Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Nature ; 628(8009): 887-893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538796

ABSTRACT

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Subject(s)
Cryoelectron Microscopy , Exoribonucleases , RNA Polymerase II , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Termination, Genetic , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exoribonucleases/ultrastructure , Models, Molecular , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Protein Domains , RNA, Fungal/biosynthesis , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/ultrastructure
2.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341172

ABSTRACT

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Subject(s)
Cell Membrane , Escherichia coli , Exoribonucleases , Protein Multimerization , Silent Mutation , Escherichia coli/enzymology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Kinetics , Protein Folding , Protein Multimerization/genetics , Cell Membrane/enzymology
3.
Comput Biol Med ; 170: 107899, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232455

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Pandemics , Phylogeny , COVID-19/genetics , Virus Replication/genetics , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Mutation/genetics
4.
Comput Biol Chem ; 104: 107768, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36842392

ABSTRACT

Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Nucleosides/pharmacology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
5.
Sci Rep ; 13(1): 350, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611052

ABSTRACT

In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Docking Simulation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Virus Replication/genetics , Methyltransferases/genetics , Peptides/pharmacology , Antiviral Agents/pharmacology , RNA/pharmacology , Exoribonucleases/genetics , Exoribonucleases/chemistry
6.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36156055

ABSTRACT

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Subject(s)
COVID-19 Drug Treatment , Methyltransferases , Adenosine/pharmacology , Antiviral Agents/pharmacology , Azides , Exoribonucleases/chemistry , Exoribonucleases/genetics , Guanine , Humans , Nucleosides/pharmacology , RNA Caps , RNA, Viral/genetics , SARS-CoV-2 , Sulfonamides/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
7.
Cell Mol Immunol ; 19(8): 872-882, 2022 08.
Article in English | MEDLINE | ID: mdl-35732914

ABSTRACT

Most deaths from the COVID-19 pandemic are due to acute respiratory distress syndrome (ARDS)-related respiratory failure. Cytokine storms and oxidative stress are the major players in ARDS development during respiratory virus infections. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to SARS-CoV-2 infection. Here, we found that activation of NRF2/HMOX1 significantly suppressed SARS-CoV-2 replication in multiple cell types by producing the metabolite biliverdin, whereas SARS-CoV-2 impaired the NRF2/HMOX1 axis through the action of the nonstructural viral protein NSP14. Mechanistically, NSP14 interacts with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway. Furthermore, both genetic and pharmaceutical evidence corroborated the novel antiviral activity of SIRT1 against SARS-CoV-2. Therefore, our findings reveal a novel mechanism by which SARS-CoV-2 dysregulates the host antioxidant defense system and emphasize the vital role played by the SIRT1/NRF2 axis in host defense against SARS-CoV-2.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Antiviral Agents/pharmacology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Heme Oxygenase-1 , Humans , NF-E2-Related Factor 2 , Pandemics , SARS-CoV-2 , Sirtuin 1 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
8.
Structure ; 30(8): 1050-1054.e2, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35609600

ABSTRACT

During RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10-mediated modulation remains unclear in the absence of the nsp14 structure. Here, we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10-bound structures explain the modulatory role of the co-factor protein and reveal the allosteric nsp14 control mechanism essential for drug discovery. Further, the flexibility of the N-terminal lid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp14 structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.


Subject(s)
Exoribonucleases , Viral Nonstructural Proteins , Viral Regulatory and Accessory Proteins , Exonucleases , Exoribonucleases/chemistry , Methyltransferases/chemistry , Protein Folding , RNA, Viral/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry
9.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35439007

ABSTRACT

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , COVID-19/virology , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/chemistry , Humans , Methyltransferases , Molecular Docking Simulation , RNA, Viral/genetics , S-Adenosylmethionine , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35165203

ABSTRACT

High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3'-to-5' exoribonuclease (ExoN) in nonstructural protein 14 (nsp14), which excises nucleotides including antiviral drugs misincorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here, we determined a 1.6-Å resolution crystal structure of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) ExoN in complex with its essential cofactor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 3' end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. We also show that the ExoN activity can rescue a stalled RNA primer poisoned with sofosbuvir and allow RdRp to continue its extension in the presence of the chain-terminating drug, biochemically recapitulating proofreading in SARS-CoV-2 replication. Molecular dynamics simulations further show remarkable flexibility of multidomain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA binding to support its exonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anticoronaviral drugs or strategies to attenuate the viral virulence.


Subject(s)
Exoribonucleases/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Domains , RNA, Viral/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Binding Sites/genetics , COVID-19/virology , Catalytic Domain , Crystallography, X-Ray , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Mutation, Missense , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
11.
Virology ; 566: 1-8, 2022 01.
Article in English | MEDLINE | ID: mdl-34808564

ABSTRACT

Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.


Subject(s)
Genome, Viral , Luteoviridae/genetics , Nicotiana/virology , RNA, Untranslated/genetics , RNA, Viral/genetics , Tombusvirus/genetics , 3' Untranslated Regions , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/virology , Base Sequence , Exoribonucleases/chemistry , Host-Pathogen Interactions/genetics , Luteoviridae/metabolism , Mutation , Plants, Genetically Modified , RNA Cleavage , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Tombusvirus/metabolism , Transformation, Genetic
12.
Protein Sci ; 31(3): 758-764, 2022 03.
Article in English | MEDLINE | ID: mdl-34923703

ABSTRACT

Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.


Subject(s)
Exoribonucleases , Ribonucleases , Transcription Factors , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Poly A , RNA, Messenger/metabolism , Ribonucleases/chemistry , Transcription Factors/chemistry
13.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845015

ABSTRACT

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Subject(s)
Exoribonucleases/chemistry , Models, Molecular , Protein Conformation , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Catalytic Domain , Conserved Sequence , Exoribonucleases/genetics , Exoribonucleases/metabolism , Microbial Viability , Nucleotide Motifs , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
14.
Chembiochem ; 22(24): 3410-3413, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34542936

ABSTRACT

The SARS-CoV-2 non-structural protein 14 (nsp14), known as exoribonuclease is encoded from the large polyprotein of viral genome and is a major constituent of the transcription replication complex (TRC) machinery of the viral RNA synthesis. This protein is highly conserved among the coronaviruses and is a potential target for the development of a therapeutic drug. Here, we report the SARS-CoV-2 nsp14 expression, show its structural characterization, and ss-RNA exonuclease activity through vibrational and electronic spectroscopies. The deconvolution of amide-I band in the FTIR spectrum of the protein revealed a composition of 35 % α-helix and 25 % ß-sheets. The binding between protein and RNA is evidenced from the spectral changes in the amide-I region of the nsp14, showing protein conformational changes during the binding process. A value of 20.60±3.81 mol L-1 of the binding constant (KD ) is obtained for nsp14/RNA complex. The findings reported here can motivate further studies to develop structural models for better understanding the mechanism of exonuclease enzymes for correcting the viral genome and can help in the development of drugs against SARS-CoV-2.


Subject(s)
Exoribonucleases/metabolism , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Exoribonucleases/chemistry , Protein Binding , Protein Conformation , RNA, Viral/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Viral Nonstructural Proteins/chemistry
15.
Chembiochem ; 22(21): 3099-3106, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34431199

ABSTRACT

RNA is an emerging platform for drug delivery, but the susceptibility of RNA to nuclease degradation remains a major barrier to its implementation in vivo. Here, we engineered flaviviral Xrn1-resistant RNA (xrRNA) motifs to host small interfering RNA (siRNA) duplexes. The xrRNA-siRNA molecules self-assemble in vitro, resist degradation by the conserved eukaryotic 5' to 3' exoribonuclease Xrn1, and trigger gene silencing in 293T cells. The resistance of the molecules to Xrn1 does not translate to stability in blood serum. Nevertheless, our results demonstrate that flavivirus-derived xrRNA motifs can confer Xrn1 resistance on a model therapeutic payload and set the stage for further investigations into using the motifs as building blocks in RNA nanotechnology.


Subject(s)
Exoribonucleases/metabolism , Flavivirus/metabolism , Gene Silencing , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Exoribonucleases/chemistry , Flavivirus/chemistry , HEK293 Cells , Humans , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Viral/chemistry , RNA, Viral/genetics
16.
Science ; 373(6559): 1142-1146, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34315827

ABSTRACT

Coronavirus 3'-to-5' exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10­nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog­based antivirals. Here we present cryo­electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3'-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.


Subject(s)
DNA Mismatch Repair , Exoribonucleases/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cryoelectron Microscopy , Drug Design , Exoribonucleases/genetics , Humans , Protein Domains , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
17.
RNA ; 27(9): 1046-1067, 2021 09.
Article in English | MEDLINE | ID: mdl-34162742

ABSTRACT

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Subject(s)
Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation, Missense , RNA, Fungal/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Dwarfism/enzymology , Dwarfism/genetics , Dwarfism/pathology , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Facies , Gene Expression , Glycine/chemistry , Glycine/metabolism , Hearing Loss/enzymology , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Models, Biological , Models, Molecular , Protein Conformation , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Syndrome
18.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33956156

ABSTRACT

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Subject(s)
Biocatalysis , Exoribonucleases/chemistry , Exoribonucleases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Exoribonucleases/genetics , Guanine , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Domains/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
19.
Nucleic Acids Res ; 49(11): 6489-6510, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34038562

ABSTRACT

The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3'-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3'-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.


Subject(s)
Exoribonucleases/chemistry , Repressor Proteins/chemistry , Ribonucleases/chemistry , Catalytic Domain , Crystallography, X-Ray , Exoribonucleases/metabolism , Fungi/enzymology , Humans , Hydrogen-Ion Concentration , Magnesium , Models, Molecular , Protein Conformation , Protein Domains , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Ribonucleases/metabolism , Zinc
20.
Nucleic Acids Res ; 49(9): 5249-5264, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33893809

ABSTRACT

Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.


Subject(s)
DEAD-box RNA Helicases/metabolism , Exoribonucleases/metabolism , Helicobacter pylori/enzymology , Amino Acid Motifs , Epsilonproteobacteria/enzymology , Exoribonucleases/chemistry , RNA, Double-Stranded/metabolism , RNA, Ribosomal, 5S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...