Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
Nature ; 625(7996): 743-749, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233522

ABSTRACT

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Subject(s)
Avoidance Learning , Central Amygdaloid Nucleus , Neural Pathways , Neurons , Avoidance Learning/physiology , Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/physiology , Neurons/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Excitatory Amino Acid Agents/pharmacology , Glutamic Acid/metabolism , Neural Pathways/physiology , Calcium/analysis , Electrophysiology , Pons/cytology , Pons/physiology
2.
Sci Rep ; 13(1): 16358, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773430

ABSTRACT

Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.


Subject(s)
Chemokine CX3CL1 , Hippocampus , Animals , Mice , Chemokine CX3CL1/metabolism , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Inflammation/complications , Mice, Inbred C57BL , Obesity/complications , Excitatory Amino Acid Agents
3.
Ageing Res Rev ; 89: 101994, 2023 08.
Article in English | MEDLINE | ID: mdl-37385351

ABSTRACT

Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.


Subject(s)
Nervous System Diseases , Neurotransmitter Agents , Humans , Neurotransmitter Agents/physiology , Nervous System Diseases/physiopathology , Nervous System Diseases/therapy , Cholinergic Neurons , Excitatory Amino Acid Agents , GABAergic Neurons , Dopaminergic Neurons
4.
Nat Commun ; 13(1): 504, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082287

ABSTRACT

The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson's disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD.


Subject(s)
Mesencephalon/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Parkinsonian Disorders/metabolism , Animals , Disease Models, Animal , Dopamine/metabolism , Excitatory Amino Acid Agents/pharmacology , Female , Male , Mesencephalon/drug effects , Mesencephalon/physiopathology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Parkinson Disease/physiopathology , Parkinsonian Disorders/physiopathology , Pedunculopontine Tegmental Nucleus/metabolism , Pedunculopontine Tegmental Nucleus/physiopathology
5.
J Ethnopharmacol ; 282: 114546, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34418512

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa monnieri L. (Scrophulariaceae) is commonly known as Brahmi and traditionally used as a neuroprotective herbal medicine. Recently, Bacopa monnieri exhibited significant therapeutic activity against animal model of neuropathic pain. However, the therapeutic potential of methanolic extract of Bacopa monnieri in experimental animal model is yet to establish. AIM OF THE STUDY: The present study was designed to evaluate the anti-nociceptive potential of standardized methanolic extract of Bacopa monnieri in experimental adult zebrafish (Danio rerio) model of pain. MATERIALS AND METHODS: The methanolic extract of Bacopa monnieri (BME) was standardized to bacoside-A using chromatographic method. Subsequently, BME (0.75, 1.25 and 5.0 mg/ml) was evaluated for anti-nociceptive activity using adult zebrafish model. RESULTS: Standardized BME showed antioxidant effect through radical quenching activity in in vitro study. BME at 1.25 mg/ml significantly decreased the nociceptive effect induced by different noxious agents like acetic acid where as BME at 2.5 mg/ml exhibited significant antinociceptive activity against glutamate, formalin, capsaicin, cinnamaldehyde when compared to control and sham group animals. CONCLUSION: BME exerted antinociceptive activity in adult zebrafish. It could be presumed that BME may involve glutamatergic receptor, ASIC and TRP channel activity in its anti-nociceptive effect. BME could be considered as a potential therapeutic option in the management of pain.


Subject(s)
Acid Sensing Ion Channels/metabolism , Analgesics/pharmacology , Bacopa , Neuralgia , Plant Extracts/pharmacology , Transient Receptor Potential Channels/metabolism , Animals , Antioxidants/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/pharmacology , Neuralgia/drug therapy , Neuralgia/metabolism , Plants, Medicinal , Zebrafish
6.
Glia ; 70(1): 173-195, 2022 01.
Article in English | MEDLINE | ID: mdl-34661306

ABSTRACT

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Subject(s)
Microglia , Neurons , Animals , Brain , Excitatory Amino Acid Agents/pharmacology , Hippocampus , Mice , Organic Chemicals/pharmacology , Synapses/physiology
7.
Cells ; 10(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34943913

ABSTRACT

Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.


Subject(s)
Dendritic Spines/drug effects , Diet , Neurodegenerative Diseases/diet therapy , Neurodegenerative Diseases/drug therapy , Cholinergic Agents/therapeutic use , Cognitive Dysfunction/diet therapy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Dendritic Spines/pathology , Dendritic Spines/physiology , Excitatory Amino Acid Agents/therapeutic use , GABA Agents/therapeutic use , Humans , Meditation/psychology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/psychology , Neurons/drug effects , Neurons/physiology , Synapses/drug effects , Synapses/metabolism , Yoga/psychology
8.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34768876

ABSTRACT

The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.


Subject(s)
Calcium Channels/metabolism , Chlorogenic Acid/pharmacology , Glutamic Acid/metabolism , Animals , Calcium/metabolism , Calcium Channels/drug effects , Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Chlorogenic Acid/metabolism , Excitatory Amino Acid Agents , Glutamic Acid/drug effects , Kainic Acid/metabolism , Male , Membrane Potentials/drug effects , Molecular Docking Simulation , Neurons/drug effects , Neurons/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Vesicles/metabolism , Synaptosomes/metabolism
9.
BMC Pharmacol Toxicol ; 22(1): 69, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34736541

ABSTRACT

BACKGROUND: Obsessive-compulsive disorder (OCD) is among the most disabling neuropsychiatric conditions characterized by the presence of repetitive intrusive thoughts, impulses, or images (obsessions) and/or ritualized mental or physical acts (compulsions). Serotonergic medications, particularly Selective Serotonin Reuptake Inhibitors (SSRIs), are the first-line treatments for patients with OCD. Recently, dysregulation of glutamatergic system has been proposed to be involved in the etiology of OCD. We designed this systematic review and meta-analysis to evaluate clinical efficacy of glutamatergic medications in patients with OCD, according to the guidelines of Cochrane collaboration. METHOD: We searched Medline, Scopus, and Cochrane library without applying any language filter. Two of the authors independently reviewed search results for irrelevant and duplicate studies and extracted data and assessed methodological quality of the studies. We transformed data into a common rubric and calculated a weighted treatment effect across studies using Review Manager. RESULTS: We found 476 references in 3 databases, and after exclusion of irrelevant and duplicate studies, 17 studies with total number of 759 patients with OCD were included. In the present review we found evidence for several drugs such as memantine, N-acetylcysteine (NAC), Minocycline, L-carnosine and riluzole. Glutamaterigic drug plus SSRIs were superior to SSRI+ Placebo with regard to Y-BOCS scale [standardized mean difference (SMD = - 3.81 95% CI = - 4.4, - 3.23). CONCLUSION: Augmentation of glutamatergic medications with SSRIs are beneficial in obsessive-compulsive patients, no harmful significant differences in any safety outcome were found between the groups.


Subject(s)
Excitatory Amino Acid Agents/therapeutic use , Obsessive-Compulsive Disorder/drug therapy , Selective Serotonin Reuptake Inhibitors/therapeutic use , Adult , Drug Therapy, Combination , Humans
10.
mBio ; 12(5): e0177621, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34700379

ABSTRACT

Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.


Subject(s)
Excitatory Amino Acid Agents/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A virus , Microglia/metabolism , Synaptic Transmission/physiology , Animals , Brain/pathology , Chemokines , Cytokines , Gene Expression , Humans , Inflammation/virology , Influenza A virus/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae Infections/virology
11.
J Biol Chem ; 297(3): 101089, 2021 09.
Article in English | MEDLINE | ID: mdl-34416235

ABSTRACT

Familial British dementia and familial Danish dementia are neurodegenerative disorders caused by mutations in the gene integral membrane protein 2B (ITM2b) encoding BRI2, which tunes excitatory synaptic transmission at both presynaptic and postsynaptic termini. In addition, BRI2 interacts with and modulates proteolytic processing of amyloid-ß precursor protein (APP), whose mutations cause familial forms of Alzheimer's disease (AD) (familial AD). To study the pathogenic mechanisms triggered by the Danish mutation, we generated rats carrying the Danish mutation in the rat Itm2b gene (Itm2bD rats). Given the BRI2/APP interaction and the widely accepted relevance of human amyloid ß (Aß), a proteolytic product of APP, to AD, Itm2bD rats were engineered to express two humanized App alleles and produce human Aß. Here, we studied young Itm2bD rats to investigate early pathogenic changes in these diseases. We found that periadolescent Itm2bD rats not only present subtle changes in human Aß levels along with decreased spontaneous glutamate release and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated responses but also had increased short-term synaptic facilitation in the hippocampal Schaeffer-collateral pathway. These alterations in excitatory interneuronal communication can impair learning and memory processes and were akin to those observed in adult mice producing rodent Aß and carrying either the Danish or British mutations in the mouse Itm2b gene. Collectively, the data show that the pathogenic Danish mutation alters the physiological function of BRI2 at glutamatergic synapses across species and early in life. Future studies will determine whether this phenomenon represents an early pathogenic event in human dementia.


Subject(s)
Cataract/physiopathology , Cerebellar Ataxia/physiopathology , Deafness/physiopathology , Dementia/physiopathology , Membrane Proteins/genetics , Synaptic Transmission/physiology , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cataract/metabolism , Cerebellar Ataxia/metabolism , Deafness/metabolism , Dementia/genetics , Dementia/metabolism , Disease Models, Animal , Excitatory Amino Acid Agents/metabolism , Female , Male , Membrane Proteins/metabolism , Memory , Presynaptic Terminals/metabolism , Rats , Receptors, Glutamate/metabolism , Synapses/metabolism
12.
Nat Commun ; 12(1): 4067, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210973

ABSTRACT

Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Neurons/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line , Dwarfism , Excitatory Amino Acid Agents , Facies , Hippocampus , Mice , Microcephaly , Mutation , Purkinje Cells , Signal Transduction , Synaptotagmin II/metabolism
13.
Ann Clin Transl Neurol ; 8(7): 1480-1494, 2021 07.
Article in English | MEDLINE | ID: mdl-34227748

ABSTRACT

OBJECTIVE: Genetic variants in the GRIN genes that encode N-methyl-D-aspartate receptor (NMDAR) subunits have been identified in various neurodevelopmental disorders, including epilepsy. We identified a GRIN1 variant from an individual with early-onset epileptic encephalopathy, evaluated functional changes to NMDAR properties caused by the variant, and screened FDA-approved therapeutic compounds as potential treatments for the patient. METHODS: Whole exome sequencing identified a missense variant in GRIN1. Electrophysiological recordings were made from Xenopus oocytes and transfected HEK cells to determine the NMDAR biophysical properties as well as the sensitivity to agonists and FDA-approved drugs that inhibit NMDARs. A beta-lactamase reporter assay in transfected HEK cells evaluated the effects of the variant on the NMDAR surface expression. RESULTS: A recurrent de novo missense variant in GRIN1 (c.1923G>A, p.Met641Ile), which encodes the GluN1 subunit, was identified in a pediatric patient with drug-resistant seizures and early-onset epileptic encephalopathy. In vitro analysis indicates that GluN1-M641I containing NMDARs showed enhanced agonist potency and reduced Mg2+ block, which may be associated with the patient's phenotype. Results from screening FDA-approved drugs suggested that GluN1-M641I containing NMDARs are more sensitive to the NMDAR channel blockers memantine, ketamine, and dextromethorphan compared to the wild-type receptors. The addition of memantine to the seizure treatment regimen significantly reduced the patient's seizure burden. INTERPRETATION: Our finding contributes to the understanding of the phenotype-genotype correlations of patients with GRIN1 gene variants, provides a molecular mechanism underlying the actions of this variant, and explores therapeutic strategies for treating GRIN1-related neurological conditions.


Subject(s)
Exome Sequencing/methods , Genetic Variation/genetics , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Seizures/genetics , Adolescent , Amino Acid Sequence , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Child, Preschool , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/pharmacology , Female , HEK293 Cells , Humans , Male , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/chemistry , Pedigree , Protein Structure, Secondary , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/chemistry , Recurrence , Seizures/drug therapy , Seizures/physiopathology , Xenopus laevis
14.
Neuropharmacology ; 191: 108573, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33945826

ABSTRACT

Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.


Subject(s)
Antidepressive Agents/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Behavior, Animal/drug effects , Excitatory Amino Acid Agents , Fluoxetine/pharmacology , Glutamic Acid , Interneurons/drug effects , Ketamine/pharmacology , Male , Pyramidal Cells/drug effects , Rats , Rats, Inbred WF
15.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33859040

ABSTRACT

Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cß (PLC-ß) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-ß activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-ß-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-ß/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-ß-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.


Subject(s)
Calcium Signaling/physiology , Longevity/physiology , Neurons/metabolism , Animals , Calcium/metabolism , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Excitatory Amino Acid Agents/metabolism , Glutamic Acid/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Potentials , Mitochondria/metabolism , Neurons/physiology
16.
CNS Drugs ; 35(5): 527-543, 2021 05.
Article in English | MEDLINE | ID: mdl-33904154

ABSTRACT

The efficacy of standard antidepressants is limited for many patients with mood disorders such as major depressive disorder (MDD) and bipolar depression, underscoring the urgent need to develop novel therapeutics. Both clinical and preclinical studies have implicated glutamatergic system dysfunction in the pathophysiology of mood disorders. In particular, rapid reductions in depressive symptoms have been observed in response to subanesthetic doses of the glutamatergic modulator racemic (R,S)-ketamine in individuals with mood disorders. These results have prompted investigation into other glutamatergic modulators for depression, both as monotherapy and adjunctively. Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders. This manuscript gives a brief overview of the glutamate system and its relevance to rapid antidepressant response and discusses the existing clinical evidence for glutamate receptor-modulating agents, including (1) broad glutamatergic modulators ((R,S)-ketamine, esketamine, (R)-ketamine, (2R,6R)-hydroxynorketamine [HNK], dextromethorphan, Nuedexta [a combination of dextromethorphan and quinidine], deudextromethorphan [AVP-786], axsome [AXS-05], dextromethadone [REL-1017], nitrous oxide, AZD6765, CLE100, AGN-241751); (2) glycine site modulators (D-cycloserine [DCS], NRX-101, rapastinel [GLYX-13], apimostinel [NRX-1074], sarcosine, 4-chlorokynurenine [4-Cl-KYN/AV-101]); (3) subunit (NR2B)-specific N-methyl-D-aspartate (NMDA) receptor antagonists (eliprodil [EVT-101], traxoprodil [CP-101,606], rislenemdaz [MK-0657/CERC-301]); (4) metabotropic glutamate receptor (mGluR) modulators (basimglurant, AZD2066, RG1578, TS-161); and (5) mammalian target of rapamycin complex 1 (mTORC1) activators (NV-5138). Many of these agents are still in the preliminary stages of development. Furthermore, to date, most have demonstrated relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics. Of these novel agents, the most promising, and the ones for which the most evidence exists, appear to be those targeting ionotropic glutamate receptors.


Subject(s)
Excitatory Amino Acid Agents/therapeutic use , Mood Disorders/drug therapy , Receptors, Glutamate/drug effects , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/physiopathology , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Excitatory Amino Acid Agents/pharmacology , Glutamic Acid/metabolism , Humans , Mood Disorders/physiopathology , Receptors, Glutamate/metabolism
17.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925600

ABSTRACT

Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can also be studied and then applied therapeutically. In the future, greater efforts are needed to explore how ESC-differentiated glutamatergic neurons can be used as a neuronal model for the study of Alzheimer's disease (AD) mechanistically, to identify possible therapeutic strategies for treating AD, including tissue replacement, and to screen for drugs that can be used to treat AD patients. With all of the modern technology that is available, translational medicine should begin to benefit patients soon.


Subject(s)
Cell Differentiation/physiology , Excitatory Amino Acid Agents/metabolism , Neurons/metabolism , Alzheimer Disease/therapy , Animals , Cell Line , Cells, Cultured , Embryonic Stem Cells/metabolism , Humans , Neurogenesis/physiology , Signal Transduction/physiology
18.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540803

ABSTRACT

Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.


Subject(s)
Estradiol/pharmacology , Estrogen Receptor alpha/physiology , Hippocampus/metabolism , Prefrontal Cortex/metabolism , Synaptic Transmission/physiology , Animals , Estrogen Receptor alpha/agonists , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , GABA Agents/pharmacology , Hippocampus/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Kinetics , Male , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Patch-Clamp Techniques , Prefrontal Cortex/drug effects , Propionates/pharmacology , Sex Characteristics , Synaptic Transmission/drug effects
19.
J Pharmacol Exp Ther ; 377(1): 157-168, 2021 04.
Article in English | MEDLINE | ID: mdl-33541889

ABSTRACT

The metabotropic glutamate receptor 5 (mGlu5) is a recognized central nervous system therapeutic target for which several negative allosteric modulator (NAM) drug candidates have or are continuing to be investigated for various disease indications in clinical development. Direct measurement of target receptor occupancy (RO) is extremely useful to help design and interpret efficacy and safety in nonclinical and clinical studies. In the mGlu5 field, this has been successfully achieved by monitoring displacement of radiolabeled ligands, specifically binding to the mGlu5 receptor, in the presence of an mGlu5 NAM using in vivo and ex vivo binding in rodents and positron emission tomography imaging in cynomolgus monkeys and humans. The aim of this study was to measure the RO of the mGlu5 NAM HTL0014242 in rodents and cynomolgus monkeys and to compare its plasma and brain exposure-RO relationships with those of clinically tested mGlu5 NAMs dipraglurant, mavoglurant, and basimglurant. Potential sources of variability that may contribute to these relationships were explored. Distinct plasma exposure-response relationships were found for each mGlu5 NAM, with >100-fold difference in plasma exposure for a given level of RO. However, a unified exposure-response relationship was observed when both unbound brain concentration and mGlu5 affinity were considered. This relationship showed <10-fold overall difference, was fitted with a Hill slope that was not significantly different from 1, and appeared consistent with a simple Emax model. This is the first time this type of comparison has been conducted, demonstrating a unified brain exposure-RO relationship across several species and mGlu5 NAMs with diverse properties. SIGNIFICANCE STATEMENT: Despite the long history of mGlu5 as a therapeutic target and progression of multiple compounds to the clinic, no formal comparison of exposure-receptor occupancy relationships has been conducted. The data from this study indicate for the first time that a consistent, unified relationship can be observed between exposure and mGlu5 receptor occupancy when unbound brain concentration and receptor affinity are taken into account across a range of species for a diverse set of mGlu5 negative allosteric modulators, including a new drug candidate, HTL0014242.


Subject(s)
Excitatory Amino Acid Agents/pharmacokinetics , Receptor, Metabotropic Glutamate 5/metabolism , Administration, Oral , Allosteric Regulation , Allosteric Site , Animals , Brain/metabolism , Clinical Studies as Topic , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/administration & dosage , Excitatory Amino Acid Agents/blood , Imidazoles/administration & dosage , Imidazoles/blood , Imidazoles/pharmacokinetics , Indoles/administration & dosage , Indoles/blood , Indoles/pharmacokinetics , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Protein Binding , Pyridines/administration & dosage , Pyridines/blood , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/chemistry
20.
J Pharmacol Sci ; 145(1): 60-68, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33357781

ABSTRACT

Emerging evidence suggests that dysfunctions in glutamatergic signaling are associated with the pathophysiology of depression. Several molecules that act on glutamate binding sites, so-called glutamatergic modulators, are rapid-acting antidepressants that stimulate synaptogenesis. Their antidepressant response involves the elevation of both extracellular glutamate and brain-derived neurotrophic factor (BDNF) levels, as well as the postsynaptic activation of the mammalian target of rapamycin complex 1. The mechanisms involved in the antidepressant outcomes of glutamatergic modulators, including ketamine, suggest that astrocytes must be considered a cellular target for developing rapid-acting antidepressants. It is well known that extracellular glutamate levels and glutamate intrasynaptic time-coursing are maintained by perisynaptic astrocytes, where inwardly rectifying potassium channels 4.1 (Kir4.1 channels) regulate both potassium and glutamate uptake. In addition, ketamine reduces membrane expression of Kir4.1 channels, which raises extracellular potassium and glutamate levels, increasing postsynaptic neural activities. Furthermore, inhibition of Kir4.1 channels stimulates BDNF expression in astrocytes, which may enhance synaptic connectivity. In this review, we discuss glutamatergic modulators' actions in regulating extracellular glutamate and BDNF levels, and reinforce the importance of perisynaptic astrocytes for the development of novel antidepressant drugs.


Subject(s)
Antidepressive Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Glutamic Acid/metabolism , Synapses , Excitatory Amino Acid Agents , Humans , Ketamine/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...