
5.
J Struct Biol ; 213(4): 107801, 2021 12.
Article in English | MEDLINE | ID: mdl-34582983

ABSTRACT

With the rapid increase and accessibility of high-resolution imaging technologies of cells, the interpretation of results relies more and more on the assumption that the three-dimensional integrity of the surrounding cellular landscape is not compromised by the experimental setup. However, the only available technology for directly probing the structural integrity of whole-cell preparations at the nanoscale is electron cryo-tomography, which is time-consuming, costly, and complex. We devised an accessible, inexpensive and reliable screening assay to quickly report on the compatibility of experimental protocols with preserving the structural integrity of whole-cell preparations at the nanoscale. Our Rapid Cell Integrity Assessment (RCIA) assay is executed at room temperature and relies solely on light microscopy imaging. Using cellular electron cryo-tomography as a benchmark, we verify that RCIA accurately unveils the adverse impact of reagents and/or protocols such as those used for virus inactivation or to arrest dynamic processes on the cellular nanoarchitecture.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Eukaryotic Cells/ultrastructure , Imaging, Three-Dimensional/methods , Nanostructures/ultrastructure , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Cells, Cultured , Eukaryotic Cells/chemistry , Eukaryotic Cells/classification , HeLa Cells , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/ultrastructure , Mice , Microscopy, Fluorescence/methods , Mitochondria/chemistry , Mitochondria/ultrastructure , NIH 3T3 Cells , Nanostructures/chemistry , Reproducibility of Results , THP-1 Cells
6.
Nucleic Acids Res ; 49(19): e110, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34379786

ABSTRACT

The accumulation of large epigenomics data consortiums provides us with the opportunity to extrapolate existing knowledge to new cell types and conditions. We propose Epitome, a deep neural network that learns similarities of chromatin accessibility between well characterized reference cell types and a query cellular context, and copies over signal of transcription factor binding and modification of histones from reference cell types when chromatin profiles are similar to the query. Epitome achieves state-of-the-art accuracy when predicting transcription factor binding sites on novel cellular contexts and can further improve predictions as more epigenetic signals are collected from both reference cell types and the query cellular context of interest.


Subject(s)
Cell Lineage/genetics , Chromatin/metabolism , Epigenesis, Genetic , Eukaryotic Cells/metabolism , Histones/genetics , Machine Learning , Transcription Factors/genetics , Atlases as Topic , Binding Sites , Cell Communication , Chromatin/chemistry , Chromatin Immunoprecipitation , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Genome, Human , Histones/metabolism , Humans , Neural Networks, Computer , Protein Binding , Software , Transcription Factors/metabolism
7.
Adv Biol Regul ; 79: 100782, 2021 01.
Article in English | MEDLINE | ID: mdl-33422459

ABSTRACT

Inositol phosphate encompasses a large multifaceted family of signalling molecules that originate from the combinatorial attachment of phosphate groups to the inositol ring. To date, four distinct inositol kinases have been identified, namely, IPK, ITPK, IPPK (IP5-2K), and PPIP5K. Although, ITPKs have recently been identified in archaea, eukaryotes have taken advantage of these enzymes to create a sophisticated signalling network based on inositol phosphates. However, it remains largely elusive what fundamental biochemical principles control the signalling cascade. Here, we present an evolutionary approach to understand the development of the 'inositol phosphate code' in eukaryotes. Distribution analyses of these four inositol kinase groups throughout the eukaryotic landscape reveal the loss of either ITPK, or of PPIP5K proteins in several species. Surprisingly, the loss of IPPK, an enzyme thought to catalyse the rate limiting step of IP6 (phytic acid) synthesis, was also recorded. Furthermore, this study highlights a noteworthy difference between animal (metazoan) and plant (archaeplastida) lineages. While metazoan appears to have a substantial amplification of IPK enzymes, archaeplastida genomes show a considerable increase in ITPK members. Differential evolution of IPK and ITPK between plant and animal lineage is likely reflective of converging functional adaptation of these two types of inositol kinases. Since, the IPK family comprises three sub-types IPMK, IP6K, and IP3-3K each with dedicated enzymatic specificity in metazoan, we propose that the amplified ITPK group in plant could be classified in sub-types with distinct enzymology.


Subject(s)
Eukaryotic Cells/enzymology , Phosphotransferases/metabolism , Animals , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Humans , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Multigene Family , Phosphotransferases/genetics , Phylogeny , Plants/enzymology , Plants/metabolism , Signal Transduction
8.
PLoS One ; 15(5): e0232029, 2020.
Article in English | MEDLINE | ID: mdl-32374732

ABSTRACT

BACKGROUND: Translationally controlled tumor protein (TCTP) is a conserved, multifunctional protein involved in numerous cellular processes in eukaryotes. Although the functions of TCTP have been investigated sporadically in animals, invertebrates, and plants, few lineage-specific activities of this molecule, have been reported. An exception is in Arabidopsis thaliana, in which TCTP (AtTCTP1) functions in stomatal closuer by regulating microtubule stability. Further, although the development of next-generation sequencing technologies has facilitated the analysis of many eukaryotic genomes in public databases, inter-kingdom comparative analyses using available genome information are comparatively scarce. METHODOLOGY: To carry out inter-kingdom comparative analysis of TCTP, TCTP genes were identified from 377 species. Then phylogenetic analysis, prediction of protein structure, molecular docking simulation and molecular dynamics analysis were performed to investigate the evolution of TCTP genes and their binding proteins. RESULTS: A total of 533 TCTP genes were identified from 377 eukaryotic species, including protozoa, fungi, invertebrates, vertebrates, and plants. Phylogenetic and secondary structure analyses reveal lineage-specific evolution of TCTP, and inter-kingdom comparisons highlight the lineage-specific emergence of, or changes in, secondary structure elements in TCTP proteins from different kingdoms. Furthermore, secondary structure comparisons between TCTP proteins within each kingdom, combined with measurements of the degree of sequence conservation, suggest that TCTP genes have evolved to conserve protein secondary structures in a lineage-specific manner. Additional tertiary structure analysis of TCTP-binding proteins and their interacting partners and docking simulations between these proteins further imply that TCTP gene variation may influence the tertiary structures of TCTP-binding proteins in a lineage-specific manner. CONCLUSIONS: Our analysis suggests that TCTP has undergone lineage-specific evolution and that structural changes in TCTP proteins may correlate with the tertiary structure of TCTP-binding proteins and their binding partners in a lineage-specific manner.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/physiology , Evolution, Molecular , Genetic Speciation , Amino Acid Sequence , Animals , Biomarkers, Tumor/chemistry , Conserved Sequence , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Fungi/classification , Fungi/genetics , Humans , Invertebrates/classification , Invertebrates/genetics , Mammals/classification , Mammals/genetics , Molecular Docking Simulation , Phylogeny , Plant Cells/classification , Plant Cells/metabolism , Prokaryotic Cells/classification , Prokaryotic Cells/metabolism , Protein Binding , Protein Structure, Secondary , Species Specificity , Tumor Protein, Translationally-Controlled 1
9.
Nature ; 577(7791): 519-525, 2020 01.
Article in English | MEDLINE | ID: mdl-31942073

ABSTRACT

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Eukaryotic Cells/classification , Models, Biological , Prokaryotic Cells/classification , Amino Acids/metabolism , Archaea/metabolism , Archaea/ultrastructure , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Evolution, Molecular , Genome, Archaeal/genetics , Geologic Sediments/microbiology , Lipids/analysis , Lipids/chemistry , Phylogeny , Prokaryotic Cells/cytology , Prokaryotic Cells/metabolism , Prokaryotic Cells/ultrastructure , Symbiosis
10.
Microbiologyopen ; 9(2): e965, 2020 02.
Article in English | MEDLINE | ID: mdl-31808296

ABSTRACT

Fermentation, also known as aging, is vital for enhancing the quality of flue-cured tobacco leaves (FTLs). Aged FTLs demonstrate high-quality sensory characteristics, while unaged FTLs do not. Microbes play important roles in the FTL fermentation process. However, the eukaryotic microbial community diversity is poorly understood, as are microbial associations within FTLs. We aimed to characterize and compare the microbiota associated with two important categories, fresh and strong flavor style FTLs, and to reveal correlations between the microbial taxa within them. Based on 16S and 18S rRNA Illumina MiSeq sequencing, the community richness and diversity of prokaryotes were almost as high as that of eukaryotes. The dominant microbes of FTLs belonged to seven genera, including Pseudomonas, Bacillus, Methylobacterium, Acinetobacter, Sphingomonas, Neophaeosphaeria, and Cladosporium, of the Proteobacteria, Firmicutes, and Ascomycota phyla. According to partial least square discriminant analysis (PLS-DA), Xanthomonas, Franconibacter, Massilia, Quadrisphaera, Staphylococcus, Cladosporium, Lodderomyces, Symmetrospora, Golovinomyces, and Dioszegia were significantly positively correlated with fresh flavor style FTLs, while Xenophilus, Fusarium, unclassified Ustilaginaceae, Tilletiopsis, Cryphonectria, Colletotrichum, and Cyanodermella were significantly positively correlated with strong flavor style FTLs. Network analysis identified seven hubs, Aureimonas, Kocuria, Massilia, Brachybacterium, Clostridium, Dietzia, and Vishniacozyma, that may play important roles in FTL ecosystem stability, which may be destroyed by Myrmecridium. FTL microbiota was found to be correlated with flavor style. Species present in lower numbers than the dominant microbes might be used as microbial markers to discriminate different flavor style samples and to stabilize FTL microbial communities. This research advances our understanding of FTL microbiota and describes a means of discriminating between fresh and strong flavor FTLs based on their respective stable microbiota.


Subject(s)
Fermentation , Microbiota , Nicotiana , Plant Leaves/microbiology , Biodiversity , Eukaryotic Cells/classification , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Neural Networks, Computer , Phylogeny , Prokaryotic Cells/classification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
11.
Huan Jing Ke Xue ; 40(5): 2368-2374, 2019 May 08.
Article in Chinese | MEDLINE | ID: mdl-31087878

ABSTRACT

Wastewater treatment plants (WWTPs) are important facilities to control water pollution and ensure the sustainable development of cities and humans. As an indispensable part of the activated sludge (AS) system, eukaryotic microbes play important roles in indicating the properties of AS, predicting the quality of the effluent, enhancing the purification effect, and ensuring a stable performance of the system in WWTPs. In this study, 61 AS samples from 14 full-scale WWTPs of Beijing, Shenzhen, and Wuxi were collected. Characteristics and regional heterogeneity of eukaryotic microbial community were elucidated via high-throughput sequencing (HTS) of the 18S rDNA and multi ecological and statistical methods. Results showed that eukaryotic microbial communities in different scales shared similar main members, which were mainly composed of fungi, ciliophora, and metazoa in division level with their total relative abundance up to 86.22%-89.40%. Diversity of eukaryotic microbial community in WWTPs of different cites varied. Richness and Shannon Wiener index of eukaryotic microbial communities in the AS system of Wuxi were the highest, while that of Beijing was the lowest. Diversity of eukaryotic microbes from HTS in this study was higher than that of conventional methods, but lower than the diversity of bacteria in AS systems. Regional heterogeneity of eukaryotic microbial community structure was uncovered by nonmetric multidimensional scaling based on Bray-Curtis distance and dissimilarity analysis. Results of partial mantel test and multiple regression matrix analysis showed that the eukaryotic microbial community was significantly correlated with the temperature of the aeration tank mixture and the total nitrogen concentration of the effluent of the AS system. These results help deepen the understanding of eukaryotic microbes in WWTPs.


Subject(s)
Eukaryotic Cells/classification , Microbiota , Wastewater/microbiology , Beijing , Ciliophora/classification , Fungi/classification
12.
Nat Rev Genet ; 20(5): 273-282, 2019 05.
Article in English | MEDLINE | ID: mdl-30617341

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) allows researchers to collect large catalogues detailing the transcriptomes of individual cells. Unsupervised clustering is of central importance for the analysis of these data, as it is used to identify putative cell types. However, there are many challenges involved. We discuss why clustering is a challenging problem from a computational point of view and what aspects of the data make it challenging. We also consider the difficulties related to the biological interpretation and annotation of the identified clusters.


Subject(s)
Cell Lineage/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , RNA, Messenger/genetics , Single-Cell Analysis/statistics & numerical data , Transcriptome , Cluster Analysis , Epigenesis, Genetic , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Gene Expression Profiling , Humans , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Unsupervised Machine Learning
13.
Sci Rep ; 8(1): 15357, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337591

ABSTRACT

Picoeukaryotes play prominent roles in the biogeochemical cycles in marine ecosystems. However, their molecular diversity studies have been confined in marine surface waters or shallow coastal sediments. Here, we investigated the diversity and metabolic activity of picoeukaryotic communities at depths ranging from the surface to the abyssopelagic zone in the western Pacific Ocean above the north and south slopes of the Mariana Trench. This was achieved by amplifying and sequencing the V4 region of both 18S ribosomal DNA and cDNA using Illumina HiSeq sequencing. Our study revealed: (1) Four super-groups (i.e., Alveolata, Opisthokonta, Rhizaria and Stramenopiles) dominated the picoeukaryote assemblages through the water column, although they accounted for different proportions at DNA and cDNA levels. Our data expand the deep-sea assemblages from current bathypelagic to abyssopelagic zones. (2) Using the cDNA-DNA ratio as a proxy of relative metabolic activity, the highest activity for most subgroups was usually found in the mesopelagic zone; and (3) Population shift along the vertical scale was more prominent than that on the horizontal differences, which might be explained by the sharp physicochemical gradients along the water depths. Overall, our study provides a better understanding of the diversity and metabolic activity of picoeukaryotes in water columns of the deep ocean in response to varying environmental conditions.


Subject(s)
Alveolata , Biodiversity , Biota , Eukaryotic Cells , Rhizaria , Stramenopiles , Alveolata/classification , Alveolata/genetics , Alveolata/growth & development , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/growth & development , Biota/physiology , Demography , Ecosystem , Eukaryotic Cells/classification , Pacific Ocean , Phylogeny , RNA, Ribosomal, 18S/genetics , Rhizaria/classification , Rhizaria/genetics , Rhizaria/growth & development , Seawater/chemistry , Sequence Analysis, DNA , Stramenopiles/classification , Stramenopiles/genetics , Stramenopiles/growth & development
14.
Environ Sci Pollut Res Int ; 25(31): 31017-31030, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30182317

ABSTRACT

Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions under the influence of anthropogenic impacts (a port and sewage outflow) and a coastal region with no direct anthropogenic disturbances in the central Red Sea. Overall, bacterial and eukaryotic components responded in a similar way to the environmental conditions. Community composition and structure were more sensitive than alpha diversity measures to environmental impacts. With the exception of eukaryotes, for which the number of OTU differed significantly between sampling periods in all the regions, environmental changes associated with anthropogenic pressures seem to be better reflected by variations in the relative dominance of microbial groups. For example, elevated proportional abundances of nitrifying and sewage-/faecal-related bacteria at the impacted sites were observed compared with the coastal region. The recently developed microgAMBI also appeared to correlate well with the level of anthropogenic impact the regions experienced, showing the potential to be applied in oligotrophic waters.


Subject(s)
Plankton/classification , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Environmental Monitoring , Eukaryotic Cells/classification , Feces/microbiology , High-Throughput Nucleotide Sequencing , Plankton/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 18S/analysis , Sewage/microbiology , Water Microbiology
15.
Sci Rep ; 8(1): 8890, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891905

ABSTRACT

To investigate the differences in the interactions of microbial communities in two regions in Taihu Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were collected and both intra- and inter-kingdom microbial community interactions were examined with network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower average path length indexes were observed, indicating the nodes in XKB were more clustered and closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom networks were considerably larger and more complex with more module hubs and connectors in XKB compared with those of MLB, whereas the microeukaryotes networks were comparable and had no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. The relationships between microbial communities and environmental factors in MLB were weaker. Compared with the microbial community networks of XKB, less modules in networks of MLB were significantly correlated with total phosphorous and total nitrogen.


Subject(s)
Lakes/microbiology , Microbial Interactions , Microbiota , Cluster Analysis , Eukaryotic Cells/classification , Lakes/chemistry , Organic Chemicals/metabolism , Prokaryotic Cells/classification
16.
Proteins ; 86(8): 868-881, 2018 08.
Article in English | MEDLINE | ID: mdl-29675831

ABSTRACT

The origin of eukaryotes is one of the central transitions in the history of life; without eukaryotes there would be no complex multicellular life. The most accepted scenarios suggest the endosymbiosis of a mitochondrial ancestor with a complex archaeon, even though the details regarding the host and the triggering factors are still being discussed. Accordingly, phylogenetic analyses have demonstrated archaeal affiliations with key informational systems, while metabolic genes are often related to bacteria, mostly to the mitochondrial ancestor. Despite of this, there exists a large number of protein families and folds found only in eukaryotes. In this study, we have analyzed structural superfamilies and folds that probably appeared during eukaryogenesis. These folds typically represent relatively small binding domains of larger multidomain proteins. They are commonly involved in biological processes that are particularly complex in eukaryotes, such as signaling, trafficking/cytoskeleton, ubiquitination, transcription and RNA processing, but according to recent studies, these processes also have prokaryotic roots. Thus the folds originating from an eukaryotic stem seem to represent accessory parts that have contributed in the expansion of several prokaryotic processes to a new level of complexity. This might have taken place as a co-evolutionary process where increasing complexity and fold innovations have supported each other.


Subject(s)
Eukaryota/classification , Symbiosis/genetics , Archaea/genetics , Bacteria/classification , Biological Evolution , Databases, Protein , Eukaryotic Cells/classification , Evolution, Molecular , Genes, Bacterial , Genes, Mitochondrial , Mitochondria/genetics , Phylogeny , Proteins/genetics
17.
Elife ; 62017 12 05.
Article in English | MEDLINE | ID: mdl-29206104

ABSTRACT

The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.


Subject(s)
Atlases as Topic , Eukaryotic Cells/classification , Eukaryotic Cells/physiology , Human Body , Humans , International Cooperation
18.
Curr Opin Cell Biol ; 47: 108-116, 2017 08.
Article in English | MEDLINE | ID: mdl-28622586

ABSTRACT

Vesicular transport was key to the evolution of eukaryotes, and is essential for eukaryotic life today. All modern eukaryotes have a set of vesicle coat proteins, which couple cargo selection to vesicle budding in the secretory and endocytic pathways. Although these coats share common features (e.g. recruitment via small GTPases, ß-propeller-α-solenoid proteins acting as scaffolds), the relationships between them are not always clear. Structural studies on the coats themselves, comparative genomics and cell biology in diverse eukaryotes, and the recent discovery of the Asgard archaea and their 'eukaryotic signature proteins' are helping us to piece together how coats may have evolved during the prokaryote-to-eukaryote transition.


Subject(s)
Biological Evolution , Coated Vesicles/genetics , Eukaryotic Cells/cytology , Animals , Archaea/classification , Archaea/cytology , Biological Transport , Coated Vesicles/chemistry , Coated Vesicles/metabolism , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism
19.
Mol Phylogenet Evol ; 117: 83-94, 2017 12.
Article in English | MEDLINE | ID: mdl-28602622

ABSTRACT

During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.


Subject(s)
Chromosome Pairing/genetics , Eukaryota/classification , Eukaryota/genetics , Phylogeny , Sequence Homology, Nucleic Acid , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Meiosis/genetics
20.
Nature ; 541(7637): 353-358, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28077874

ABSTRACT

The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.


Subject(s)
Archaea/cytology , Archaea/genetics , Eukaryota/cytology , Eukaryotic Cells/cytology , Evolution, Molecular , Genome, Archaeal/genetics , Models, Biological , Phylogeny , Archaea/classification , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Biological Transport/genetics , COP-Coated Vesicles/metabolism , Eukaryota/classification , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Metagenomics
SELECTION OF CITATIONS
SEARCH DETAIL
...