Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMC Microbiol ; 22(1): 60, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35180845

ABSTRACT

BACKGROUND: Avian colibacillosis is an infectious bacterial disease caused by avian pathogenic Escherichia coli (APEC). APEC causes a wide variety of intestinal and extraintestinal infections, including InPEC and ExPEC, which result in enormous losses in the poultry industry. In this study, we investigated the prevalence of InPEC and ExPEC in Central China, and the isolates were characterized using molecular approaches and tested for virulence factors and antibiotic resistance. RESULTS: A total of 200 chicken-derived E. coli isolates were collected for study from 2019 and 2020. The prevalence of B2 and D phylogenic groups in the 200 chicken-derived E. coli was verified by triplex PCR, which accounted for 50.53% (48/95) and 9.52% (10/105) in ExPEC and InPEC, respectively. Additionally, multilocus sequence typing method was used to examine the genetic diversity of these E. coli isolates, which showed that the dominant STs of ExPEC included ST117 (n = 10, 20.83%), ST297 (n = 5, 10.42%), ST93 (n = 4, 8.33%), ST1426 (n = 4, 8.33%) and ST10 (n = 3, 6.25%), while the dominant ST of InPEC was ST117 (n = 2, 20%). Furthermore, antimicrobial susceptibility tests of 16 antibiotics for those strains were conducted. The result showed that more than 60% of the ExPEC and InPEC were resistant to streptomycin and nalidixic acid. Among these streptomycin resistant isolates (n = 49), 99.76% harbored aminoglycoside resistance gene strA, and 63.27% harbored strB. Among these nalidixic acid resistant isolates (n = 38), 94.74% harbored a S83L mutation in gyrA, and 44.74% harbored a D87N mutation in gyrA. Moreover, the prevalence of multidrug-resistant (MDR) in the isolates of ExPEC and InPEC was 31.25% (15/48) and 20% (2/10), respectively. Alarmingly, 8.33% (4/48) of the ExPEC and 20% (2/10) of the InPEC were extensively drug-resistant (XDR). Finally, the presence of 13 virulence-associated genes was checked in these isolates, which over 95% of the ExPEC and InPEC strains harbored irp2, feoB, fimH, ompT, ompA. 10.42% of the ExPEC and 10% of the InPEC were positive for kpsM. Only ExPEC isolates carried ibeA gene, and the rate was 4.17%. All tested strains were negative to LT and cnf genes. The carrying rate of iss and iutA were significantly different between the InPEC and ExPEC isolates (P < 0.01). CONCLUSIONS: To the best of our knowledge, this is the first report on the highly pathogenic groups of InPEC and ExPEC in Central China. We find that 50.53% (48/95) of the ExPEC belong to the D/B2 phylogenic group. The emergence of XDR and MDR strains and potential virulence genes may indicate the complicated treatment of the infections caused by APEC. This study will improve our understanding of the prevalence and pathogenicity of APEC.


Subject(s)
Chickens/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/genetics , Genetic Variation , Phylogeny , Animals , Anti-Bacterial Agents/pharmacology , China/epidemiology , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Multilocus Sequence Typing , Poultry/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Prevalence , Virulence , Virulence Factors/genetics
2.
BMC Infect Dis ; 21(1): 370, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879083

ABSTRACT

BACKGROUND: Native valves infective endocarditis due to Escherichia coli is still a rare disease and a particular virulence of some E.coli isolate may be suspected. CASE PRESENTATION: A 79-year-old woman presented during the post-operative period of an orthopedic surgery a urinary tract infection following obstructive ureteral lithiasis. E. coli was isolated from a pure culture of urine and blood sampled simultaneously. After evidence of sustained E.coli septicemia, further investigations revealed acute cholecystitis with the same micro-organism in biliary drainage and a native valve mitral endocarditis. E.coli was identified as O2:K7:H6, phylogenetic group B2, ST141, and presented several putative and proven virulence genes. The present isolate can be classified as both extra-intestinal pathogenic E.coli (ExPECJJ) and uropathogenic E. coli (UPECHM). CONCLUSIONS: The relationship between the virulent factors present in ExPEC strains and some serotypes of E. coli that could facilitate the adherence to cardiac valves warrants further investigation.


Subject(s)
Endocarditis/diagnosis , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Aged , Animals , Endocarditis/microbiology , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Female , Humans , Orthopedic Procedures/adverse effects , Phylogeny , Postoperative Period , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Urolithiasis/surgery , Virulence/genetics
3.
J Appl Microbiol ; 130(6): 2087-2101, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33095966

ABSTRACT

AIM: In-depth 'One Health' risk assessment of extraintestinal pathogenic Escherichia coli (ExPEC) strains carrying the traits of urinary tract infection, sepsis, meningitis and avian colibacillosis in poultry of India. METHODS AND RESULTS: A total of 230 E. coli isolates were recovered from chicken samples representing the different sources (faeces vs caeca), stages (poultry farms vs retails butcher shop) or environments (rural vs urban) of poultry in India. Among all poultry-origin E. coli isolates, 49 (21·1%) strains were identified as ExPEC possessing multiple virulence determinants regardless of their association with any specific phylogenetic lineages. Of particular, potentially virulent ExPEC pathotypes, that is, uropathogenic E.coli (UPEC, 20·4%), avian pathogenic E. coli (APEC, 34·6%), septicaemia-associated E. coli (SEPEC, 47·0%) and neonatal meningitis-causing E.39 coli (NMEC, 2·0%) were also detected among all ExPEC strains. CONCLUSIONS: Our study is the first to assess ExPEC strains circulating in the different settings of poultry in India and significantly demonstrates their potential ability to cause multiple extraintestinal infections both in humans and animals. SIGNIFICANCE AND IMPACT OF THE STUDY: The data of our study are in favour of the possibility that poultry-origin putative virulent ExPEC pathotypes consequently constitute a threat risk to 'One Health' or for food safety and a great concern for poultry production of India.


Subject(s)
Bird Diseases/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Animals , Biofilms/growth & development , Cecum/microbiology , DNA, Bacterial , Escherichia coli Proteins/genetics , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Feces/microbiology , Genetic Association Studies , Genotyping Techniques , Humans , India , Meningitis/microbiology , Phylogeny , Polymerase Chain Reaction , Sepsis/microbiology , Urinary Tract Infections/microbiology , Virulence Factors/genetics
4.
São Paulo; s.n; s.n; 2021. 98 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1390944

ABSTRACT

Os sistemas toxina-antitoxinas (TA) compreendem um conjunto de genes que são amplamente difundidos em procariotos. No cromossomo, os sistemas podem estar envolvidos na indução de morte celular em resposta a condições estressantes, indução de persistência, formação de biofilme, colonização de novos nichos, manutenção da mobilidade bacteriana e virulência de bactérias patogênicas. Em E. coli K12, 36 sistemas TA foram descritos, dos quais o do tipo II é o mais abundante e estudado. Dentre as oito toxinas pesquisadas nesse trabalho, o gene da toxina HipA está presente em 76 das 100 cepas de ExPEC estudadas. Apesar da abundância de hipA em ExPEC e em diversos genomas bacterianos, a participação dos sistemas hipA/B na indução da persistência ainda não é clara. Portanto, o sistema hipA/B de duas cepas ExPEC isoladas de infecção sanguínea foi deletado, e estas foram avaliadas quando a indução da persistência bacteriana na presença de antibióticos, formação de biofilme, resistência ao soro e sobrevivência em macrófagos. O sistema TA hipA/B não influenciou no fenótipo de resistência ao soro humano e na sobrevivência intracelular em macrófagos, no entanto, participou da indução da persistência por ciprofloxacino em um isolado (EC182); e da formação de biofilme em superfície de vidro do isolado (EC273)


Toxin-antitoxin (TA) systems comprise a set of genes that are widespread in prokaryotes. On the chromosome, the systems may be involved in the induction of cell death in response to stressful conditions, persistence induction, biofilm formation, colonization of new niches, maintenance of bacterial mobility and virulence. In E. coli K12, 36 TA systems have been described, of which type II is the most abundant. Among the eight toxins searched in this work, hipA is present in 76 bacteria of the 100 ExPEC strains studied. Despite the abundance of hipA in ExPEC and in several bacterial genomes, the participation of hipA/B modules in the persistence is still unclear. Therefore, hipA/B system of two ExPEC strains isolated from blood infection was deleted and consequently evaluated in bacterial persistence induced by antibiotics, serum resistance and macrophage survival. Despite the fact that, the TA hipA/B system did not influence the phenotype of resistance to human serum and intracellular survival in macrophages. Herein, we described that hipA/B was important for persistence induction in one isolate (EC182); and may participate in the biofilm formation on the glass surface in the other studied strain (EC273)


Subject(s)
Toxin-Antitoxin Systems , Biofilms , Extraintestinal Pathogenic Escherichia coli/classification , Anti-Bacterial Agents/adverse effects
5.
Vet Microbiol ; 248: 108783, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32827920

ABSTRACT

This study investigated the prevalence of extraintestinal pathogenic E. coli (ExPEC)-associated sequence types (STs) from phylogenetic group B2 among 449 fluoroquinolone-susceptible dog clinical isolates from Australia. Isolates underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 317 so-identified group B2 isolates, 77 underwent whole genome sequencing (WGS), whereas the remainder underwent PCR-based screening for ST complexes (STc) STc12, STc73, STc372, and ST131. The predominant ST was ST372 according to both WGS (31 % of 77) and ST-specific PCR (22 % of 240), followed by (per WGS) ST73 (17 %), ST12 (7 %), and ST80 (7 %). A WGS-based phylogenetic comparison of ST73 isolates from dogs, cats, and humans showed considerable overall phylogenetic diversity. Although most clusters were species-specific, some contained closely related human and animal (dog > cat) isolates. For dogs in Australia these findings both confirm ST372 as the predominant E. coli clonal lineage causing extraintestinal infections and clarify the importance of human-associated group B2 lineage ST73 as a cause of UTI, with some strains possibly being capable of bi-directional (i.e., dog-human and human-dog) transmission.


Subject(s)
Dog Diseases/microbiology , Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Phylogeny , Animals , Australia/epidemiology , Cats , Dog Diseases/epidemiology , Dogs/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/classification , Genome, Bacterial , Genomics , Host Specificity , Humans , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide , Virulence , Virulence Factors/genetics , Whole Genome Sequencing
6.
Vet Microbiol ; 245: 108685, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32456818

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) can cause urinary tract and other types of infection in cats, but the relationship of cat ExPEC to human ExPEC remains equivocal. This study investigated the prevalence of ExPEC-associated sequence types (STs) from phylogenetic group B2 among fluoroquinolone-susceptible cat clinical isolates. For this, 323 fluoroquinolone-susceptible cat clinical E. coli isolates from Australia underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 274 group B2 isolates, 53 underwent whole genome sequencing (WGS), whereas 221 underwent PCR-based screening for (group B2) sequence type complexes (STc) STc12, STc73, ST131, and STc372. Group B2 was the dominant phylogenetic group (274/323, 85 %), whereas within group B2 ST73 dominated, according to both WGS (43 % of 53; followed by ST127, ST12, and ST372 [4/53, 8 % each]) and ST-specific PCR (20 % of 221). In WGS-based comparisons of cat and reference human ST73 isolates, cat isolates had a relatively conserved virulence gene profile but were phylogenetically diverse. Although in the phylogram most cat and human ST73 isolates occupied host species-specific clusters within serotype-specific clades (O2:H1, O6:H1, O25:H1, O50/O2:H1), cat and human isolates were intermingled within two serotype-specific clades: O120:H31 (3 cat and 2 human isolates) and O22:H1 (3 cat and 5 human isolates). These findings confirm the importance of human-associated group B2 lineages as a cause of urinary tract infections in cats. The close genetic relationship of some cat and human ST73 strains suggests bi-directional transmission may be possible.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cat Diseases/microbiology , Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/drug effects , Fluoroquinolones/pharmacology , Animals , Bacteremia/microbiology , Cats/microbiology , Genomics , Genotype , Humans , Phylogeny , Urinary Tract Infections/microbiology , Urinary Tract Infections/veterinary , Virulence/genetics , Whole Genome Sequencing
7.
Virulence ; 11(1): 327-336, 2020 12.
Article in English | MEDLINE | ID: mdl-32264739

ABSTRACT

BACKGROUND: Escherichia coli ST131, mainly its H30 clade, is the leading cause of extraintestinal E. coli infections but its correlates of virulence are undefined. MATERIALS AND METHODS: We tested in a murine sepsis model 84 ST131 isolates that differed by country of origin (Spain vs. USA), clonal subset, resistance markers, and virulence genes (VGs). Virulence outcomes, including illness severity score (ISS) and "killer" status (>80% mouse lethality), were compared statistically with clonal subset, individual and combined VGs, molecularly defined extraintestinal and uropathogenic E. coli (ExPEC, UPEC) status, and country of origin. RESULTS: Virulence varied widely by strain. Univariable correlates of median ISS and percent "killer" (outcomes if variable present vs. absent) included pap (ISS, 4.4 vs. 3.8; "killer", 71% vs. 46%), kpsMII (4.1 vs. 2.3; 59% vs. 25%), K2/K100 (4.4 vs. 3.2; 77% vs. 41%), ExPEC (4.2 vs. 2.2; 62% vs. 17%), Spanish origin (4.3 vs. 3.1; 65% vs. 36%), and H30R1 subset (2.5 vs. 4.1; 35% vs. 59%). With multivariable adjustment, ExPEC status was the only consistently significantly predictive variable. CONCLUSION: Within ST131 the strongest predictor of experimental virulence was molecularly defined ExPEC status. Clonal subsets seemed to behave differently in the murine sepsis model by country of origin.


Subject(s)
Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Sepsis/microbiology , Virulence Factors/genetics , Animals , Bacterial Typing Techniques , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/blood , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/classification , Female , Mice , Multilocus Sequence Typing , Spain , Specific Pathogen-Free Organisms , United States , Virulence/genetics , beta-Lactamases/genetics
8.
Microbiol Spectr ; 8(4)2020 12.
Article in English | MEDLINE | ID: mdl-33385193

ABSTRACT

Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/classification , Escherichia coli/isolation & purification , Animals , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Extraintestinal Pathogenic Escherichia coli/classification , Genotype , Humans , Molecular Epidemiology , Phylogeny , Sepsis/microbiology , Urinary Tract Infections/microbiology , Virulence/genetics , Virulence Factors , Whole Genome Sequencing
9.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31562173

ABSTRACT

Escherichia coli segregates into phylogenetic groups, with group B2 containing both extraintestinal pathogenic E. coli (ExPEC) and enteropathogenic E. coli (EPEC) strains. Ten main B2 subgroups (subgroups I to X)/sequence type complexes (STcs), as well as EPEC lineages, have been identified. In the current study, we characterized ExPEC and EPEC strains of E. coli B2 phylogenetic subgroups/STcs that colonize Swedish and Pakistani infants. Gut commensal E. coli B2 strains, 120 from Swedish infants (n = 87) and 19 from Pakistani infants (n = 12), were assigned to B2 subgroups. Carriage of the bundle-forming pili and intimin adhesin was examined in the EPEC lineages. The ExPEC virulence markers and the time of persistence of the strains in the microbiota were previously determined. In total, 84% of the Swedish strains and 47% of the Pakistani strains belonged to 1 of the 10 main B2 subgroups (P = 0.001). Among the Swedish strains, the most common B2 subgroups were IX/STc95 (19%), II/STc73 (17%), VI/STc12 (13%), and III/STc127 (11%), with each subgroup carrying distinctive sets of ExPEC virulence markers. EPEC lineages with few ExPEC features constituted 47% of the Pakistani B2 strains but only 7% of the Swedish B2 strains (P = 0.0001). The subgroup distribution within phylogenetic group B2 strains colonizing the gut differed between Swedish and Pakistani infants. B2 subgroups with uropathogenic characteristics dominated the gut microbiota of Swedish infants, while EPEC lineage 1 strains frequently colonized the intestines of Pakistani infants. Moreover, within the B2 subgroups, ExPEC virulence genes were more prevalent in Swedish strains than in Pakistani strains. Thus, ExPEC traits exemplify the intestinal B2 strains from Western populations.IMPORTANCE The intestinal microbiota is an important reservoir for bacteria that cause extraintestinal infections. Escherichia coli is found ubiquitously in the gut microbiota, and it also causes urinary tract infections, infantile septicemia, and meningitis. Urinary tract infections are usually caused by E. coli strains that originate in the intestinal microbiota. E. coli also causes gastrointestinal infections and is a major cause of diarrhea in infants worldwide. The abilities of certain E. coli strains to cause infections are attributed to their virulence factors, i.e., bacterial components that contribute to the development of different diseases. Our study shows that different subtypes of potentially pathogenic E. coli strains dominate in the gut microbiota of infants in different geographical areas and expands our knowledge of the interplay between bacterial commensalism and pathogenicity.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/classification , Gastrointestinal Microbiome , Phylogeny , Virulence Factors/genetics , Enteropathogenic Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Infant , Intestines/microbiology , Pakistan/epidemiology , Sweden/epidemiology , Urinary Tract Infections/microbiology , Virulence/genetics
10.
J Antimicrob Chemother ; 74(9): 2566-2574, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31287537

ABSTRACT

OBJECTIVES: Antimicrobial resistance (AMR) to critically important antimicrobials (CIAs) amongst Gram-negative bacteria can feasibly be transferred amongst wildlife, humans and domestic animals. This study investigated the ecology, epidemiology and origins of CIA-resistant Escherichia coli carried by Australian silver gulls (Chroicocephalus novaehollandiae), a gregarious avian wildlife species that is a common inhabitant of coastal areas with high levels of human contact. METHODS: Sampling locations were widely dispersed around the perimeter of the Australian continent, with sites separated by up to 3500 km. WGS was used to study the diversity and molecular characteristics of resistant isolates to ascertain their epidemiological origin. RESULTS: Investigation of 562 faecal samples revealed widespread occurrence of extended-spectrum cephalosporin-resistant (21.7%) and fluoroquinolone-resistant (23.8%) E. coli. Genome sequencing revealed that CIA-resistant E. coli isolates (n = 284) from gulls predominantly belonged to human-associated extra-intestinal pathogenic E. coli (ExPEC) clones, including ST131 (17%), ST10 (8%), ST1193 (6%), ST69 (5%) and ST38 (4%). Genomic analysis revealed that gulls carry pandemic ExPEC-ST131 clades (O25:H4 H30-R and H30-Rx) and globally emerging fluoroquinolone-resistant ST1193 identified among humans worldwide. Comparative analysis revealed that ST131 and ST1193 isolates from gulls overlapped extensively with human clinical isolates from Australia and overseas. The present study also detected single isolates of carbapenem-resistant E. coli (ST410-blaOXA-48) and colistin-resistant E. coli (ST345-mcr-1). CONCLUSIONS: The carriage of diverse CIA-resistant E. coli clones that strongly resemble pathogenic clones from humans suggests that gulls can act as ecological sponges indiscriminately accumulating and disseminating CIA-resistant bacteria over vast distances.


Subject(s)
Anti-Infective Agents/pharmacology , Bird Diseases/microbiology , Charadriiformes/microbiology , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Animals , Australia/epidemiology , Bird Diseases/epidemiology , Cephalosporins/pharmacology , Disease Reservoirs/microbiology , Ecology , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli Infections/epidemiology , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/genetics , Feces/microbiology , Fluoroquinolones/pharmacology , Genotype , Humans , Phenotype , Phylogeny , Surveys and Questionnaires , Whole Genome Sequencing/veterinary
11.
Clin Microbiol Rev ; 32(3)2019 06 19.
Article in English | MEDLINE | ID: mdl-31189557

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.


Subject(s)
Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/genetics , Drug Resistance, Bacterial , Escherichia coli Infections/epidemiology , Escherichia coli Infections/prevention & control , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Genome, Bacterial/genetics , Humans
12.
Clin Microbiol Rev ; 32(2)2019 03 20.
Article in English | MEDLINE | ID: mdl-30700431

ABSTRACT

Gut bacteria play a key role in initiating and maintaining the inflammatory process in the gut tissues of inflammatory bowel disease (IBD) patients, by supplying antigens or other stimulatory factors that trigger immune cell activation. Changes in the composition of the intestinal microbiota in IBD patients compared to that in healthy controls and a reduced diversity of intestinal microbial species are linked to the pathogenesis of IBD. Adherent invasive Escherichia coli (AIEC) has been linked to Crohn's disease (CD) patients, while diffusely adherent E. coli (DAEC) has been associated with ulcerative colitis (UC). Bacteriological analysis of intestinal biopsy specimens and fecal samples from IBD patients shows an increased number of E. coli strains belonging to the B2 phylogenetic group, which are typically known as extraintestinal pathogenic E. coli (ExPEC). Results from studies of both cell cultures and animal models reveal pathogenic features of these E. coli pathobionts, which may link them to IBD pathogenesis. This suggests that IBD-associated E. coli strains play a facilitative role during IBD flares. In this review, we explain IBD-associated E. coli and its role in IBD pathogenesis.


Subject(s)
Escherichia coli Infections/diagnosis , Extraintestinal Pathogenic Escherichia coli/physiology , Inflammatory Bowel Diseases/microbiology , Animals , Bacterial Adhesion , Extraintestinal Pathogenic Escherichia coli/classification , Gastrointestinal Microbiome , Humans , Phylogeny , Symptom Flare Up
13.
mSphere ; 4(1)2019 01 16.
Article in English | MEDLINE | ID: mdl-30651401

ABSTRACT

Avian-pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E.coli (ExPEC) presumed to be zoonotic and to represent an external reservoir for extraintestinal infections in humans, including uropathogenic E. coli (UPEC) causing urinary tract infections. Comparative genomics has previously been applied to investigate whether APEC and human ExPEC are distinct entities. Even so, whole-genome-based studies are limited, and large-scale comparisons focused on single sequence types (STs) are not available yet. In this study, comparative genomic analysis was performed on 323 APEC and human ExPEC genomes belonging to sequence type 95 (ST95) to investigate whether APEC and human ExPEC are distinct entities. Our study showed that APEC of ST95 did not constitute a unique ExPEC branch and was genetically diverse. A large genetic overlap between APEC and certain human ExPEC was observed, with APEC located on multiple branches together with closely related human ExPEC, including nearly identical APEC and human ExPEC. These results illustrate that certain ExPEC clones may indeed have the potential to cause infection in both poultry and humans. Previously described ExPEC-associated genes were found to be encoded on ColV plasmids. These virulence-associated plasmids seem to be crucial for ExPEC strains to cause avian colibacillosis and are strongly associated with strains of the mixed APEC/human ExPEC clusters. The phylogenetic analysis revealed two distinct branches consisting of exclusively closely related human ExPEC which did not carry the virulence-associated plasmids, emphasizing a lower avian virulence potential of human ExPEC in relation to an avian host.IMPORTANCE APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.


Subject(s)
Bird Diseases/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Genomics , Urinary Tract Infections/microbiology , Zoonoses/microbiology , Animals , Birds , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Genetic Variation , Genotype , Humans , Multilocus Sequence Typing
14.
Article in English | MEDLINE | ID: mdl-30348668

ABSTRACT

The fluoroquinolone-resistant sequence type 1193 (ST1193) of Escherichia coli, from the ST14 clonal complex (STc14) within phylogenetic group B2, has appeared recently as an important cause of extraintestinal disease in humans. Although this emerging lineage has been characterized to some extent using conventional methods, it has not been studied extensively at the genomic level. Here, we used whole-genome sequence analysis to compare 355 ST1193 isolates with 72 isolates from other STs within STc14. Using core genome phylogeny, the ST1193 isolates formed a tightly clustered clade with many genotypic similarities, unlike ST14 isolates. All ST1193 isolates possessed the same set of three chromosomal mutations conferring fluoroquinolone resistance, carried the fimH64 allele, and were lactose non-fermenting. Analysis revealed an evolutionary progression from K1 to K5 capsular types and acquisition of an F-type virulence plasmid, followed by changes in plasmid structure congruent with genome phylogeny. In contrast, the numerous identified antimicrobial resistance genes were distributed incongruently with the underlying phylogeny, suggesting frequent gain or loss of the corresponding resistance gene cassettes despite retention of the presumed carrier plasmids. Pangenome analysis revealed gains and losses of genetic loci occurring during the transition from ST14 to ST1193 and from the K1 to K5 capsular types. Using time-scaled phylogenetic analysis, we estimated that current ST1193 clades first emerged approximately 25 years ago. Overall, ST1193 appears to be a recently emerged clone in which both stepwise and mosaic evolution have contributed to epidemiologic success.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Extraintestinal Pathogenic Escherichia coli/classification , Genome, Bacterial , Phylogeny , Plasmids/chemistry , Alleles , Anti-Bacterial Agents/pharmacology , Bacterial Capsules/chemistry , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Biological Evolution , Clone Cells , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Fluoroquinolones/pharmacology , Genetic Loci , Genotype , Humans , Plasmids/metabolism , Whole Genome Sequencing
15.
mSphere ; 3(4)2018 07 18.
Article in English | MEDLINE | ID: mdl-30021879

ABSTRACT

Escherichia coli sequence type 410 (ST410) has been reported worldwide as an extraintestinal pathogen associated with resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems. In the present study, we investigated national epidemiology of ST410 E. coli isolates from Danish patients. Furthermore, E. coli ST410 was investigated in a global context to provide further insight into the acquisition of the carbapenemase genes blaOXA-181 and blaNDM-5 of this successful lineage. From 127 whole-genome-sequenced isolates, we reconstructed an evolutionary framework of E. coli ST410 which portrays the antimicrobial-resistant clades B2/H24R, B3/H24Rx, and B4/H24RxC. The B2/H24R and B3/H24Rx clades emerged around 1987, concurrently with the C1/H30R and C2/H30Rx clades in E. coli ST131. B3/H24Rx appears to have evolved by the acquisition of the extended-spectrum ß-lactamase (ESBL)-encoding gene blaCTX-M-15 and an IncFII plasmid, encoding IncFIA and IncFIB. Around 2003, the carbapenem-resistant clade B4/H24RxC emerged when ST410 acquired an IncX3 plasmid carrying a blaOXA-181 carbapenemase gene. Around 2014, the clade B4/H24RxC acquired a second carbapenemase gene, blaNDM-5, on a conserved IncFII plasmid. From an epidemiological investigation of 49 E. coli ST410 isolates from Danish patients, we identified five possible regional outbreaks, of which one outbreak involved nine patients with blaOXA-181- and blaNDM-5-carrying B4/H24RxC isolates. The accumulated multidrug resistance in E. coli ST410 over the past two decades, together with its proven potential of transmission between patients, poses a high risk in clinical settings, and thus, E. coli ST410 should be considered a lineage with emerging "high-risk" clones, which should be monitored closely in the future.IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is the main cause of urinary tract infections and septicemia. Significant attention has been given to the ExPEC sequence type ST131, which has been categorized as a "high-risk" clone. High-risk clones are globally distributed clones associated with various antimicrobial resistance determinants, ease of transmission, persistence in hosts, and effective transmission between hosts. The high-risk clones have enhanced pathogenicity and cause severe and/or recurrent infections. We show that clones of the E. coli ST410 lineage persist and/or cause recurrent infections in humans, including bloodstream infections. We found evidence of ST410 being a highly resistant globally distributed lineage, capable of patient-to-patient transmission causing hospital outbreaks. Our analysis suggests that the ST410 lineage should be classified with the potential to cause new high-risk clones. Thus, with the clonal expansion over the past decades and increased antimicrobial resistance to last-resort treatment options, ST410 needs to be monitored prospectively.


Subject(s)
Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Evolution, Molecular , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Genotype , Bacterial Proteins/genetics , Denmark/epidemiology , Disease Outbreaks , Extraintestinal Pathogenic Escherichia coli/classification , Humans , Multilocus Sequence Typing , Prevalence , Prospective Studies , Whole Genome Sequencing , beta-Lactamases/genetics
17.
mBio ; 8(5)2017 10 24.
Article in English | MEDLINE | ID: mdl-29066550

ABSTRACT

Escherichia coli sequence type 131 (ST131), a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC) infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-ß-lactamase (ESBL)-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12), ST405 (n = 10), and ST648 (n = 18), and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases) has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.IMPORTANCEE. coli, particularly the ST131 extraintestinal pathogenic E. coli (ExPEC) lineage, is an important cause of community- and hospital-acquired infections, such as urinary tract infections, surgical site infections, bloodstream infections, and sepsis. The treatment of infections caused by ExPEC has become very challenging due to the emergence of resistance to the first-line as well as the last-resort antibiotics. This study analyzes E. coli ST131 against three other important and globally distributed ExPEC lineages (ST38, ST405, and ST648) that also produced extended-spectrum ß-lactamase (ESBL). This is perhaps the first study that employs the high-throughput whole-genome sequence-based approach to compare and study the genomic features of these four ExPEC lineages in relation to their functional properties. Findings from this study highlight the differences in the genomic coordinates of ST131 with respect to the other STs considered here. Results from this comparative genomics study can help in advancing the understanding of ST131 evolution and also offer a framework towards future developments in pathogen identification and targeted therapeutics to prevent diseases caused by this pandemic E. coli ST131 clone.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/genetics , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Comparative Genomic Hybridization , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Evolution, Molecular , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Virulence/genetics , Virulence Factors/genetics , beta-Lactamases/genetics
18.
Sci Rep ; 7(1): 12103, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935873

ABSTRACT

Carbapenem-resistant Enterobacteriaceae, including the increasingly reported OXA-48 Escherichia coli producers, are an emerging public health threat worldwide. Due to their alarming detection in our healthcare setting and their possible presence in the community, seven OXA-48-producing, extraintestinal pathogenic E. coli were analysed by whole genome sequencing as well as conventional tools, and tested for in vivo virulence. As a result, five E. coli OXA-48-producing subclones were detected (O25:H4-ST131/PST43-fimH30-virotype E; O25:H4-ST131/PST9-fimH22-virotype D5, O16:H5-ST131/PST506-fimH41; O25:H5-ST83/PST207 and O9:H25-ST58/PST24). Four ST131 and one ST83 isolates satisfied the ExPEC status, and all except the O16:H5 ST131 isolate were UPEC. All isolates exhibited local inflammatory response with extensive subcutaneous necrosis but low lethality when tested in a mouse sepsis model. The bla OXA-48 gene was located in MOBP131/IncL plasmids (four isolates) or within the chromosome (three ST131 H30-Rx isolates), carried by Tn1999-like elements. All, except the ST83 isolate, were multidrug-resistant, with additional plasmids acting as vehicles for the spread of various resistance genes. This is the first study to analyse the whole genome sequences of bla OXA-48-positive ST131, ST58 and ST83 E. coli isolates in conjunction with experimental data, and to evaluate the in vivo virulence of bla OXA-48 isolates, which pose an important challenge to patient management.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/genetics , Whole Genome Sequencing/methods , beta-Lactamases/genetics , Aged , Aged, 80 and over , Animals , Drug Resistance, Bacterial/genetics , Escherichia coli/classification , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Escherichia coli Proteins/metabolism , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Female , Genome, Bacterial/genetics , Humans , Male , Mice , Middle Aged , Molecular Typing , Species Specificity , Virulence/genetics , beta-Lactamases/metabolism
19.
BMC Vet Res ; 13(1): 169, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28599670

ABSTRACT

BACKGROUND: In recent years, highly frequent swine respiratory diseases have been caused by extraintestinal pathogenic Escherichia coli (ExPEC) in China. Due to this increase in ExPECs, this bacterial pathogen has become a threat to the development of the Chinese swine industry. To investigate ExPEC pathogenesis, we isolated a strain (named SLPE) from lesioned porcine lungs from Changchun in China, reported the draft genome and performed comparative genomic analyses. RESULTS: Based on the gross post-mortem examination, bacterial isolation, animal regression test and 16S rRNA gene sequence analysis, the pathogenic bacteria was identified as an ExPEC. The SLPE draft genome was 4.9 Mb with a G + C content of 51.7%. The phylogenomic comparison indicated that the SLPE strain belongs to the B1 monophyletic phylogroups and that its closest relative is Avian Pathogenic Escherichia coli (APEC) O78. However, the distribution diagram of the pan-genome virulence genes demonstrated significant differences between SLPE and APEC078. We also identified a capsular polysaccharide synthesis gene cluster (CPS) in the SLPE strain genomes using blastp. CONCLUSIONS: We isolated the ExPEC (SLPE) from swine lungs in China, performed the whole genome sequencing and compared the sequence with other Escherichia coli (E. coli). The comparative genomic analysis revealed several genes including several virulence factors that are ExPEC strain-specific, such as fimbrial adhesins (papG II), ireA, pgtP, hlyF, the pix gene cluster and fecR for their further study. We found a CPS in the SLPE strain genomes for the first time, and this CPS is closely related to the CPS from Klebsiella pneumoniae.


Subject(s)
Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Genome, Bacterial , Pneumonia, Bacterial/veterinary , Swine Diseases/microbiology , Animals , Bacterial Capsules/metabolism , China , DNA, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Farms , Lung/microbiology , Lung/pathology , Mice , Microbial Sensitivity Tests , Multigene Family , Phylogeny , Pneumonia, Bacterial/microbiology , Polysaccharides, Bacterial/biosynthesis , Sequence Analysis, DNA/veterinary , Serotyping , Swine , Swine Diseases/pathology , Virulence/genetics
20.
BMC Vet Res ; 13(1): 94, 2017 Apr 08.
Article in English | MEDLINE | ID: mdl-28388949

ABSTRACT

BACKGROUND: Swine extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen that leads to economic and welfare costs in the swine industry worldwide, and is occurring with increasing frequency in China. By far, various virulence factors have been recognized in ExPEC. Here, we investigated the virulence genotypes and clonal structure of collected strains to improve the knowledge of phylogenetic traits of porcine ExPECs in China. RESULTS: We isolated 64 Chinese porcine ExPEC strains from 2013 to 14 in China. By multiplex PCR, the distribution of isolates belonging to phylogenetic groups B1, B2, A and D was 9.4%, 10.9%, 57.8% and 21.9%, respectively. Nineteen virulence-related genes were detected by PCR assay; ompA, fimH, vat, traT and iutA were highly prevalent. Virulence-related genes were remarkably more prevalent in group B2 than in groups A, B1 and D; notably, usp, cnf1, hlyD, papA and ibeA were only found in group B2 strains. Genotyping analysis was performed and four clusters of strains (named I to IV) were identified. Cluster IV contained all isolates from group B2 and Cluster IV isolates had the strongest pathogenicity in a mouse infection model. As phylogenetic group B2 and D ExPEC isolates are generally considered virulent, multilocus sequence typing (MLST) analysis was performed for these isolates to further investigate genetic relationships. Two novel sequence types, ST5170 and ST5171, were discovered. Among the nine clonal complexes identified among our group B2 and D isolates, CC12 and CC95 have been indicated to have high zoonotic pathogenicity. The distinction between group B2 and non-B2 isolates in virulence and genotype accorded with MLST analysis. CONCLUSION: This study reveals significant genetic diversity among ExPEC isolates and helps us to better understand their pathogenesis. Importantly, our data suggest group B2 (Cluster IV) strains have the highest risk of causing animal disease and illustrate the correlation between genotype and virulence.


Subject(s)
Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Swine Diseases/microbiology , Animals , China/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/classification , Genetic Variation , Mice , Multilocus Sequence Typing , Phylogeny , Swine/microbiology , Swine Diseases/epidemiology , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...