Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(17): 9955-9966, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628059

ABSTRACT

Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.


Subject(s)
Cold Temperature , Euphausiacea , Trypsin , Animals , Euphausiacea/chemistry , Euphausiacea/enzymology , Euphausiacea/genetics , Euphausiacea/metabolism , Hydrolysis , Trypsin/metabolism , Trypsin/chemistry , Trypsin/genetics , Substrate Specificity , Amino Acid Sequence , Tandem Mass Spectrometry , Enzyme Stability , Antarctic Regions
2.
Protein Pept Lett ; 28(6): 651-664, 2021.
Article in English | MEDLINE | ID: mdl-33183186

ABSTRACT

BACKGROUND: Fibrinolytic protease from Euphausia superba (EFP) was isolated. OBJECTIVE: Biochemical distinctions, regulation of the catalytic function, and the key residues of EFP were investigated. METHODS: The serial inhibition kinetic evaluations coupled with measurements of fluorescence spectra in the presence of 4-(2-aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF) was conducted. The computational molecular dynamics (MD) simulations were also applied for a comparative study. RESULTS: The enzyme behaved as a monomeric protein with a molecular mass of about 28.6 kD with Km BApNA = 0.629 ± 0.02 mM and kcat/Km BApNA = 7.08 s-1/mM. The real-time interval measurements revealed that the inactivation was a first-order reaction, with the kinetic processes shifting from a monophase to a biphase. Measurements of fluorescence spectra showed that serine residue modification by AEBSF directly caused conspicuous changes of the tertiary structures and exposed hydrophobic surfaces. Some osmolytes were applied to find protective roles. These results confirmed that the active region of EFP is more flexible than the overall enzyme molecule and serine, as the key residue, is associated with the regional unfolding of EFP in addition to its catalytic role. The MD simulations were supportive to the kinetics data. CONCLUSION: Our study indicated that EFP has an essential serine residue for its catalyst function and associated folding behaviors. Also, the functional role of osmolytes such as proline and glycine that may play a role in defense mechanisms from environmental adaptation in a krill's body was suggested.


Subject(s)
Arthropod Proteins , Euphausiacea/enzymology , Serine Proteases , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/isolation & purification , Arthropod Proteins/metabolism , Fibrinolysis , Kinetics , Molecular Dynamics Simulation , Protein Folding , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/metabolism
3.
Sci Rep ; 10(1): 20592, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244101

ABSTRACT

North Pacific krill (Euphausia pacifica) contain 8R-hydroxy-eicosapentaenoic acid (8R-HEPE), 8R-hydroxy-eicosatetraenoic acid (8R-HETE) and 10R-hydroxy-docosahexaenoic acid (10R-HDHA). These findings indicate that E. pacifica must possess an R type lipoxygenase, although no such enzyme has been identified in krill. We analyzed E. pacifica cDNA sequence using next generation sequencing and identified two lipoxygenase genes (PK-LOX1 and 2). PK-LOX1 and PK-LOX2 encode proteins of 691 and 686 amino acids, respectively. Recombinant PK-LOX1 was generated in Sf9 cells using a baculovirus expression system. PK-LOX1 metabolizes eicosapentaenoic acid (EPA) to 8R-HEPE, arachidonic acid (ARA) to 8R-HETE and docosahexaenoic acid (DHA) to 10R-HDHA. Moreover, PK-LOX1 had higher activity for EPA than ARA and DHA. In addition, PK-LOX1 also metabolizes 17S-HDHA to 10R,17S-dihydroxy-docosahexaenoic acid (10R,17S-DiHDHA). PK-LOX1 is a novel lipoxygenase that acts as an 8R-lipoxygenase for EPA and 10R-lipoxygenase for DHA and 17S-HDHA. Our findings show PK-LOX1 facilitates the enzymatic production of hydroxy fatty acids, which are of value to the healthcare sector.


Subject(s)
Arthropod Proteins/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Euphausiacea/enzymology , Lipoxygenase/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Euphausiacea/chemistry , Euphausiacea/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Lipoxygenase/chemistry
4.
J Agric Food Chem ; 68(30): 7935-7945, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32643372

ABSTRACT

A cold-active transglutaminase (TGase, EC 2.3.2.13) that catalyzes the reaction of protein glutamine + protein lysine ↔ protein with γ-glutamyl-ε-lysine cross-link + NH3 at low temperatures was reported previously. This study verified the thermal stability of the TGase from 0-80 °C. Fluorescence and CD spectra studies confirmed tertiary structural damage at 40 °C, α-helix reduction at 60 °C, and refolding during cooling to 20 °C. The TGase sequence was obtained by transcriptomics and used to build its structure. Its catalytic triad was Cys333-His403-Asp426 and its catalytic process was inferred from the model. Molecular dynamics simulation illustrated that its cold activity resulted from its flexible active site, while high thermostability was conferred by an overall rigid structure, a large amount of stable Val and Lys, and strong electrostatic interactions at the N- and C- terminals. This study fills gaps in the correlation of conformational changes with stability and activity of TGase.


Subject(s)
Arthropod Proteins/chemistry , Euphausiacea/enzymology , Transglutaminases/chemistry , Amino Acid Motifs , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Biocatalysis , Catalytic Domain , Cold Temperature , Enzyme Stability , Euphausiacea/chemistry , Euphausiacea/genetics , Hot Temperature , Kinetics , Molecular Dynamics Simulation , Protein Refolding , Static Electricity , Transglutaminases/genetics , Transglutaminases/metabolism
5.
Mar Drugs ; 18(2)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012678

ABSTRACT

Krill oil enriched with polyunsaturated fatty acids is in the form of phospholipid. However, its application as a dietary supplement is limited, because of its rapid deterioration. Thus, this study aims to investigate the oxidative stability of krill oil extracted from Euphausia superba. Under optimal conditions (enzyme concentration 0.16%, enzymolysis time 2.9 h, and enzymolysis temperature of 45 °C) designed by response surface methodology, the extraction yield of krill oil is 86.02%. Five assays, including peroxide value (POV), thiobarbituric acid-reactive substances (TBARS), pH value, and turbidity were used to determine the oxidative stability of krill oil nanoliposomes during storage. Carboxymethyl chitosan (CMCS) nanoliposomes showed a significant reduction in POV and TBARS values, a prevention of pH value decrease and turbidity increase. This study indicated that CMCS nanoliposome can effectively improve the oxidative stability of krill oil during storage. Furthermore, the release profile in vitro illustrated that the controlled release of krill oil carried out by CMCS nanoliposomes is feasible.


Subject(s)
Euphausiacea/enzymology , Green Chemistry Technology/methods , Animals , Biological Products , Oxidation-Reduction
6.
J Sci Food Agric ; 98(8): 3049-3056, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29194642

ABSTRACT

BACKGROUND: The ability of Antarctic krill, Euphausia superba (Dana, 1852), to thrive in a cold environment comes from its capacity to synthesize cold-adapted enzymes. Its trypsin, as a main substance in the metabolic reactions, plays a key role in the adaption to low temperatures. However, the progress of research on its cold-adaption mechanism is being influenced due to the limited information on its gene and spatial structure. RESULTS: We studied the gene of E. superba trypsin with transcriptome sequencing first, and then discussed its cold-adaption mechanism with the full gene and predicted structure basing on bioinformatics. The results showed the proportion of certain residues played important roles in the cold-adaptation behavior for trypsin. Furthermore, a higher proportion of random coils and reduced steric hindrance might also be key factors promoting its cold adaption. CONCLUSION: This research aimed to reveal the cold-adaption mechanism of E. superba trypsin and provide support for basic research on molecular modification by site-directed mutagenesis of complementary DNA used to produce new and improved recombinant variants with cold adaption. Furthermore, it may broaden its commercial application on minimizing undesirable changes elevated at higher temperature in food processing and in treatment of trauma and inflammation in medicine. © 2017 Society of Chemical Industry.


Subject(s)
Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Euphausiacea/enzymology , Trypsin/chemistry , Trypsin/genetics , Amino Acid Sequence , Animals , Arthropod Proteins/metabolism , Base Sequence , Cold Temperature , Computational Biology , Enzyme Stability , Euphausiacea/chemistry , Euphausiacea/genetics , Euphausiacea/physiology , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Shellfish/analysis , Transcriptome , Trypsin/metabolism
7.
J Sci Food Agric ; 97(11): 3546-3551, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28078684

ABSTRACT

BACKGROUND: Despite their abundance, Antarctic krill are underutilized because of numerous difficulties in their commercial processing. Ideally, fermentation technology can be applied to transform them into a popular condiment. In addition to the exploration of protease properties, the present study aimed to evaluate proteinase activity, pH, amino nitrogen, and histamine formation during fermentation at different temperatures and salt treatments. RESULTS: Even though the activity of Antarctic krill protease reached a maximum at 40 °C and pH 7, it was stable at 30 °C and pH 7-9. Among the metal ions tested, Ca2+ , Mg2+ and K+ increased protease activity, in contrast to Zn2+ and Cu2+ . Within each treatment, the highest protease activity and amino nitrogen content, as well as the lowest histamine level, were observed on day 12 of fermentation. Treatment at 35 °C with 180 g kg-1 salt led to the production of maximum amino nitrogen (0.0352 g kg-1 ) and low histamine (≤0.0497 g kg-1 ). CONCLUSION: Krill paste fermented for 12 days at 35 °C with 180 g kg-1 salt exhibited the optimal quality and properties, suggesting an efficient method for fermentation of Antarctic krill and other aquatic resources. © 2017 Society of Chemical Industry.


Subject(s)
Endopeptidases/chemistry , Euphausiacea/chemistry , Fish Products/analysis , Fish Proteins/chemistry , Food Handling/methods , Animals , Antarctic Regions , Biocatalysis , Euphausiacea/enzymology , Fermentation , Salinity , Temperature
8.
Dis Aquat Organ ; 116(3): 227-36, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503777

ABSTRACT

Unlike decapod crustaceans of commercial interest, the krill defense system and its response to parasites and pathogens is virtually unknown. Histophagous ciliates of the genus Pseudocollinia interact with at least 7 krill species in the northeastern Pacific. Although they can cause epizootic events, the physiology of the histophagous ciliate-host interaction and krill (host) defenses remain unknown. From 1 oceanographic survey along the southwestern coast of the Baja California Peninsula near Bahía Magdalena and 2 in the Gulf of California, we investigated parasitoid-host physiological responses (fatty acid and oxidative stress indicators) of the subtropical krill Nyctiphanes simplex infected with the ciliate P. brintoni. All life stages of P. brintoni were associated with opportunistic bacterial assemblages that have not been explicitly investigated in other Pseudocollinia species (P. beringensis, P. oregonensis, and P. similis). Parasitoid ciliates exclusively infected adult females, which showed increased lipid content during gonad development. As the infection progressed, omega-3 eicosapentaenoic and docosahexaenoic fatty acids, which may act as energy sources to produce high numbers of ciliate transmission stages, were quickly depleted. Antioxidant enzymes, components of the crustacean defense system, varied throughout infection, but without inhibiting Pseudocollinia infection, i.e. higher levels of lipid oxidative damage were detected in late stages of infection. The ineffective response of the krill antioxidant defense system against histophagous ciliates and the bacteria associated with the ciliates suggests that Pseudocollinia ciliates are functionally analogous to krill predators and may have a strong influence on the population dynamics of krill.


Subject(s)
Bacteria/classification , Ciliophora/physiology , Euphausiacea/parasitology , Animals , Antioxidants/metabolism , Bacteria/immunology , Euphausiacea/enzymology , Euphausiacea/microbiology , Female , Host-Parasite Interactions , Host-Pathogen Interactions , Lipid Peroxidation , Oxidative Stress
9.
Int J Biol Macromol ; 70: 266-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25016161

ABSTRACT

To gain insight into the structural and folding mechanisms of Antarctic krill alkaline phosphatase (ALP), the enzyme was properly purified by (NH4)2SO4 fractionation and by both Sephadex G-75 and DEAE anion exchange chromatography. The purified enzyme (62.6 kDa; 2.62 unit/mg) was unstable at temperatures exceeding 30°C. Denaturants, such as sodium dodecyl sulfate (SDS), guanidine HCl, and urea, were applied to evaluate the folding mechanism, including kinetics and thermodynamics, of krill ALP. Sodium dodecyl sulfate elicited no significant effect on ALP activity even at excessively high concentrations (300 mM), whereas guanidine HCl and urea effectively inactivated the enzyme at concentrations of 2 and 3.5 M, respectively. Kinetic studies showed that the enzymatic inhibition by guanidine HCl and urea represented a first-order reaction that was a monophasic unfolding process. This process was found to be associated with conformational changes without significant transient free-energy changes. Additionally, the overall structural changes occurred proximally to the active site pocket. Our study provides new insight into ALP of the Antarctic krill, which lives in extreme environmental conditions.


Subject(s)
Alkaline Phosphatase/chemistry , Euphausiacea/enzymology , Protein Denaturation , Protein Folding , Alkaline Phosphatase/metabolism , Animals , Enzyme Activation/drug effects , Guanidine/pharmacology , Protein Denaturation/drug effects , Protein Folding/drug effects , Sodium Dodecyl Sulfate/pharmacology , Thermodynamics , Urea/pharmacology
10.
Int J Biol Macromol ; 67: 426-32, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690537

ABSTRACT

The regulation of enzymatic activity and unfolding studies of arginine kinase (AK) from various invertebrates have been the focus of investigation. To gain insight into the structural and folding mechanisms of AK from Euphausia superba (ESAK), we purified ESAK from muscle properly. The enzyme behaved as a monomeric protein with a molecular mass of about 40kDa and had pH and temperature optima of 8.0 and 30°C, respectively. The Km(Arg) and Km(ATP) for the synthesis of phosphoarginine were 0.30 and 0.47mM, respectively, and kcat/Km(Arg) was 282.7s(-1)/mM. A study of the inhibition kinetics of structural unfolding in the denaturant sodium dodecyl sulfate (SDS) was conducted. The results showed that ESAK was almost completely inactivated by 1.0mM SDS. The kinetics analyzed via time-interval measurements revealed that the inactivation was a first-order reaction, with the kinetic processes shifting from a monophase to biphase as SDS concentrations increased. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence showed that SDS concentrations lower than 5mM did not induce conspicuous changes in tertiary structures, while higher concentrations of SDS exposed hydrophobic surfaces and induced conformational changes. These results confirmed that the active region of AK is more flexible than the overall enzyme molecule.


Subject(s)
Arginine Kinase/chemistry , Arginine Kinase/isolation & purification , Euphausiacea/enzymology , Animals , Arginine Kinase/metabolism , Enzyme Stability , Kinetics , Protein Folding , Temperature
11.
Appl Biochem Biotechnol ; 172(8): 3888-901, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24577673

ABSTRACT

Arginine kinase (AK) is a key metabolic enzyme for maintaining energy balance in invertebrates and studies on AK from Euphausia superba might provide important insights into the metabolic enzymes in extreme climatic marine environments. A folding study of the AK from E. superba (ESAK) has not yet been reported. To gain insights into the structural and folding mechanisms of ESAK, the denaturants guanidine HCl and urea were applied in this study. We purified ESAK from the muscle of E. superba and evaluated the inhibition kinetics with structural unfolding studies under various conditions. The results revealed that ESAK was almost completely inactivated when using 1.0 M guanidine HCl and 8.25 M urea. The kinetics, characterized via time-interval measurements, showed that the inactivations by guanidine HCl and urea were first-order reactions, with the kinetic processes shifting from monophases to biphases as concentrations increased. Measurements of intrinsic and ANS (anilinonaphthalene-8-sulfonate)-binding fluorescences showed that guanidine HCl and urea induced conspicuous changes in tertiary structures and followed the regular unfolding mechanisms. Our study provides information regarding the folding of this muscle-derived metabolic enzyme and expands our knowledge and understanding of invertebrate metabolisms.


Subject(s)
Arginine Kinase/chemistry , Euphausiacea/enzymology , Protein Denaturation/drug effects , Animals , Arginine Kinase/metabolism , Enzyme Activation/drug effects , Guanidine/pharmacology , Kinetics , Muscles/enzymology , Protein Structure, Tertiary/drug effects , Urea/pharmacology
12.
Article in English | MEDLINE | ID: mdl-22981467

ABSTRACT

Krill are filter feeders that consume algae, plankton and detritus, indicating that krill possess an adequate cellulose digesting system. However, less is known about the enzymatic properties of crustacean cellulases compared to termite cellulases. In the present study, 48 kDa-cellulase was highly purified from krill (Euphausia pacifica) in an effort to determine the cleavage specificity of the enzyme. The most notable characteristic of the enzyme was its high activity against both lichenan and carboxymethyl cellulose. The enzyme hydrolyzed internal ß-1,4 glycosidic bonds within lichenan as well as carboxymethyl cellulose to release oligosaccharides and glucose. The effects of pH and temperature on the activity and stability of both enzyme activities were almost identical. Cello-oligosaccharides with a degree of polymerization of 4-6 were hydrolyzed by the enzyme, and the same endo-products, cellotriose, cellobiose and glucose, were produced from these oligosaccharides. Neither cellotriose nor cellobiose was hydrolyzed by the enzyme. The enzyme digested filter paper and sea lettuce to produce cellobiose, cellotriose and glucose as major products. Although amino acid sequence homology of the enzyme with termite cellulases and the presence of oligosaccharides in the enzyme suggested that the enzyme is produced by krill itself, further analysis is necessary.


Subject(s)
Cellulase/isolation & purification , Cellulase/metabolism , Euphausiacea/enzymology , Amino Acid Sequence , Animals , Carboxymethylcellulose Sodium/metabolism , Cellulase/chemistry , Euphausiacea/microbiology , Filtration , Glucans/metabolism , Intestines/enzymology , Intestines/microbiology , Molecular Sequence Data , Oligosaccharides/metabolism , Paper , Seaweed/metabolism , Sequence Analysis , Substrate Specificity , Symbiosis
13.
PLoS One ; 7(12): e52224, 2012.
Article in English | MEDLINE | ID: mdl-23300621

ABSTRACT

Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2) concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO(2) perturbation experiment at ambient and elevated atmospheric CO(2) levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO(2) conditions (∼672 ppm), ingestion rates of krill averaged 78 µg C individual(-1) d(-1) and were 3.5 times higher than krill ingestion rates at ambient, present day CO(2) concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO(2) treatment than at ambient CO(2) concentrations. Excretion of urea, however, was ∼17% lower in the high CO(2) treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO(2) treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.


Subject(s)
Carbon Dioxide/pharmacology , Environmental Exposure/adverse effects , Euphausiacea/drug effects , Euphausiacea/metabolism , Feeding Behavior/drug effects , Animals , Carbonates/chemistry , Carbonates/metabolism , Dose-Response Relationship, Drug , Euphausiacea/enzymology , Hydrogen-Ion Concentration , Phytoplankton/isolation & purification , Seawater/chemistry , Zooplankton/isolation & purification
14.
PLoS One ; 6(10): e26090, 2011.
Article in English | MEDLINE | ID: mdl-22022521

ABSTRACT

Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Euphausiacea/metabolism , Animals , Antarctic Regions , Cryptochromes/metabolism , Euphausiacea/enzymology , Oxygen Consumption , Species Specificity
15.
Biotechnol Lett ; 30(1): 67-72, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17987272

ABSTRACT

Two trypsin-like enzymes (TLEs) were purified from North Pacific krill (Euphausia pacifica) by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography. The purified enzymes were identified as trypsins by LC-ESI-MS/MS analysis. The relative molecular mass of TLE I and TLE II were 33 and 32.3 kDa, respectively, with isoelectric points of 4.5 and 4.3, respectively. The TLEs showed excellent thermal stable in the crude extract and the purified TLEs were active over a wide pH (6.0-11.0) and temperature (10-70 degrees C) range. Compared with trypsins from other organisms, the purified TLEs had physiological efficiencies of 1.6-6.7-fold. The difference in Arg, Ile and Asp content might explain why E. pacifica TLEs have good thermal stability and physiological efficiency.


Subject(s)
Euphausiacea/enzymology , Trypsin/chemistry , Trypsin/isolation & purification , Amino Acid Sequence , Animals , Enzyme Activation , Enzyme Stability , Molecular Sequence Data
16.
Protein Expr Purif ; 26(1): 153-61, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12356483

ABSTRACT

Fractions of three trypsin-like proteinases, TL I, TL II, and TL III, a chymotrypsin-like proteinase, CL, two carboxypeptidase A enzymes, CPA I and CPA II and two carboxypeptidase B enzymes, CPB I and CPB II, from Antarctic krill (Euphausia superba) have been characterized with respect to purity by the means of capillary electrophoresis, CE, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The masses of the trypsin-like and chymotrypsin-like proteinases were determined to be 25,020, 25,070, 25,060, and 26,260Da for TL I, TL II, TL III, and CL, respectively. The masses of the CPA enzymes are likely 23,170 and 23,260Da, whereas the CPB enzyme masses likely are 33,730 and 33,900Da. The degradation efficiency and cleavage pattern of the trypsin-like proteinases were studied with native myoglobin as a model substrate using CE, MALDI-TOF-MS, and nanoelectrospray mass spectrometry (nESI-MS). The degradation efficiency of the trypsin-like proteinases was found to be approximately 12 and 60 times higher compared to bovine trypsin at 37 degrees C and 1-3 degrees C, respectively. All three fractions of trypsin-like proteinases showed a carboxypeptidase activity in combination with their trypsin activity.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/isolation & purification , Euphausiacea/enzymology , Animals , Antarctic Regions , Chymotrypsin/chemistry , Chymotrypsin/isolation & purification , Chymotrypsin/metabolism , Electrophoresis, Capillary , Endopeptidases/metabolism , Kinetics , Mass Spectrometry , Molecular Weight , Myoglobin/metabolism , Reproducibility of Results , Substrate Specificity , Trypsin/chemistry , Trypsin/isolation & purification , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...