Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurosci Lett ; 735: 135237, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32645399

ABSTRACT

Glutamate-mediated excitatory synaptic signalling is primarily controlled by excitatory amino acid transporters (EAATs), such as EAAT1 and EAAT2, which are located mostly on astrocytes and, together, uptake more than 95 % of extracellular glutamate. Alterations in the functional expression levels of EAATs can lead to excessive extracellular glutamate accumulation, potentially triggering excitotoxicity and seizures, among other neurological disorders. Excitotoxicity induced in early developmental stages can lead to lasting changes in several neurotransmission systems, including the glutamatergic system, which could make the brain more susceptible to a second insult. In this study, the expression levels of EAAT1 (GLAST) and EAAT2 (GLT-1) proteins were assessed in the cerebral motor cortex (CMC), striatum, hippocampus and entorhinal cortex (EC) of male adult rats following the neonatal excitotoxic process triggered by monosodium glutamate (MSG)-treatment (4 g/kg of body weight at postnatal days 1,3,5 and 7, subcutaneously). Western blot analysis showed that neonatal MSG-treatment decreased EAAT1 expression levels in the CMC, striatum and hippocampus, while EAAT2 levels were increased in the striatum and EC and decreased in the CMC. Immunofluorescence staining confirmed the changes in EAAT1 and EAAT2 expression induced by neonatal MSG-treatment, which were accompanied by an increase in the glial fibrillary acidic protein (GFAP) immunofluorescence signalthat was particularly significant in the hippocampus. Our results show that a neonatal excitotoxic processes can induce lasting changes in the expression levels of EAAT1 and EAAT2 proteins and suggest that although astrogliosis occurs, glutamate uptake could be deficient, particularly in the CMC and hippocampus.


Subject(s)
Brain/growth & development , Brain/metabolism , Excitatory Amino Acid Transporter 1/biosynthesis , Excitatory Amino Acid Transporter 2/biosynthesis , Sodium Glutamate/toxicity , Age Factors , Animals , Animals, Newborn , Brain/drug effects , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Excitatory Amino Acid Transporter 2/genetics , Gene Expression , Glutamic Acid/toxicity , Male , Rats , Rats, Wistar
2.
Exp Brain Res ; 226(2): 153-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23392471

ABSTRACT

The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. It has been demonstrated in this model that the phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit is increased 1 h after pilocarpine treatment. Moreover, alterations in the levels of glutamate transporters have been associated with chronic epilepsy in humans. Despite these studies, the profile of these changes has not yet been addressed. We analyzed the protein content and phosphorylation profile of the AMPA receptor GluR1 subunit by western blotting. We also used quantitative real-time polymerase chain reaction to analyze the expression of glial glutamate transporters and the N-methyl-D-aspartate receptor NR1 subunit in the hippocampus (Hip) and cerebral cortex (Ctx) at different time points after pilocarpine-induced status epilepticus (Pilo-SE) in male adult Wistar rats. Biochemical analysis was performed in the Hip and Ctx at 1, 3, 12 h (acute period), 5 days (latent period), and 50 days (chronic period) after Pilo-SE. Key findings include an increase in the phosphorylation of GluR1-Ser(845) in the Ctx and GluR1-Ser(831) in the Hip at different times during the acute period, and a decrease in the total content of the GluR1 subunit in the Ctx in the latent period. There was a down-regulation of the mRNA expression and protein levels of EAAT1 and EAAT2, and a decrease of the NR1 mRNA expression, in the Ctx during the latent period. Notably, during the chronic period, the EAAT2 mRNA expression and protein levels decreased while the NR1 mRNA levels increased in the Hip. Taken together, our findings suggest a time- and structure-dependent imbalance of glutamatergic transmission in response to Pilo-SE, which might be associated with either epileptogenesis or the seizure threshold in MTLE-HS.


Subject(s)
Epilepsy, Temporal Lobe/metabolism , Excitatory Amino Acid Transporter 1/biosynthesis , Excitatory Amino Acid Transporter 2/biosynthesis , Neuroglia/metabolism , Receptors, AMPA/biosynthesis , Receptors, N-Methyl-D-Aspartate/biosynthesis , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/genetics , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 2/genetics , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/metabolism , Male , Phosphorylation/drug effects , Phosphorylation/physiology , Pilocarpine/toxicity , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Time Factors
3.
J Neurosci Res ; 86(14): 3117-25, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18543341

ABSTRACT

Thyroid hormone (T(3)) regulates the growth and differentiation of rat cerebellar astrocytes. Previously, we have demonstrated that these effects are due, at least in part, to the increased expression of extracellular matrix molecules and growth factors, such as fibroblast growth factor-2. T(3) also modulates neuronal development in an astrocyte-mediated manner. In the mammalian central nervous system, excitatory neurotransmission is mediated mainly by glutamate. However, excessive stimulation of glutamate receptors can lead to excitotoxicity and cell death. Astrocytic glutamate transporters, GLT-1 and GLAST, play an essential role in the clearance of the neuronal-released glutamate from the extracellular space and are essential for maintaining physiological extracellular glutamate levels in the brain. In the present study, we showed that T(3) significantly increased glutamate uptake by cerebellar astrocytes compared with control cultures. Inhibitors of glutamate uptake, such as L-PDC and DL-TBOA, abolished glutamate uptake on control or T(3)-treated astrocytes. T(3) treatment of astrocytes increased both mRNA levels and protein expression of GLAST and GLT-1, although no significant changes on the distribution of these transporters were observed. The gliotoxic effect of glutamate on cultured cerebellar astrocytes was abolished by T(3) treatment of astrocytes. In addition, the neuronal viability against glutamate challenge was enhanced on T(3)-treated astrocytes, showing a putative neuroprotective effect of T(3). In conclusion, our results showed that T(3) regulates extracellular glutamate levels by modulating the astrocytic glutamate transporters. This represents an important mechanism mediated by T(3) on the improvement of astrocytic microenvironment in order to promote neuronal development and neuroprotection.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Neurons/metabolism , Triiodothyronine/metabolism , Amino Acid Transport System X-AG/biosynthesis , Animals , Blotting, Western , Cell Survival , Cells, Cultured , Excitatory Amino Acid Transporter 2/biosynthesis , Gene Expression , Immunohistochemistry , RNA, Messenger/analysis , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL