Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0259959, 2021.
Article in English | MEDLINE | ID: mdl-34813605

ABSTRACT

The role of arbuscular mycorrhizal (AM) fungus (Rhizophagus intraradices) in the amelioration of the water deficit-mediated negative influence on the growth, photosynthesis, and antioxidant system in Euonymus maackii Rupr. was examined. E. maackii seedlings were subjected to 5 water deficit levels, soil water contents of 20%, 40%, 60%, 80% and 100% field capacity (FC), and 2 inoculation treatments, with and without AM inoculation. The water deficit increasingly limited the seedling height, biomass accumulation in shoots and roots, chlorophyll content, gas exchange and chlorophyll fluorescence parameters with an increasing water deficit level. In addition, water deficit stimulated the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), in both shoots and roots, except under 20% FC conditions. E. maackii seedlings under all water deficit conditions formed symbiosis well with AM fungi, which significantly ameliorated the drought-mediated negative effect, especially under 40% and 60% FC conditions. Under 40% to 80% FC conditions, AM formation improved seedling growth and photosynthesis by significantly enhancing the biomass accumulation, chlorophyll content and assimilation. Mycorrhizal seedlings showed better tolerance and less sensitivity to a water deficit, reflected in the lower SOD activities of shoots and roots and CAT activity of shoots under 40% and 60% FC conditions. Downregulation of the antioxidant system in mycorrhizal seedlings suggested better maintenance of redox homeostasis and protection of metabolism, including biomass accumulation and assimilation. All the results advocated the positive role of R. intraradices inoculation in E. maackii against a water deficit, especially under 40% FC, which suggested the distinct AM performance in drought tolerance and the potential role of the combination of E. maackii-AM fungi in ecological restoration in arid regions.


Subject(s)
Euonymus/metabolism , Mycorrhizae/metabolism , Plant Roots/microbiology , Chlorophyll/metabolism , Desert Climate , Droughts , Euonymus/growth & development , Euonymus/microbiology , Mycorrhizae/growth & development , Mycorrhizae/pathogenicity , Photosynthesis , Seedlings/metabolism , Seedlings/microbiology , Symbiosis/physiology , Water/metabolism
2.
Arch Microbiol ; 201(8): 1099-1109, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31147747

ABSTRACT

Euonymus japonicus Thunb. is a woody and ornamental plant popular in China, Europe and North America. Powdery mildew is one of the most serious diseases that affect E. japonicus growth. In this study, the diseased and apparently healthy leaves were collected from E. japonicus planted in a greenbelt in Beijing, and the effect of powdery mildew on the epiphytic microbial community was investigated by using Illumina sequencing. The results showed that the healthy leaves (HL) harbored greater bacterial and fungal diversity than diseased leaves (DL). Furthermore, both bacterial and fungal communities in DL exhibited significantly different structures from those in HL. The relative abundance of several bacterial phyla (Proteobacteria and Firmicutes) and fungal phyla (Ascomycota and Basidiomycota) were altered by powdery mildew. At the genus level, most genera decreased as powdery mildew pathogen Erysiphe increased, while the genera Kocuria and Exiguobacterium markedly increased. Leaf properties, especially protein content was found to significantly affect beta-diversity of the bacterial and fungal community. Network analysis revealed that positive bacterial interactions in DL were stronger than those in HL samples. Insights into the underlying the indigenous microbial phyllosphere populations of E. japonicus response to powdery mildew will help in the development of methods for controlling plant diseases.


Subject(s)
Ascomycota/isolation & purification , Basidiomycota/isolation & purification , Euonymus/microbiology , Firmicutes/isolation & purification , Micrococcaceae/isolation & purification , Plant Diseases/microbiology , Plant Leaves/microbiology , Proteobacteria/isolation & purification , Ascomycota/growth & development , Basidiomycota/growth & development , China , Disease Resistance , Euonymus/classification , Euonymus/growth & development , Europe , Firmicutes/growth & development , Microbiota , Micrococcaceae/growth & development , Proteobacteria/growth & development
3.
Protoplasma ; 255(6): 1613-1620, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29696381

ABSTRACT

Powdery mildew caused by Erysiphe euonymi-japonici (Eej) is an increasingly serious fungal disease on Euonymus japonicus that is an important ornamental plant. However, little is currently known about infection and pathogenesis of Eej on E. japonicus. Here, we report plant infection by Eej at the histological and cytological levels. Eej caused severe disease symptoms with white and snow-like colonies on leaf surfaces of E. japonicus. Microscopic observations were conducted continuously to define infection process of Eej on E. japonicus. Eej conidia germinated to produce appressorial germ tubes on leaf surfaces and formed irregular haustoria in plant epidermal cells at 6 h post-inoculation (hpi) and 12 hpi, respectively. After uptaking nutrients from host cells by haustoria, Eej formed numerous hyphae and extensive colonization on leaf surfaces at 96 hpi and finally produced abundant conidiophores and new conidia on leaf surfaces at 168 hpi. In addition, there was consistently a single nucleus in different Eej infection structures and haustorial development could be divided into three major stages, including formation of penetration peg, formation of haustorial neck and initial haustorium, and maturation of haustorium. These results provide useful information for further determination of Eej pathogenesis and finally controlling the disease.


Subject(s)
Ascomycota/cytology , Ascomycota/physiology , Euonymus/microbiology , Plant Diseases/microbiology , Ascomycota/ultrastructure , Cell Nucleus/metabolism , Euonymus/ultrastructure , Spores, Fungal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...