Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Braz J Biol ; 84: e281196, 2024.
Article in English | MEDLINE | ID: mdl-39319978

ABSTRACT

Euphorbia resinifera O. Berg is a prickly, leafless and succulent, Moroccan endemic shrub. Field data indicate that the plant faces many challenges related to its natural regeneration and its gradual decline that can lead to a probability of extinction, at least in some areas. Successful seed germination and survival of E. resinifera seedlings during the dry period is one of the main obstacles encountered in establishing natural seedlings. With this in mind, 3080 seeds of two morphotypes of E. resinifera (M1 and M2) were harvested in the Atlas of Beni Mellal to study their germinative potential and determine suitable conditions for growth and development of the seedlings. In the laboratory, five temperatures (10 °, 15 °C, 18 °C, 25 °C, and 35 °C) and two photoperiods (12 h light/12 h dark and 24 h dark) were tested. Whereas in field research, two factors were considered: the availability of water and the type of substrate (clay, peat, and limestone). Results show a maximum germination rate of around 52% for M2 at 15 °C and 48% for M1 at 18 °C. The Monitoring of plant seedling establishment and growth revealed a high vulnerability to prolonged periods of drought. However, consolidated soil is more conducive to seedling establishment. For this species, it is therefore essential to conserve the habitat within the karst geosystem. Furthermore, the variability of this species' morphotypes and their growth form architecture shows a tendency to favor the dwarf, cushion-shaped morphotype, which is the most widespread in the study area.


Subject(s)
Euphorbia , Germination , Seedlings , Germination/physiology , Euphorbia/physiology , Euphorbia/growth & development , Seedlings/growth & development , Seedlings/physiology , Conservation of Natural Resources , Temperature , Seeds/growth & development , Seeds/physiology
2.
Chem Biodivers ; 17(3): e1900694, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022474

ABSTRACT

Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α-amyrin, 1-dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p-coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1-dehydrodiosgenone, tricin, and p-coumaric acid are also reported, and p-coumaric acid and 1-dehydrodiosgenone were active against B. pilosa.


Subject(s)
Bidens/drug effects , Euphorbia/drug effects , Ipomoea/drug effects , Plant Components, Aerial/chemistry , Plant Extracts/pharmacology , Poaceae/chemistry , Bidens/growth & development , Euphorbia/growth & development , Ipomoea/growth & development , Plant Extracts/chemistry , Plant Extracts/isolation & purification
3.
J Invertebr Pathol ; 165: 4-12, 2019 07.
Article in English | MEDLINE | ID: mdl-29196232

ABSTRACT

Historically, greenhouse floriculture has relied on synthetic insecticides to meet its pest control needs. But, growers are increasingly faced with the loss or failure of synthetic chemical pesticides, declining access to new chemistries, stricter environmental/health and safety regulations, and the need to produce plants in a manner that meets the 'sustainability' demands of a consumer driven market. In Canada, reports of thrips resistance to spinosad (Success™) within 6-12 months of its registration prompted a radical change in pest management philosophy and approach. Faced with a lack of registered chemical alternatives, growers turned to biological control out of necessity. Biological control now forms the foundation for pest management programs in Canadian floriculture greenhouses. Success in a biocontrol program is rarely achieved through the use of a single agent, though. Rather, it is realized through the concurrent use of biological, cultural and other strategies within an integrated plant production system. Microbial insecticides can play a critical supporting role in biologically-based integrated pest management (IPM) programs. They have unique modes of action and are active against a range of challenging pests. As commercial microbial insecticides have come to market, research to generate efficacy data has assisted their registration in Canada, and the development and adaptation of integrated programs has promoted uptake by floriculture growers. This review documents some of the work done to integrate microbial insecticides into chrysanthemum and poinsettia production systems, outlines current use practices, and identifies opportunities to improve efficacy in Canadian floriculture crops.


Subject(s)
Biological Control Agents , Horticulture , Insect Control , Pest Control, Biological/methods , Animals , Bacillus thuringiensis/pathogenicity , Beauveria/pathogenicity , Canada , Chrysanthemum/growth & development , Euphorbia/growth & development , Fungi/pathogenicity , Hemiptera/microbiology , Hemiptera/parasitology , Horticulture/methods , Horticulture/trends , Insecta/microbiology , Insecta/parasitology , Insecticides , Metarhizium/pathogenicity , Nematoda/pathogenicity , Nucleopolyhedroviruses/pathogenicity , Pheromones , Thysanoptera/microbiology , Thysanoptera/parasitology , Wasps
4.
Planta ; 247(4): 845-861, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29260395

ABSTRACT

MAIN CONCLUSION: Autophagy is involved in cytoplasmic degradation through directly engulfing cytosol and organelles by autophagosomes and then fusing with lysosome-like vesicles during the development of nonarticulated laticifers in Euphorbia kansui Liou. Autophagy has been reported to play an important role in a wide range of eukaryotic organisms during responses to various abiotic and biotic stresses. However, until recently, the functions of autophagy in normal plant differentiation and development were still in their infancy. Nonarticulated laticifers, a type of secretory tissue in plants, undergo the degradation of cytosol and organelles during their development. However, little evidence of autophagy in laticifer differentiation has been provided. In the present study, using anti-ATG8 antibody-Alexa Fluor 488, Lyso-Tracker Red (LTR) and monodansylcadaverine (MDC) as markers for detecting autophagosomes, as well as autophagy-related structures, we observed that the green fluorescence of ATG8a largely colocalized with the red fluorescence of LTR and purple fluorescence of MDC and the quantity of autophagosomes experienced a trend from less to more to less during laticifer development. Additionally, we described the autophagy process during the development of nonarticulated laticifers in Euphorbia kansui Liou at the ultrastructural level in detail. In addition, further immunogold TEM studies also verified the presence of autophagosomes, autolysosomes and lysosome-like structures in laticifers. Taken together, these results suggest that autophagy contributes to the development of the nonarticulated laticifers in E. kansui Liou and that autophagosomes fuse with lysosome-like structures for degradation. These results will lay an important foundation for further studies on laticifer regulation.


Subject(s)
Autophagy/physiology , Euphorbia/growth & development , Autophagosomes/physiology , Autophagosomes/ultrastructure , Euphorbia/physiology , Euphorbia/ultrastructure , Gene Expression Regulation, Plant/physiology , Immunoblotting , Lysosomes/physiology , Lysosomes/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction
5.
Plant Genome ; 10(3)2017 11.
Article in English | MEDLINE | ID: mdl-29293817

ABSTRACT

Leafy spurge ( L.) is an invasive weed of North America and its perennial nature attributed to underground adventitious buds (UABs) that undergo seasonal cycles of para-, endo-, and ecodormancy. Recommended rates of glyphosate (∼1 kg ha) destroy aboveground shoots but plants still regenerate vegetatively; therefore, it is considered glyphosate-tolerant. However, foliar application of glyphosate at higher rates (2.2-6.7 kg ha) causes sublethal effects that induce UABs to produce stunted, bushy phenotypes. We investigated the effects of glyphosate treatment (±2.24 kg ha) on vegetative growth, phytohormone, and transcript profiles in UABs under controlled environments during one simulated seasonal cycle. Because shoots derived from UABs of foliar glyphosate-treated plants produced stunted, bushy phenotypes, we could not directly determine if these UABs transitioned through seasonally induced endo- and ecodormancy. However, transcript abundance for leafy spurge dormancy marker genes and principal component analyses suggested that UABs of foliar glyphosate-treated plants transitioned through endo- and ecodormancy. Glyphosate treatment increased shikimate abundance in UABs 7 d after treatment; however, the abundance of shikimate gradually decreased as UABs transitioned through endo- and ecodormancy. The dissipation of shikimate over time suggests that glyphosate's target site was no longer affected, but these changes did not reverse the altered phenotypes observed from UABs of foliar glyphosate-treated leafy spurge. Transcript profiles further indicated that foliar glyphosate treatment significantly affected phytohormone biosynthesis and signaling, particularly auxin transport; gibberellic acid, abscisic acid and jasmonic acid biosynthesis; ethylene responses; and detoxification and cell cycle processes in UABs. These results correlated well with the available phytohormone profiles and altered phenotypes.


Subject(s)
Euphorbia/drug effects , Glycine/analogs & derivatives , Herbicides/pharmacology , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , RNA, Messenger/genetics , RNA, Plant/genetics , Euphorbia/genetics , Euphorbia/growth & development , Euphorbia/metabolism , Gene Expression Profiling , Glycine/pharmacology , Plant Shoots/growth & development , Real-Time Polymerase Chain Reaction , Shikimic Acid/metabolism , Signal Transduction , Transcriptome , Glyphosate
6.
BMC Plant Biol ; 16: 47, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26897527

ABSTRACT

BACKGROUND: Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth pattern through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibited by physiological factors external to the affected structure; a phenomenon referred to as paradormancy. Initiation of shoot growth from paradormant UABs can be accomplished through removal of the aerial shoots (hereafter referred to as paradormancy release). RESULTS: In this study, phytohormone abundance and the transcriptomes of paradormant UABs vs. shoot-induced growth at 6, 24, and 72 h after paradormancy release were compared based on hormone profiling and RNA-seq analyses. Results indicated that auxin, abscisic acid (ABA), and flavonoid signaling were involved in maintaining paradormancy in UABs of leafy spurge. However, auxin, ABA, and flavonoid levels/signals decreased by 6 h after paradormancy release, in conjunction with increase in gibberellic acid (GA), cytokinin, jasmonic acid (JA), ethylene, and brassinosteroid (BR) levels/signals. Twenty four h after paradormancy release, auxin and ABA levels/signals increased, in conjunction with increase in GA levels/signals. Major cellular changes were also identified in UABs at 24 h, since both principal component and Venn diagram analysis of transcriptomes clearly set the 24 h shoot-induced growth apart from other time groups. In addition, increase in auxin and ABA levels/signals and the down-regulation of 40 over-represented AraCyc pathways indicated that stress-derived cellular responses may be involved in the activation of stress-induced re-orientation required for initiation of shoot growth. Seventy two h after paradormancy release, auxin, cytokinin, and GA levels/signals were increased, whereas ABA, JA, and ethylene levels/signals were decreased. CONCLUSION: Combined results were consistent with different phytohormone signals acting in concert to direct cellular changes involved in bud differentiation and shoot growth. In addition, shifts in balance of these phytohormones at different time points and stress-related cellular responses after paradormancy release appear to be critical factors driving transition of bud to shoot growth.


Subject(s)
Euphorbia/growth & development , Plant Growth Regulators/metabolism , Euphorbia/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Signal Transduction
7.
Environ Sci Pollut Res Int ; 23(7): 6524-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26635220

ABSTRACT

The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.


Subject(s)
Lead/analysis , Magnoliopsida/growth & development , Mining , Soil Pollutants/analysis , Soil/chemistry , Zinc/analysis , Euphorbia/growth & development , Euphorbia/metabolism , Fragaria/growth & development , Fragaria/metabolism , Humans , Lead/metabolism , Magnoliopsida/metabolism , Plant Roots/chemistry , Plantago/growth & development , Plantago/metabolism , Poland , Potentilla/growth & development , Potentilla/metabolism , Soil Pollutants/metabolism , Species Specificity , Zinc/metabolism
8.
BMC Genomics ; 16: 395, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25986459

ABSTRACT

BACKGROUND: Leafy spurge (Euphorbia esula) is a perennial weed that is considered glyphosate tolerant, which is partially attributed to escape through establishment of new vegetative shoots from an abundance of underground adventitious buds. Leafy spurge plants treated with sub-lethal concentrations of foliar-applied glyphosate produce new vegetative shoots with reduced main stem elongation and increased branching. Processes associated with the glyphosate-induced phenotype were determined by RNAseq using aerial shoots derived from crown buds of glyphosate-treated and -untreated plants. Comparison between transcript abundance and accumulation of shikimate or phytohormones (abscisic acid, auxin, cytokinins, and gibberellins) from these same samples was also done to reveal correlations. RESULTS: Transcriptome assembly and analyses confirmed differential abundance among 12,918 transcripts (FDR ≤ 0.05) and highlighted numerous processes associated with shoot apical meristem maintenance and stem growth, which is consistent with the increased number of actively growing meristems in response to glyphosate. Foliar applied glyphosate increased shikimate abundance in crown buds prior to decapitation of aboveground shoots, which induces growth from these buds, indicating that 5-enolpyruvylshikimate 3-phosphate (EPSPS) the target site of glyphosate was inhibited. However, abundance of shikimate was similar in a subsequent generation of aerial shoots derived from crown buds of treated and untreated plants, suggesting EPSPS is no longer inhibited or abundance of shikimate initially observed in crown buds dissipated over time. Overall, auxins, gibberellins (precursors and catabolites of bioactive gibberellins), and cytokinins (precursors and bioactive cytokinins) were more abundant in the aboveground shoots derived from glyphosate-treated plants. CONCLUSION: Based on the overall data, we propose that the glyphosate-induced phenotype resulted from complex interactions involving shoot apical meristem maintenance, hormone biosynthesis and signaling (auxin, cytokinins, gibberellins, and strigolactones), cellular transport, and detoxification mechanisms.


Subject(s)
Euphorbia , Glycine/analogs & derivatives , Plant Growth Regulators/metabolism , Plant Stems/growth & development , Transcriptome/drug effects , Chorismic Acid/biosynthesis , Euphorbia/drug effects , Euphorbia/genetics , Euphorbia/growth & development , Glycine/pharmacology , Herbicides/pharmacology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Stems/drug effects , Plant Stems/genetics , Plant Stems/metabolism , Sequence Analysis, RNA , Shikimic Acid/metabolism , Signal Transduction/drug effects , Glyphosate
9.
PLoS One ; 10(5): e0126030, 2015.
Article in English | MEDLINE | ID: mdl-25961298

ABSTRACT

Leafy spurge (Euphorbia esula L.) is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. It is also capable of flowering and producing seeds, but requires vernalization in some cases. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direct role in the transition to winter-induced dormancy and maintenance through regulation of the FLOWERING LOCUS T (FT) gene, which also is likely involved in the vernalization process. To explore the regulation of FT and DAM during dormancy transitions in leafy spurge, the transcript accumulation of two previously cloned DAM splice variants and two different previously cloned FT genes was characterized. Under long-photoperiods (16 h light), both DAM and FT transcripts accumulate in a diurnal manner. Tissue specific expression patterns indicated the tissues with high DAM expression had low FT expression and vice versa. DAM expression is detected in leaves, stems, shoot tips, and crown buds. FT transcripts were detected mainly in leaves and flowers. Under dormancy inducing conditions, DAM and FT genes had an inverse expression pattern. Additionally, chromatin immunoprecipitation assays were performed using DAM-like protein specific antibodies to demonstrate that DAM or related proteins likely bind to cryptic and/or conserved CArG boxes in the promoter regions of FT genes isolated from endodormant crown buds. These results are consistent with the hypothesis that DAM proteins play a crucial role in leafy spurge dormancy transition and maintenance, potentially by negatively regulating the expression of FT.


Subject(s)
Euphorbia/genetics , Gene Expression Regulation, Plant , Genes, Plant , Chromatin Immunoprecipitation , Euphorbia/growth & development , Flowers/genetics , High-Throughput Nucleotide Sequencing , Organ Specificity/genetics , Photoperiod , Transcription, Genetic
10.
Int J Phytoremediation ; 17(1-6): 363-8, 2015.
Article in English | MEDLINE | ID: mdl-25409249

ABSTRACT

The potential of an ornamental shrub Crown of thorns (Euphorbia milli) was evaluated for remediation of soil contaminated with Cr. The plant is one of the rare succulent ornamental shrubs with a slow to moderate growth rate and is capable of blooming almost year-round. The plant could tolerate well up to 75 mg of applied Cr and beyond that there was mortality of plants. Though the plant could not be classified as a hyperaccumulator, the plant was still very efficient in translocating Cr from roots to shoots as evident from the data on uptake and translocation efficiency values. The translocation efficiency of over 80% in our study demonstrates that a large proportion of Cr has been translocated to the harvestable biomass of the plant and therefore, this plant could be effectively recommended for the remediation of soils contaminated with low to medium level of contamination i.e., up to 50 mg/kg soil.


Subject(s)
Chromium/metabolism , Environmental Restoration and Remediation/methods , Euphorbia/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Chromium/analysis , Environmental Restoration and Remediation/instrumentation , Euphorbia/chemistry , Euphorbia/growth & development , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL