Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 981
Filter
1.
Nucleic Acids Res ; 52(7): 3911-3923, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38364872

ABSTRACT

Double-strand DNA breaks are the severest type of genomic damage, requiring rapid response to ensure survival. RecBCD helicase in prokaryotes initiates processive and rapid DNA unzipping, essential for break repair. The energetics of RecBCD during translocation along the DNA track are quantitatively not defined. Specifically, it's essential to understand the mechanism by which RecBCD switches between its binding states to enable its translocation. Here, we determine, by systematic affinity measurements, the degree of coupling between DNA and nucleotide binding to RecBCD. In the presence of ADP, RecBCD binds weakly to DNA that harbors a double overhang mimicking an unwinding intermediate. Consistently, RecBCD binds weakly to ADP in the presence of the same DNA. We did not observe coupling between DNA and nucleotide binding for DNA molecules having only a single overhang, suggesting that RecBCD subunits must both bind DNA to 'sense' the nucleotide state. On the contrary, AMPpNp shows weak coupling as RecBCD remains strongly bound to DNA in its presence. Detailed thermodynamic analysis of the RecBCD reaction mechanism suggests an 'energetic compensation' between RecB and RecD, which may be essential for rapid unwinding. Our findings provide the basis for a plausible stepping mechanism' during the processive translocation of RecBCD.


Subject(s)
DNA , Exodeoxyribonuclease V , Exodeoxyribonuclease V/metabolism , Binding Sites , DNA/metabolism , DNA/chemistry , Protein Binding , Adenosine Diphosphate/metabolism , Nucleotides/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , DNA Repair
2.
J Mol Biol ; 436(6): 168482, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38331210

ABSTRACT

Repair of broken DNA is essential for life; the reactions involved can also promote genetic recombination to aid evolution. In Escherichia coli, RecBCD enzyme is required for the major pathway of these events. RecBCD is a complex ATP-dependent DNA helicase with nuclease activity controlled by Chi recombination hotspots (5'-GCTGGTGG-3'). During rapid DNA unwinding, when Chi is in a RecC tunnel, RecB nuclease nicks DNA at Chi. Here, we test our signal transduction model - upon binding Chi (step 1), RecC signals RecD helicase to stop unwinding (step 2); RecD then signals RecB (step 3) to nick at Chi (step 4) and to begin loading RecA DNA strand-exchange protein (step 5). We discovered that ATP-γ-S, like the small molecule RecBCD inhibitor NSAC1003, causes RecBCD to nick DNA, independent of Chi, at novel positions determined by the DNA substrate length. Two RecB ATPase-site mutants nick at novel positions determined by their RecB:RecD helicase rate ratios. In each case, we find that nicking at the novel position requires steps 3 and 4 but not step 1 or 2, as shown by mutants altered at the intersubunit contacts specific for each step; nicking also requires RecD helicase and RecB nuclease activities. Thus, altering the RecB ATPase site, by small molecules or mutation, sensitizes RecD to signal RecB to nick DNA (steps 4 and 3, respecitvely) without the signal from RecC or Chi (steps 1 and 2). These new, enzymatic results strongly support the signal transduction model and provide a paradigm for studying other complex enzymes.


Subject(s)
DNA Helicases , Escherichia coli Proteins , Exodeoxyribonuclease V , Adenosine Triphosphatases/metabolism , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/chemistry , Signal Transduction
3.
Nucleic Acids Res ; 52(5): 2578-2589, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38261972

ABSTRACT

The loading of RecA onto ssDNA by RecBCD is an essential step of RecBCD-mediated homologous recombination. RecBCD facilitates RecA-loading onto ssDNA in a χ-dependent manner via its RecB nuclease domain (RecBn). Before recognition of χ, RecBn is sequestered through interactions with RecBCD. It was proposed that upon χ-recognition, RecBn undocks, allowing RecBn to swing out via a contiguous 70 amino acid linker to reveal the RecA-loading surface, and then recruit and load RecA onto ssDNA. We tested this hypothesis by examining the interactions between RecBn (RecB928-1180) and truncated RecBCD (RecB1-927CD) lacking the nuclease domain. The reconstituted complex of RecB1-927CD and RecBn is functional in vitro and in vivo. Our results indicate that despite being covalently severed from RecB1-927CD, RecBn can still load RecA onto ssDNA, establishing that RecBn does not function while only remaining tethered to the RecBCD complex via the linker. Instead, RecBCD undergoes a χ-induced intramolecular rearrangement to reveal the RecA-loading surface.


Subject(s)
Escherichia coli Proteins , Exodeoxyribonuclease V , Rec A Recombinases , DNA, Single-Stranded/genetics , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/metabolism , Exodeoxyribonucleases/metabolism , Rec A Recombinases/metabolism
4.
J Mol Biol ; 436(2): 168381, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38081382

ABSTRACT

Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as occurring by the ATPase motors mechanically pulling the DNA duplex across a wedge domain in the helicase, biochemical data show that processive DNA unwinding by E. coli RecBCD helicase can occur in the absence of ssDNA translocation by the canonical RecB and RecD motors. Here we show that DNA unwinding is not a simple consequence of ssDNA translocation by the motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecBΔNucCD) unwinds dsDNA at significantly slower rates than RecBCD, while the ssDNA translocation rate is unaffected. This effect is primarily due to the absence of the nuclease domain since a nuclease-dead mutant (RecBD1080ACD), which retains the nuclease domain, showed no change in ssDNA translocation or dsDNA unwinding rates relative to RecBCD on short DNA substrates (≤60 base pairs). Hence, ssDNA translocation is not rate-limiting for DNA unwinding. RecBΔNucCD also initiates unwinding much slower than RecBCD from a blunt-ended DNA. RecBΔNucCD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecBD1080ACD unwinding are intermediate between RecBCD and RecBΔNucCD. Surprisingly, significant pauses in DNA unwinding occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, possibly allosterically and that RecBΔNucCD may mimic a post-chi state of RecBCD.


Subject(s)
DNA Helicases , DNA, Single-Stranded , Escherichia coli Proteins , Escherichia coli , Exodeoxyribonuclease V , DNA Helicases/chemistry , DNA Helicases/genetics , DNA, Single-Stranded/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Exodeoxyribonuclease V/chemistry , Exodeoxyribonuclease V/genetics , Protein Domains
5.
Microbiol Mol Biol Rev ; 87(4): e0004123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38047637

ABSTRACT

SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.


Subject(s)
Escherichia coli Proteins , Recombination, Genetic , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair , Escherichia coli , DNA/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
Mol Microbiol ; 120(2): 122-140, 2023 08.
Article in English | MEDLINE | ID: mdl-37254295

ABSTRACT

Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.


Subject(s)
Bacteria , Bacteriophages , Esterases , Bacteriophages/physiology , Bacteria/enzymology , Bacteria/virology , Esterases/chemistry , Exodeoxyribonuclease V , Adenosine Triphosphatases/chemistry
7.
Planta ; 258(1): 5, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37219749

ABSTRACT

MAIN CONCLUSION: An exonuclease V homologue from apomictic Brachiaria brizantha is expressed and localized in nucellar cells at key moments when these cells differentiate to give rise to unreduced gametophytes. Brachiaria is a genus of forage grasses with economical and agricultural importance to Brazil. Brachiaria reproduces by aposporic apomixis, in which unreduced embryo sacs, derived from nucellar cells, other than the megaspore mother cell (MMC), are formed. The unreduced embryo sacs produce an embryo without fertilization resulting in clones of the mother plant. Comparative gene expression analysis in ovaries of sexual and apomictic Brachiaria spp. revealed a sequence from B. brizantha that showed a distinct pattern of expression in ovaries of sexual and apomictic plants. In this work, we describe a gene named BbrizExoV with strong identity to exonuclease V (Exo V) genes from other grasses. Sequence analysis in signal prediction tools showed that BbrizExoV might have dual localization, depending on the translation point. A longer form to the nucleus and a shorter form which would be directed to the chloroplast. This is also the case for monocot sequences analyzed from other species. The long form of BbrizExoV protein localizes to the nucleus of onion epidermal cells. Analysis of ExoV proteins from dicot species, with exception of Arabidopsis thaliana ExoVL protein, showed only one localization. Using a template-based AlphaFold 2 modelling approach the structure of BbrizExoV in complex with metal and ssDNA was predicted based on the holo structure of the human counterpart. Features predicted to define ssDNA binding but a lack of sequence specificity are shared between the human enzyme and BbrizExoV. Expression analyses indicated the precise site and timing of transcript accumulation during ovule development, which coincides with the differentiation of nucelar cells to form the typical aposporic four-celled unreduced gametophyte. A putative function for this protein is proposed based on its homology and expression pattern.


Subject(s)
Apomixis , Arabidopsis , Brachiaria , Humans , Exodeoxyribonuclease V , Gametogenesis, Plant , Germ Cells, Plant , Poaceae
8.
J Biol Chem ; 299(3): 103013, 2023 03.
Article in English | MEDLINE | ID: mdl-36781123

ABSTRACT

Accurately completing DNA replication when two forks converge is essential to genomic stability. The RecBCD helicase-nuclease complex plays a central role in completion by promoting resection and joining of the excess DNA created when replisomes converge. chi sequences alter RecBCD activity and localize with crossover hotspots during sexual events in bacteria, yet their functional role during chromosome replication remains unknown. Here, we use two-dimensional agarose gel analysis to show that chi induces replication on substrates containing convergent forks. The induced replication is processive but uncoupled with respect to leading and lagging strand synthesis and can be suppressed by ter sites which limit replisome progression. Our observations demonstrate that convergent replisomes create a substrate that is processed by RecBCD and that chi, when encountered, switches RecBCD from a degradative to replicative function. We propose that chi serves to functionally differentiate DNA ends created during completion, which require degradation, from those created by chromosomal double-strand breaks, which require resynthesis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , DNA/metabolism , DNA Replication , Chromosomes , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
9.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36521180

ABSTRACT

Escherichia coli RecBCD helicase-nuclease promotes vital homologous recombination-based repair of DNA double-strand breaks. The RecB nuclease domain (Nuc) is connected to the RecB helicase domain by a 19-amino-acid tether. When DNA binds to RecBCD, published evidence suggests that Nuc moves ∼50 Šfrom the exit of a RecC tunnel, from which the 3'-ended strand emerges during unwinding, to a distant position on RecC's surface. During subsequent ATP-dependent unwinding of DNA, Nuc nicks the 3'-ended strand near 5'-GCTGGTGG-3' (Chi recombination hotspot). Here, we test our model of Nuc swinging on the tether from the RecC tunnel exit to the RecC distant surface and back to the RecC tunnel exit to cut at Chi. We identify positions in a flexible surface loop on RecC and on RecB Nuc with complementary charges, mutation of which strongly reduces but does not eliminate Chi hotspot activity in cells. The recC loop mutation interacts with recB mutations hypothesized to be in the Chi-activated intramolecular signal transduction pathway; the double mutants, but not the single mutants, eliminate Chi hotspot activity. A RecC amino acid near the flexible loop is also essential for full Chi activity; its alteration likewise synergizes with a signal transduction mutation to eliminate Chi activity. We infer that altering the RecC surface loop reduces coordination among the subunits, which is critical for Chi hotspot activity. We discuss other RecBCD mutants with related properties.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/chemistry , Exodeoxyribonuclease V/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Helicases/genetics , DNA Repair , DNA/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonucleases/genetics
10.
Elife ; 112022 12 19.
Article in English | MEDLINE | ID: mdl-36533901

ABSTRACT

Following infection of bacterial cells, bacteriophage modulate double-stranded DNA break repair pathways to protect themselves from host immunity systems and prioritise their own recombinases. Here, we present biochemical and structural analysis of two phage proteins, gp5.9 and Abc2, which target the DNA break resection complex RecBCD. These exemplify two contrasting mechanisms for control of DNA break repair in which the RecBCD complex is either inhibited or co-opted for the benefit of the invading phage. Gp5.9 completely inhibits RecBCD by preventing it from binding to DNA. The RecBCD-gp5.9 structure shows that gp5.9 acts by substrate mimicry, binding predominantly to the RecB arm domain and competing sterically for the DNA binding site. Gp5.9 adopts a parallel coiled-coil architecture that is unprecedented for a natural DNA mimic protein. In contrast, binding of Abc2 does not substantially affect the biochemical activities of isolated RecBCD. The RecBCD-Abc2 structure shows that Abc2 binds to the Chi-recognition domains of the RecC subunit in a position that might enable it to mediate the loading of phage recombinases onto its single-stranded DNA products.


Subject(s)
Bacteriophages , Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Exodeoxyribonuclease V/genetics , DNA/metabolism , DNA, Single-Stranded/metabolism , Recombinases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , DNA, Bacterial/metabolism
11.
Adv Genet ; 109: 1-37, 2022.
Article in English | MEDLINE | ID: mdl-36334915

ABSTRACT

Bacteria face a challenge when DNA enters their cells by transformation, mating, or phage infection. Should they treat this DNA as an invasive foreigner and destroy it, or consider it one of their own and potentially benefit from incorporating new genes or alleles to gain useful functions? It is frequently stated that the short nucleotide sequence Chi (5' GCTGGTGG 3'), a hotspot of homologous genetic recombination recognized by Escherichia coli's RecBCD helicase-nuclease, allows E. coli to distinguish its DNA (self) from any other DNA (non-self) and to destroy non-self DNA, and that Chi is "over-represented" in the E. coli genome. We show here that these latter statements (dogmas) are not supported by available evidence. We note Chi's wide-spread occurrence and activity in distantly related bacterial species and phages. We illustrate multiple, highly non-random features of the genomes of E. coli and coliphage P1 that account for Chi's high frequency and genomic position, leading us to propose that P1 selects for Chi's enhancement of recombination, whereas E. coli selects for the preferred codons in Chi. We discuss other, previously described mechanisms for self vs. non-self determination involving RecBCD and for RecBCD's destruction of DNA that cannot recombine, whether foreign or domestic, with or without Chi.


Subject(s)
Escherichia coli , Recombination, Genetic , Exodeoxyribonuclease V/genetics , Escherichia coli/genetics , DNA Helicases/genetics , DNA/genetics
12.
J R Soc Interface ; 19(193): 20220437, 2022 08.
Article in English | MEDLINE | ID: mdl-35946163

ABSTRACT

The RecA protein and RecBCD complex are key bacterial components for the maintenance and repair of DNA. RecBCD is a helicase-nuclease that uses homologous recombination to resolve double-stranded DNA breaks. It also facilitates coating of single-stranded DNA with RecA to form RecA filaments, a vital step in the double-stranded break DNA repair pathway. However, questions remain about the mechanistic roles of RecA and RecBCD in live cells. Here, we use millisecond super-resolved fluorescence microscopy to pinpoint the spatial localization of fluorescent reporters of RecA or RecB at physiological levels of expression in individual live Escherichia coli cells. By introducing the DNA cross-linker mitomycin C, we induce DNA damage and quantify the resulting steady state changes in stoichiometry, cellular protein copy number and molecular mobilities of RecA and RecB. We find that both proteins accumulate in molecular hotspots to effect repair, resulting in RecA stoichiometries equivalent to several hundred molecules that assemble largely in dimeric subunits before DNA damage, but form periodic subunits of approximately 3-4 molecules within mature filaments of several thousand molecules. Unexpectedly, we find that the physiologically predominant forms of RecB are not only rapidly diffusing monomers, but slowly diffusing dimers.


Subject(s)
Escherichia coli Proteins , Escherichia coli , DNA , DNA Repair , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Single-Stranded , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , Mitomycin/pharmacology , Recombination, Genetic
13.
DNA Repair (Amst) ; 118: 103389, 2022 10.
Article in English | MEDLINE | ID: mdl-36030574

ABSTRACT

DNA recombination repair systems are essential for organisms to maintain genomic stability. In recent years, we have improved our understanding of the mechanisms of RecBCD/AddAB family-mediated DNA double-strand break repair. In E. coli, it is RecBCD that plays a central role, and in Firmicute Bacillus subtilis it is the AddAB complex that functions. However, there are open questions about the mechanism of DNA repair in bacteria. For example, how bacteria containing crossover hotspot instigator (Chi) sites regulate the activity of proteins. In addition, we still do not know the exact process by which the RecB nuclease or AddA nuclease structural domains load RecA onto DNA. We also know little about the mechanism of DNA repair in the industrially important production bacterium Corynebacterium glutamicum (C. glutamicum). Therefore, exploring DNA repair mechanisms in bacteria may not only deepen our understanding of the DNA repair process in this species but also guide us in the targeted treatment of diseases associated with recombination defects, such as cancer. In this paper, we firstly review the classical proteins RecBCD and AddAB involved in DNA recombination repair, secondly focus on the novel helical nuclease AdnAB found in the genus Mycobacterium.


Subject(s)
Escherichia coli , Exodeoxyribonucleases , Bacillus subtilis , DNA/metabolism , DNA Repair , DNA Repair Enzymes/metabolism , DNA, Bacterial/metabolism , Escherichia coli/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonucleases/metabolism
14.
Nat Commun ; 13(1): 1806, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379800

ABSTRACT

The RecBCD helicase initiates double-stranded break repair in bacteria by processively unwinding DNA with a rate approaching ∼1,600 bp·s-1, but the mechanism enabling such a fast rate is unknown. Employing a wide range of methodologies - including equilibrium and time-resolved binding experiments, ensemble and single-molecule unwinding assays, and crosslinking followed by mass spectrometry - we reveal the existence of auxiliary binding sites in the RecC subunit, where ATP binds with lower affinity and distinct chemical interactions as compared to the known catalytic sites. The essentiality and functionality of these sites are demonstrated by their impact on the survival of E.coli after exposure to damage-inducing radiation. We propose a model by which RecBCD achieves its optimized unwinding rate, even when ATP is scarce, by using the auxiliary binding sites to increase the flux of ATP to its catalytic sites.


Subject(s)
Escherichia coli Proteins , Adenosine Triphosphate/metabolism , Binding Sites , DNA/metabolism , DNA, Bacterial/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism
15.
PLoS One ; 17(4): e0266272, 2022.
Article in English | MEDLINE | ID: mdl-35390057

ABSTRACT

Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based on Escherichia coli (E. coli). Endogenous nucleases in E. coli cell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity in E. coli, with the RecB subunit possessing the actual nuclease activity. We created a RecB knockout of an E. coli strain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL source E. coli strain, enabling the creation of TXTL systems with other custom modifications.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Cell-Free System/metabolism , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/metabolism
16.
Nucleic Acids Res ; 50(8): 4616-4629, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35420131

ABSTRACT

Prokaryotic Argonautes (pAgos) use small nucleic acids as specificity guides to cleave single-stranded DNA at complementary sequences. DNA targeting function of pAgos creates attractive opportunities for DNA manipulations that require programmable DNA cleavage. Currently, the use of mesophilic pAgos as programmable endonucleases is hampered by their limited action on double-stranded DNA (dsDNA). We demonstrate here that efficient cleavage of linear dsDNA by mesophilic Argonaute CbAgo from Clostridium butyricum can be activated in vitro via the DNA strand unwinding activity of nuclease deficient mutant of RecBC DNA helicase from Escherichia coli (referred to as RecBexo-C). Properties of CbAgo and characteristics of simultaneous cleavage of DNA strands in concurrence with DNA strand unwinding by RecBexo-C were thoroughly explored using 0.03-25 kb dsDNAs. When combined with RecBexo-C, CbAgo could cleave targets located 11-12.5 kb from the ends of linear dsDNA at 37°C. Our study demonstrates that CbAgo with RecBexo-C can be programmed to generate DNA fragments with custom-designed single-stranded overhangs suitable for ligation with compatible DNA fragments. The combination of CbAgo and RecBexo-C represents the most efficient mesophilic DNA-guided DNA-cleaving programmable endonuclease for in vitro use in diagnostic and synthetic biology methods that require sequence-specific nicking/cleavage of linear dsDNA at any desired location.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Clostridium butyricum , Genetic Techniques , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , DNA Cleavage , Endonucleases/genetics , Escherichia coli Proteins , Exodeoxyribonuclease V
17.
Cell Host Microbe ; 29(10): 1482-1495.e12, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34582782

ABSTRACT

CRISPR-Cas systems provide immunity to bacteria by programing Cas nucleases with RNA guides that recognize and cleave infecting viral genomes. Bacteria and their viruses each encode recombination systems that could repair the cleaved viral DNA. However, it is unknown whether and how these systems can affect CRISPR immunity. Bacteriophage λ uses the Red system (gam-exo-bet) to promote recombination between related phages. Here, we show that λ Red also mediates evasion of CRISPR-Cas targeting. Gam inhibits the host E. coli RecBCD recombination system, allowing recombination and repair of the cleaved DNA by phage Exo-Beta, which promotes the generation of mutations within the CRISPR target sequence. Red recombination is strikingly more efficient than the host's RecBCD-RecA in the production of large numbers of phages that escape CRISPR targeting. These results reveal a role for Red-like systems in the protection of bacteriophages against sequence-specific nucleases, which may facilitate their spread across viral genomes.


Subject(s)
Bacteriophage lambda/genetics , CRISPR-Cas Systems , Escherichia coli/genetics , Mutation , Recombination, Genetic , Bacteriophage lambda/immunology , Bacteriophage lambda/physiology , Escherichia coli/immunology , Escherichia coli/virology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/immunology , Host-Pathogen Interactions , Viral Proteins/genetics , Viral Proteins/immunology
18.
J Mol Biol ; 433(18): 167147, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34246654

ABSTRACT

E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17-18 nucleotides and can melt at least 10-11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.


Subject(s)
Base Pairing , DNA, Single-Stranded/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Exodeoxyribonuclease V/metabolism , Nucleic Acid Denaturation , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Exodeoxyribonuclease V/chemistry , Exodeoxyribonuclease V/genetics , Molecular Structure , Protein Conformation , Recombination, Genetic , Thermodynamics
19.
Nucleic Acids Res ; 49(8): 4220-4238, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33744948

ABSTRACT

DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.


Subject(s)
DNA Replication , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Exodeoxyribonuclease V/metabolism , Single Molecule Imaging , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics
20.
Curr Biol ; 31(10): 2039-2050.e7, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33711253

ABSTRACT

Genetic mutants have demonstrated the importance of homologous recombination (HR) to fluoroquinolone (FQ) persistence, which suggests that single-cell chromosome (Chr) abundance might be a phenotypic variable of importance to persisters. Here, we sorted stationary-phase E. coli based on ploidy and subjected the subpopulations to tolerance assays. Subpopulations sorted to contain diploid cells harbored up to ∼40-fold more FQ persisters than those sorted to contain monoploid cells. This association was observed with distinct FQs, in independent environmental conditions, and with more than one strain of E. coli (MG1655; uropathogenic CFT073) but was abolished in HR-deficient strains (ΔrecA and ΔrecB). It was observed that the persister level of monoploid subpopulations exceeded those of ΔrecA and ΔrecB by 10-fold or more, and subsequent high-purity sorting confirmed that observation. Those data suggested the existence of distinct FQ persister subtypes: those that are and are not proficient with HR. Time-lapse microscopy revealed significant differences in initial size and growth dynamics during the post-antibiotic recovery period for persisters from monoploid- and diploid-enriched subpopulations. In addition, non-persisters in monoploid-enriched subpopulations elongated minimally following FQ treatment, resembling previous observations of HR-deficient strains, whereas non-persisters in diploid-enriched subpopulations on average filamented extensively. Together, these results identify a phenotypic variable with a significant impact on FQ persistence, establish the existence of more than one type of persister to the same antibiotic in an isogenic culture, and reveal roles for RecA and RecB in FQ persistence, even in the absence of homologous chromosomes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Ploidies , DNA-Binding Proteins , Escherichia coli Proteins , Exodeoxyribonuclease V , Rec A Recombinases
SELECTION OF CITATIONS
SEARCH DETAIL
...