Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 697
Filter
1.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38738857

ABSTRACT

Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.


Subject(s)
Eukaryotic Initiation Factor-4A , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Ubiquitination , Humans , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Animals , Protein Biosynthesis , Cell Line, Tumor , Mice , Receptors, Interleukin-17
2.
J Virol ; 98(5): e0006024, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38557170

ABSTRACT

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Subject(s)
Apoptosis Regulatory Proteins , Eukaryotic Initiation Factor-4A , Porcine respiratory and reproductive syndrome virus , RNA-Binding Proteins , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Swine , Cell Line , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Host-Pathogen Interactions , Proteolysis , Humans , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
3.
Transl Vis Sci Technol ; 13(4): 12, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38587436

ABSTRACT

Purpose: Circular RNAs (circRNAs) have been verified to participate in multiple biological processes and disease progression. Yet, the role of circRNAs in the pathogenesis of diabetic retinopathy (DR) is still poorly understood and deserves further study. This study aimed to investigate the role of circRNAs in the regulation of high glucose (HG)-induced apoptosis of retinal microvascular endothelial cells (RMECs). Methods: Epiretinal membranes from patients with DR and nondiabetic patients with idiopathic macular epiretinal membrane were collected for this study. The circRNA microarrays were performed using high-throughput sequencing. Hierarchical clustering, functional enrichment, and network regulation analyses were used to analyze the data generated by high-throughput sequencing. Next, RMECs were subjected to HG (25 mM) conditions to induce RMECs apoptosis in vitro. A series of experiments, such as Transwell, the Scratch wound, and tube formation, were conducted to explore the regulatory effect of circRNA on RMECs. Fluorescence in situ hybridization (FISH), immunofluorescence staining, and Western blot were used to study the mechanism underlying circRNA-mediated regulation. Results: A total of 53 differentially expressed circRNAs were found in patients with DR. Among these, hsa_circ_0000880 was significantly upregulated in both the diabetic epiretinal membranes and in an in vitro DR model of HG-treated RMECs. Hsa_circ_0000880 knockout facilitated RMECs vitality and decreased the paracellular permeability of RMECs under hyperglycemia. More importantly, silencing of hsa_circ_0000880 significantly inhibited HG-induced ROS production and RMECs apoptosis. Hsa_circ_0000880 acted as an endogenous sponge for eukaryotic initiation factor 4A-III (EIF4A3). Knockout of hsa_circ_0000880 reversed HG-induced decrease in EIF4A3 protein level. Conclusions: Our findings suggest that hsa_circ_0000880 is a novel circRNA can induce RMECs apoptosis in response to HG conditions by sponging EIF4A3, offering an innovative treatment approach against DR. Translational Relevance: The circRNAs participate in the dysregulation of microvascular endothelial function induced by HG conditions, indicating a promising therapeutic target for DR.


Subject(s)
Diabetic Retinopathy , Epiretinal Membrane , Humans , Endothelial Cells , RNA, Circular/genetics , In Situ Hybridization, Fluorescence , Diabetic Retinopathy/genetics , Apoptosis/genetics , Glucose/toxicity , Eukaryotic Initiation Factor-4A , DEAD-box RNA Helicases
4.
Environ Int ; 186: 108656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621321

ABSTRACT

Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.


Subject(s)
Cadmium , Epithelial-Mesenchymal Transition , MicroRNAs , RNA, Circular , Zinc Finger E-box-Binding Homeobox 1 , Animals , Humans , Rats , Cadmium/toxicity , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/drug effects , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Male
5.
Sci Total Environ ; 923: 171349, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438030

ABSTRACT

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism , Benzo(a)pyrene/metabolism , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/pharmacology , Epithelial Cells , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/pharmacology , Feedback , Lung Neoplasms/pathology , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism
6.
J Transl Med ; 22(1): 251, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459513

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been proved to play crucial roles in the development of various cancers. However, the molecular mechanism of circGLIS3 involved in gastric cancer (GC) tumorigenesis has not been elucidated. METHODS: The higher expression level of circGLIS3 was identified in GC through RNA sequencing and subsequent tissue verification using Quantitative real-time PCR (qRT-PCR). A series of functional experiments in vitro and in vivo were performed to evaluated the effects of circGLIS3 on tumor growth and metastasis in GC. The interaction and regulation of circGLIS3/miR-1343-3p/PGK1 axis was confirmed by RNA pulldown, western blot, and rescue experiments. RIP and western blot were performed to demonstrate the role of circGLIS3 in regulating phosphorylation of VIMENTIN. We then used qRT-PCR and co culture system to trace circGLIS3 transmission via exosomal communication and identify the effect of exosomal circGLIS3 on gastric cancer and macrophages. Finally, RIP experiments were used to determine that EIF4A3 regulates circGLIS3 expression. RESULTS: CircGLIS3(hsa_circ_0002874) was significantly upregulated in GC tissues and high circGLIS3 expression was associated with advanced TNM stage and lymph node metastasis in GC patients. We discovered that overexpression of circGLIS3 promoted GC cell proliferation, migration, invasion in vitro and in vivo, while suppression of circGLIS3 exhibited the opposite effect. Mechanistically, circGLIS3 could sponge miR-1343-3p and up-regulate the expression of PGK1 to promote GC tumorigenesis. We also found that circGLIS3 reduced the phosphorylation of VIMENTIN at ser 83 site by binding with VIMENTIN. Moreover, it was proven that exosomal circGLIS3 could promote gastric cancer metastasis and the M2 type polarization of macrophages. In the final step, the mechanism of EIF4A3 regulating the generation of circGLIS3 was determined. CONCLUSION: Our findings demonstrate that circGLIS3 promotes GC progression through sponging miR-1343-3p and regulating VIMENTIN phosphorylation. CircGLIS3 is a potential therapeutic target for GC patients.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Carcinogenesis , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic , DEAD-box RNA Helicases , Eukaryotic Initiation Factor-4A , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Phosphoglycerate Kinase , Phosphorylation , Stomach Neoplasms/genetics , Vimentin/genetics
7.
DNA Cell Biol ; 43(5): 232-244, 2024 May.
Article in English | MEDLINE | ID: mdl-38513058

ABSTRACT

Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.


Subject(s)
Cell Proliferation , Eukaryotic Initiation Factor-4A , Mice, Nude , RNA, Circular , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Female , Male , Apoptosis/genetics , Mice, Inbred BALB C , Middle Aged , DEAD-box RNA Helicases
8.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Article in English | MEDLINE | ID: mdl-38459187

ABSTRACT

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Disease Progression , Eukaryotic Initiation Factor-4A , Mice, Nude , MicroRNAs , RNA, Circular , beta Catenin , MicroRNAs/genetics , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , RNA, Circular/genetics , Animals , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/genetics , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Delta Catenin , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Male , Female , Cell Movement/genetics , Mice, Inbred BALB C
9.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38547866

ABSTRACT

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Subject(s)
Eukaryotic Initiation Factor-4F , Eukaryotic Initiation Factor-4G , Heat-Shock Response , Poly(A)-Binding Proteins , Protein Biosynthesis , RNA, Messenger , Ribonucleoproteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Heat-Shock Response/genetics , Eukaryotic Initiation Factor-4F/metabolism , Eukaryotic Initiation Factor-4F/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Gene Expression Regulation, Fungal , Protein Binding , RNA, Fungal/metabolism , RNA, Fungal/genetics
10.
Cancer Res ; 84(10): 1583-1596, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417135

ABSTRACT

Patients with primary refractory acute myeloid leukemia (AML) have a dismal long-term prognosis. Elucidating the resistance mechanisms to induction chemotherapy could help identify strategies to improve AML patient outcomes. Herein, we retrospectively analyzed the multiomics data of more than 1,500 AML cases and found that patients with spliceosome mutations had a higher risk of developing refractory disease. RNA splicing analysis revealed that the mis-spliced genes in refractory patients converged on translation-associated pathways, promoted mainly by U2AF1 mutations. Integrative analyses of binding and splicing in AML cell lines substantiated that the splicing perturbations of mRNA translation genes originated from both the loss and gain of mutant U2AF1 binding. In particular, the U2AF1S34F and U2AF1Q157R mutants orchestrated the inclusion of exon 11 (encoding a premature termination codon) in the eukaryotic translation initiation factor 4A2 (EIF4A2). This aberrant inclusion led to reduced eIF4A2 protein expression via nonsense-mediated mRNA decay. Consequently, U2AF1 mutations caused a net decrease in global mRNA translation that induced the integrated stress response (ISR) in AML cells, which was confirmed by single-cell RNA sequencing. The induction of ISR enhanced the ability of AML cells to respond and adapt to stress, contributing to chemoresistance. A pharmacologic inhibitor of ISR, ISRIB, sensitized U2AF1 mutant cells to chemotherapy. These findings highlight a resistance mechanism by which U2AF1 mutations drive chemoresistance and provide a therapeutic approach for AML through targeting the ISR pathway. SIGNIFICANCE: U2AF1 mutations induce the integrated stress response by disrupting splicing of mRNA translation genes that improves AML cell fitness to enable resistance to chemotherapy, which can be targeted to improve AML treatment.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Mutation , Splicing Factor U2AF , Humans , Splicing Factor U2AF/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Drug Resistance, Neoplasm/genetics , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA Splicing/genetics , Animals , Retrospective Studies , Mice , Cell Line, Tumor , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism
11.
Environ Toxicol ; 39(5): 3026-3039, 2024 May.
Article in English | MEDLINE | ID: mdl-38317508

ABSTRACT

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and ß-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, ß-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of ß-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/ß-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , beta Catenin/genetics , beta Catenin/metabolism , Triple Negative Breast Neoplasms/genetics , RNA, Messenger/genetics , Cell Line, Tumor , RNA , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
12.
BMC Cancer ; 24(1): 239, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383334

ABSTRACT

PURPOSE: The purpose of this study was to explore the expression and potential mechanism of hsa_circ_0005397 in hepatocellular carcinoma progression. METHODS: Quantitative reverse transcription-polymerase chain reaction(qRT-PCR) was used to measure the expression level of hsa_circ_0005397 and EIF4A3 from paired HCC tissues and cell lines. Western Blot (WB) and immunohistochemistry (IHC) were used to verify the protein level of EIF4A3. The specificity of primers was confirmed by agarose gel electrophoresis. Receiver Operating Characteristic (ROC) Curve was drawn to analyze diagnostic value. Actinomycin D and nuclear and cytoplasmic extraction assays were utilized to evaluate the characteristics of hsa_circ_0005397. Cell Counting kit-8 (CCK-8) and colony formation assays were performed to detect cell proliferation. Flow cytometry analysis was used to detect the cell cycle. Transwell assay was performed to determine migration and invasion ability. RNA-binding proteins (RBPs) of hsa_circ_0005397 in HCC were explored using bioinformatics websites. The relationship between hsa_circ_0005397 and Eukaryotic Translation Initiation Factor 4A3 (EIF4A3) was verified by RNA Binding Protein Immunoprecipitation (RIP) assays, correlation and rescue experiments. RESULTS: In this study, hsa_circ_0005397 was found to be significantly upregulated in HCC, and the good diagnostic sensitivity and specificity shown a potential diagnostic capability. Upregulated expression of hsa_circ_0005397 was significantly related to tumor size and stage. Hsa_circ_0005397 was circular structure which more stable than liner mRNA, and mostly distributed in the cytoplasm. Upregulation of hsa_circ_0005397 generally resulted in stronger proliferative ability, clonality, and metastatic potency of HCC cells; its downregulation yielded the opposite results. EIF4A3 is an RNA-binding protein of hsa_circ_0005397, which overexpressed in paired HCC tissues and cell lines. In addition, expression of hsa_circ_0005397 decreased equally when EIF4A3 was depleted. RIP assays and correlation assay estimated that EIF4A3 could interacted with hsa_circ_0005397. Knockdown of EIF4A3 could reverse hsa_circ_0005397 function in HCC progression. CONCLUSIONS: Hsa_circ_0005397 promotes progression of hepatocellular carcinoma through EIF4A3. These research findings may provide novel clinical value for hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Down-Regulation , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/genetics
13.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287194

ABSTRACT

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Subject(s)
Eukaryotic Initiation Factor-4F , Peptide Chain Initiation, Translational , Humans , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , RNA, Messenger/metabolism , Codon, Initiator/metabolism , Ribosomes/metabolism , DNA Helicases/metabolism , Protein Biosynthesis , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism
14.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232291

ABSTRACT

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Subject(s)
RNA Helicases , Triple Negative Breast Neoplasms , Humans , Animals , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Protein Biosynthesis , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Ribosomes/metabolism
15.
J Exp Clin Cancer Res ; 43(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163881

ABSTRACT

BACKGROUND: Cisplatin (CDDP)-based chemotherapy is a standard first-line treatment for metastatic bladder cancer (BCa) patients, and chemoresistance remains a major challenge in clinical practice. Circular RNAs (circRNAs) have emerged as essential regulators in carcinogenesis and cancer progression. However, the role of circRNAs in mediating CDDP chemosensitivity has yet to be well elucidated in BCa. METHODS: CircSTX6 (hsa_circ_0007905) was identified by mining the public circRNA datasets and verified by Sanger sequencing, agarose gel electrophoresis, RNase R treatment and qRT-PCR assays. Then, function experiments were performed to evaluate the effects of circSTX6 on BCa metastasis. Luciferase reporter assay, RNA pull-down, RNA immunoprecipitation (RIP), RNA stability assay, Fluorescence in situ hybridization (FISH) and Immunofluorescence (IF) were conducted to evaluate the interaction among circSTX6, miR-515-3p, PABPC1 and SUZ12. Animal experiments were performed to explore the function of circSTX6 in tumor metastasis and CDDP sensitivity. RESULTS: We identified that circSTX6 was significantly upregulated in clinical samples and cells of BCa. Functionally, circSTX6 promoted cell migration and invasion both in vitro and in vivo. Mechanistically, circSTX6 could act as a miR-515-3p sponge and abolish its effect on SUZ12. Moreover, circSTX6 was confirmed to increase the stability of SUZ12 mRNA by interacting with a mRNA stabilizer PABPC1 and subsequently promote the expression of SUZ12. Importantly, silencing of circSTX6 improved the chemosensitivity of CDDP-resistant bladder cancer cells to CDDP. Furthermore, in vivo analysis supported that knockdown of circSTX6 attenuated CDDP resistance in BCa tumors. CONCLUSION: These studies demonstrate that circSTX6 plays a pivotal role in BCa metastasis and chemoresistance, and has potential to serve as a therapeutic target for treatment of BCa.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Animals , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , MicroRNAs/genetics , RNA, Circular/genetics , In Situ Hybridization, Fluorescence , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA, Messenger , Cell Proliferation , Cell Line, Tumor , Eukaryotic Initiation Factor-4A/genetics , DEAD-box RNA Helicases/genetics
16.
J Gastroenterol Hepatol ; 39(3): 596-607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38059880

ABSTRACT

BACKGROUND AND AIM: Circular ubiquitin-like, containing PHD and ring finger domains 1 (circUHRF1) is aberrantly upregulated in human hepatocellular carcinoma (HCC) tissues. However, the underlying molecular mechanisms remain obscure. The present study aimed at elucidating the interactive function of circUHRF1-G9a-ubiquitin-like, containing PHD and ring finger domains 1 (UHRF1) mRNA-eukaryotic translation initiation factor 4A3 (EIF4A3)-PDZ and LIM domain 1 (PDLIM1) network in HCC. METHODS: Expression of circUHRF1, mRNAs of G9a, UHRF1, PDLIM1, epithelial-mesenchymal transition (EMT)-related proteins, and Hippo-Yap pathway components was determined by quantitative polymerase chain reaction (Q-PCR), immunofluorescence, or Western blot analysis. Tumorigenic and metastatic capacities of HCC cells were examined by cellular assays including Cell Counting Kit-8, colony formation, wound healing, and transwell assays. Molecular interactions between EIF4A3 and UHRF1 mRNA were detected by RNA pull-down experiment. Complex formation between UHRF1 and PDLIM1 promoter was detected by chromatin immunoprecipitation assay. Co-immunoprecipitation was performed to examine the binding between UHRF1 and G9a. RESULTS: Circular ubiquitin-like, containing PHD and ring finger domains 1, G9a, and UHRF1 were upregulated, while PDLIM1 was downregulated in HCC tissue samples and cell lines. Cellular silencing of circUHRF1 repressed HCC proliferation, invasion, migration, and EMT. G9a formed a complex with UHRF1 and inhibited PDLIM1 transcription. CONCLUSION: Eukaryotic translation initiation factor 4A3 regulated circUHRF1 expression by binding to UHRF1 mRNA promoter. circUHRF1 increased the stability of G9a and UHRF1 mRNAs through recruiting EIF4A3. Overexpression of circUHRF1 aggravated HCC progression through Hippo-Yap pathway and PDLIM1 inhibition. By elucidating the molecular function of circUHRF1-G9a-UHRF1 mRNA-EIF4A3-PDLIM1 network, our data shed light on the HCC pathogenesis and suggest a novel therapeutic strategy for future HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , DEAD-box RNA Helicases , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , RNA, Messenger/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/therapeutic use , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin/therapeutic use , RING Finger Domains , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/therapeutic use , CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/therapeutic use , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism
17.
Cell Signal ; 114: 111002, 2024 02.
Article in English | MEDLINE | ID: mdl-38048860

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/metabolism
18.
J Biochem Mol Toxicol ; 38(1): e23530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37822284

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disease, and its prevalence increases steadily with age. Circular RNAs (circRNAs) are involved in various neurodegenerative diseases. Here, we aimed to explore the role of circRNA DLG-associated protein 4 (circDLGAP4) in 1-methyl-4-phenylpyridinium ion (MPP+ )-induced neuronal injury in PD. SH-SY5Y cells were treated with MPP+ to establish PD cell models. The levels of circDLGAP4 and high mobility group AT-hook 2 (HMGA2) in SH-SY5Y cells were detected. SH-SY5Y cell viability and apoptosis were detected. The levels of inflammatory damage (IL-1ß, IL-6, TNF-α) and oxidative stress (reactive oxygen species, lactate dehydrogenase, superoxide dismutase, and malondialdehyde)-related factors were measured. The binding of eukaryotic initiation factor 4A3 (EIF4A3) to circDLGAP4 and HMGA2 was analyzed using RNA pull-down or RNA immunoprecipitation. The stability of HMGA2 was detected after actinomycin D treatment, and its effects on neuronal injury were tested. CircDLGAP4 expression was decreased in MPP+ -induced SH-SY5Y cells. CircDLGAP4 upregulation restored cell activity, decreased apoptosis, and reduced inflammatory damage and oxidative stress in PD cell models. CircDLGAP4 bound to EIF4A3 to increase HMGA2 expression and stability. Silencing HMGA2 attenuated the protective effect of circDLGAP4 overexpression. Overall, circDLGAP4 upregulated HMGA2 by recruiting EIF4A3, thus increasing the mRNA stability of HMGA2 and alleviating neuronal injury in PD.


Subject(s)
MicroRNAs , Neuroblastoma , Neurodegenerative Diseases , Parkinson Disease , Humans , 1-Methyl-4-phenylpyridinium/toxicity , Apoptosis , Cell Line, Tumor , DEAD-box RNA Helicases/pharmacology , Eukaryotic Initiation Factor-4A , MicroRNAs/metabolism , Parkinson Disease/genetics , RNA, Circular/genetics
19.
Gene ; 893: 147917, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37866664

ABSTRACT

Imatinib is the current gold standard for patients with chronic myeloid leukemia (CML). However, the primary and acquired drug resistance seriously limits the efficacy. To identify novel therapeutic target in Imatinib-resistant CML is of crucial clinical significance. CircRNAs have been demonstrated the essential regulatory roles in the progression and drug resistance of cancers. In this study, we identified a novel circRNA (circ_SIRT1), derived from the SIRT1, which is up-regulated in CML. The high expression of circ_SIRT1 is correlated with drug resistance in CML. Knockdown of circ_SIRT1 regulated K562/R cells viability, invasion and apoptosis. Besides, the inhibition of circ_SIRT1 attenuated autophagy level and reduced IC50 to Imatinib of K562/R cells. Mechanistically, circ_SIRT1 directly binds to the transcription factor Eukaryotic Translation Initiation Factor 4A3(EIF4A3) and regulated EIF4A3-mediated transcription of Autophagy Related 12 (ATG12), thereby affecting Imatinib resistance and autophagy level. Overexpression of ATG12 reversed the regulative effects induced by knockdown of circ_SIRT1. Taken together, our findings revealed circ_SIRT1 acted as a potential tumor regulator in CML and unveiled the underlying mechanism on regulating Imatinib resistance. circ_SIRT1 may serve as a novel therapeutic target and provide crucial clinical implications for Imatinib-resistant CML treatment.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Antineoplastic Agents/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , K562 Cells , Apoptosis , Autophagy-Related Protein 12 , Eukaryotic Initiation Factor-4A/pharmacology , DEAD-box RNA Helicases
20.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38011999

ABSTRACT

EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.


Subject(s)
B-Lymphocytes , Eukaryotic Initiation Factor-4A , RNA Helicases , Animals , Mice , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , RNA Helicases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...