Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1295-1299, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39192434

ABSTRACT

Exportin-1 (XPO1) is a major transporter for hundreds of proteins. Selinexor is the first generation XPO1 inhibitor. At present, selinexor has gained more attention in the application of multiple myeloma (MM). Meanwhile, the latest clinical trials have confirmed that whether it is a single agent or combined with other chemotherapy regimens, selinexor can also achieve good therapeutic effects in patients with leukemia and lymphoma. This review summarizes the results of preclinical studies and clinical trials of selinexor in treatment of non-MM hematological malignancies, aiming to explore how to choose single agent or in combination with other regimens as induction chemotherapy.


Subject(s)
Hematologic Neoplasms , Hydrazines , Multiple Myeloma , Triazoles , Humans , Exportin 1 Protein/antagonists & inhibitors , Hematologic Neoplasms/drug therapy , Hydrazines/therapeutic use , Multiple Myeloma/drug therapy , Triazoles/therapeutic use
2.
Cancer Lett ; 597: 217080, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38908542

ABSTRACT

XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Exportin 1 Protein , Hydrazines , Triazoles , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Exportin 1 Protein/antagonists & inhibitors , Hydrazines/pharmacology , Hydrazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Xenograft Model Antitumor Assays
3.
Arch Microbiol ; 206(2): 69, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240823

ABSTRACT

The nuclear export protein 1 (XPO1) mediates the nucleocytoplasmic transport of proteins and ribonucleic acids (RNAs) and plays a prominent role in maintaining cellular homeostasis. XPO1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses. In our earlier study, we proved the inhibition of XPO1 as a therapeutic strategy for managing SARS-COV-2 and its variants. In this study, we have utilized pharmacophore-assisted computational methods to identify prominent XPO1 inhibitors. After several layers of screening, a few molecules were shortlisted for further experimental validation on the in vitro SARS-CoV-2 cell infection model. It was observed that these compounds reduced spike positivity, suggesting inhibition of SARS-COV-2 infection. The outcome of this study could be considered further for developing novel antiviral therapeutic strategies against SARS-CoV-2.


Subject(s)
COVID-19 , Exportin 1 Protein , Humans , Active Transport, Cell Nucleus , SARS-CoV-2 , Exportin 1 Protein/antagonists & inhibitors
4.
Clin Transl Med ; 13(12): e1513, 2023 12.
Article in English | MEDLINE | ID: mdl-38131168

ABSTRACT

BACKGROUND: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac) necessitating the need for a more effective treatment strategy for this refractory disease. Previously, we have demonstrated that nuclear exporter protein exportin 1 (XPO1) is a valid therapeutic target in PDAC, and the selective inhibitor of nuclear export selinexor (Sel) synergistically enhances the efficacy of GemPac in pancreatic cancer cells, spheroids and patient-derived tumours, and had promising activity in a phase I study. METHODS: Here, we investigated the impact of selinexor-gemcitabine-nab-paclitaxel (Sel-GemPac) combination on LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx1-Cre (KPC) mouse model utilising digital spatial profiling (DSP) and single nuclear RNA sequencing (snRNAseq). RESULTS: Sel-GemPac synergistically inhibited the growth of the KPC tumour-derived cell line. The Sel-GemPac combination reduced the 2D colony formation and 3D spheroid formation. In the KPC mouse model, at a sub-maximum tolerated dose (sub-MTD) , Sel-GemPac enhanced the survival of treated mice compared to controls (p < .05). Immunohistochemical analysis of residual KPC tumours showed re-organisation of tumour stromal architecture, suppression of proliferation and nuclear retention of tumour suppressors, such as Forkhead Box O3a (FOXO3a). DSP revealed the downregulation of tumour promoting genes such as chitinase-like protein 3 (CHIL3/CHI3L3/YM1) and multiple pathways including phosphatidylinositol 3'-kinase-Akt (PI3K-AKT) signalling. The snRNAseq demonstrated a significant loss of cellular clusters in the Sel-GemPac-treated mice tumours including the CD44+ stem cell population. CONCLUSION: Taken together, these results demonstrate that the Sel-GemPac treatment caused broad perturbation of PDAC-supporting signalling networks in the KPC mouse model. HIGHLIGHTS: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac). Exporter protein exportin 1 (XPO1) inhibitor selinexor (Sel) with GemPac synergistically inhibited the growth of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mouse derived cell line and enhanced the survival of mice. Digital spatial profiling shows that Sel-GemPac causes broad perturbation of PDAC-supporting signalling in the KPC model.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Combinations , Exportin 1 Protein , Pancreatic Neoplasms , Animals , Mice , Disease Models, Animal , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Exportin 1 Protein/antagonists & inhibitors , Gemcitabine/administration & dosage , Paclitaxel/administration & dosage , Hydrazines/administration & dosage , Triazoles/administration & dosage , Tumor Microenvironment , Single-Cell Gene Expression Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL