Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 714
Filter
1.
Front Immunol ; 12: 724609, 2021.
Article in English | MEDLINE | ID: mdl-34603297

ABSTRACT

STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.


Subject(s)
Autoimmune Diseases/prevention & control , STAT3 Transcription Factor/immunology , Th17 Cells/immunology , Uveitis/prevention & control , Adoptive Transfer , Animals , Autoantigens/immunology , Autoantigens/metabolism , Autoimmune Diseases/immunology , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Electroretinography , Eye Proteins/immunology , Eye Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Retinol-Binding Proteins/immunology , Retinol-Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism , Th17 Cells/pathology , Uveitis/immunology
2.
J Biol Chem ; 297(3): 101067, 2021 09.
Article in English | MEDLINE | ID: mdl-34384785

ABSTRACT

Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.


Subject(s)
Cytoskeletal Proteins/immunology , Epitopes/immunology , Eye Proteins/immunology , Glycoproteins/immunology , Leucine Zippers/immunology , Animals , Antibodies/immunology , Cytoskeletal Proteins/metabolism , Epitopes/metabolism , Eye Proteins/metabolism , Female , Glaucoma/metabolism , Glycoproteins/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Conformation , Protein Conformation , Protein Domains/immunology , Recombinant Proteins/immunology , Reproducibility of Results , Trabecular Meshwork/metabolism
3.
EBioMedicine ; 70: 103496, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34280776

ABSTRACT

BACKGROUND: Induction of autoantigen-specific Treg cells that suppress tissue-specific autoimmunity without compromising beneficial immune responses is the holy-grail for immunotherapy to autoimmune diseases. METHODS: In a model of experimental autoimmune uveitis (EAU) that mimics human uveitis, ocular inflammation was induced by immunization with retinal antigen interphotoreceptor retinoid-binding protein (IRBP). Mice were given intraperitoneal injection of αCD4 antibody (Ab) after the onset of disease, followed by administration of IRBP. EAU was evaluated clinically and functionally. Splenocytes, CD4+CD25- and CD4+CD25+ T cells were sorted and cultured with IRBP or αCD3 Ab. T cell proliferation and cytokine production were assessed. FINDINGS: The experimental approach resulted in remission of ocular inflammation and rescue of visual function in mice with established EAU. Mechanistically, the therapeutic effect was mediated by induction of antigen-specific Treg cells that inhibited IRBP-driven Th17 response in TGF-ß and IL-10 dependent fashion. Importantly, the Ab-mediated immune tolerance could be achieved in EAU mice by administration of retinal autoantigens, arrestin but not limited to IRBP only, in an antigen-nonspecific bystander manner. Further, these EAU-suppressed tolerized mice did not compromise their anti-tumor T immunity in melanoma model. INTERPRETATION: We successfully addressed a specific immunotherapy of EAU by in vivo induction of autoantigen-specific Treg cells without compromising host overall T cell immunity, which should have potential implication for patients with autoimmune uveitis. FUNDING: This study was supported by the Natural Science Foundation of Guangdong Province and the Fundamental Research Fund of the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center.


Subject(s)
Autoimmune Diseases/therapy , Bystander Effect , Immunosuppression Therapy/methods , T-Lymphocytes, Regulatory/immunology , Uveitis/therapy , Animals , Autoantigens/immunology , Autoimmune Diseases/immunology , Cell Line, Tumor , Cells, Cultured , Eye Proteins/immunology , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , Retinol-Binding Proteins/immunology , Transforming Growth Factor beta/metabolism , Uveitis/immunology
4.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34132745

ABSTRACT

Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.


Subject(s)
Cell Membrane/metabolism , Eye Proteins/metabolism , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Retinal Rod Photoreceptor Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Cattle , Cell Membrane/ultrastructure , Eye Proteins/immunology , Lipidomics , Membrane Proteins/immunology , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Electron, Transmission , Nanotechnology , Peripherins/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Rhodopsin/metabolism , Single-Domain Antibodies/immunology , Tetraspanins/metabolism
5.
Front Immunol ; 11: 2071, 2020.
Article in English | MEDLINE | ID: mdl-33013877

ABSTRACT

We specify the clinical features of a spontaneous experimental autoimmune uveitis (EAU) model, in which foreign hen-egg lysozyme (HEL) is expressed in the retina, controlled by the promoter for interphotoreceptor retinol binding protein (IRBP). We previously reported 100% P21 (post-partum day) IRBP:HEL single transgenic (sTg) mice, when crossed to transgenic T cell receptor mice (3A9) generating the double transgenic (dTg) genotype, develop EAU despite profound lymphopenia (thymic HEL-specific T cell deletion). In this work, we characterized the immune component of this model and found conventional dTg CD4+ T cells were less anergic than those from 3A9 controls. Furthermore, prior in vitro HEL-activation of 3A9 anergic T cells (Tan) rendered them uveitogenic upon adoptive transfer (Tx) to sTg mice, while antigen-experienced (AgX, dTg), but not naïve (3A9) T cells halted disease in P21 dTg mice. Flow cytometric analysis of the AgX cells elucidated the underlying pathology: FoxP3+CD25hiCD4+ T regulatory cells (Treg) comprised ∼18%, while FR4+CD73+FoxP3-CD25lo/-CD4+ Tan comprised ∼1.2% of total cells. Further Treg-enrichment (∼80%) of the AgX population indicated FoxP3+CD25hiCD4+ Treg played a key role in EAU-suppression while FoxP3-CD25lo/-CD4+ T cells did not. Here we present the novel concept of dual immunological tolerance where spontaneous EAU is due to escape from anergy with consequent failure of Treg induction and subsequent imbalance in the [Treg:Teffector] cell ratio. The reduced numbers of Tan, normally sustaining Treg to prevent autoimmunity, are the trigger for disease, while immune homeostasis can be restored by supplementation with AgX, but not naïve, antigen-specific Treg.


Subject(s)
Autoimmune Diseases/immunology , Immunotherapy, Adoptive/methods , Retina/pathology , T-Lymphocytes, Regulatory/immunology , Uveitis/immunology , Animals , Cells, Cultured , Disease Models, Animal , Eye Proteins/immunology , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Interleukin-2 Receptor alpha Subunit/metabolism , Mice , Mice, Transgenic , Retinol-Binding Proteins/immunology , T-Lymphocytes, Regulatory/transplantation
6.
FASEB J ; 34(10): 13918-13934, 2020 10.
Article in English | MEDLINE | ID: mdl-32860273

ABSTRACT

Interphotoreceptor retinoid-binding protein (IRBP) is a highly expressed protein secreted by rod and cone photoreceptors that has major roles in photoreceptor homeostasis as well as retinoid and polyunsaturated fatty acid transport between the neural retina and retinal pigment epithelium. Despite two crystal structures reported on fragments of IRBP and decades of research, the overall structure of IRBP and function within the visual cycle remain unsolved. Here, we studied the structure of native bovine IRBP in complex with a monoclonal antibody (mAb5) by cryo-electron microscopy, revealing the tertiary and quaternary structure at sufficient resolution to clearly identify the complex components. Complementary mass spectrometry experiments revealed the structure and locations of N-linked carbohydrate post-translational modifications. This work provides insight into the structure of IRBP, displaying an elongated, flexible three-dimensional architecture not seen among other retinoid-binding proteins. This work is the first step in elucidation of the function of this enigmatic protein.


Subject(s)
Eye Proteins/chemistry , Retinol-Binding Proteins/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex/chemistry , Cattle , Cryoelectron Microscopy , Eye Proteins/immunology , Female , Mice , Mice, Inbred C57BL , Retinol-Binding Proteins/immunology , Single Molecule Imaging
7.
Infect Genet Evol ; 84: 104498, 2020 10.
Article in English | MEDLINE | ID: mdl-32771700

ABSTRACT

New coronavirus SARS-CoV-2 is capable to infect humans and cause a novel disease COVID-19. Aiming to understand a host genetic component of COVID-19, we focused on variants in genes encoding proteases and genes involved in innate immunity that could be important for susceptibility and resistance to SARS-CoV-2 infection. Analysis of sequence data of coding regions of FURIN, PLG, PRSS1, TMPRSS11a, MBL2 and OAS1 genes in 143 unrelated individuals from Serbian population identified 22 variants with potential functional effect. In silico analyses (PolyPhen-2, SIFT, MutPred2 and Swiss-Pdb Viewer) predicted that 10 variants could impact the structure and/or function of proteins. These protein-altering variants (p.Gly146Ser in FURIN; p.Arg261His and p.Ala494Val in PLG; p.Asn54Lys in PRSS1; p.Arg52Cys, p.Gly54Asp and p.Gly57Glu in MBL2; p.Arg47Gln, p.Ile99Val and p.Arg130His in OAS1) may have predictive value for inter-individual differences in the response to the SARS-CoV-2 infection. Next, we performed comparative population analysis for the same variants using extracted data from the 1000 Genomes project. Population genetic variability was assessed using delta MAF and Fst statistics. Our study pointed to 7 variants in PLG, TMPRSS11a, MBL2 and OAS1 genes with noticeable divergence in allelic frequencies between populations worldwide. Three of them, all in MBL2 gene, were predicted to be damaging, making them the most promising population-specific markers related to SARS-CoV-2 infection. Comparing allelic frequencies between Serbian and other populations, we found that the highest level of genetic divergence related to selected loci was observed with African, followed by East Asian, Central and South American and South Asian populations. When compared with European populations, the highest divergence was observed with Italian population. In conclusion, we identified 4 variants in genes encoding proteases (FURIN, PLG and PRSS1) and 6 in genes involved in the innate immunity (MBL2 and OAS1) that might be relevant for the host response to SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Metagenomics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Alleles , Angiotensin-Converting Enzyme 2 , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Eye Proteins/genetics , Eye Proteins/immunology , Furin/genetics , Furin/immunology , Gene Frequency , Genetic Variation , Genome, Human , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Pandemics , Peptidyl-Dipeptidase A/immunology , Plasminogen/genetics , Plasminogen/immunology , Pneumonia, Viral/immunology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Trypsin/genetics , Trypsin/immunology
8.
Front Immunol ; 11: 1053, 2020.
Article in English | MEDLINE | ID: mdl-32612602

ABSTRACT

Purpose: Previous studies have shown that parental abnormal physiological conditions such as inflammation, stress, and obesity can be transferred to offspring. The purpose of this study was to investigate the impact of parental uveitis on the development and susceptibility to experimental autoimmune uveitis (EAU) in offspring. Methods: Parental male and female B10RIII mice were immunized with interphotoreceptor retinoid binding protein (IRBP) 161-180 in complete Freund's adjuvant and were immediately allowed to mate. Gross examination of the offspring gestated with EAU was performed to determine the influence of parental uveitis on offspring development after birth. Gene expression profiles were analyzed in the affected eyes of offspring under EAU to identify differentially expressed genes (DEGs). Adult offspring were given 5, 25, and 50 µg IRBP161-180 to compare their susceptibility to EAU. Immunized mice were clinically and pathologically evaluated for the development of EAU. Ag-specific T-cell proliferation and IL-17 production from spleens and lymph nodes were evaluated on day 14 or 35 after immunization. Results: Hair loss, delay of eye opening, and swollen spleens in the offspring from parents with uveitis were observed from day 14 to 39 after birth. DEGs were involved in the immune system process, muscle system process, and cell development. The altered antigen processing and presentation, cell adhesion molecules, and phagosome in the eyes of the offspring from uveitis-affected parents were enriched. Offspring gestated with EAU showed a susceptibility to EAU and an earlier onset and higher severity of EAU compared to the control group mice. IRBP-specific lymphocyte proliferation and IL-17 production were observed in the EAU offspring with exposure to parental uveitis. Conclusions: The results suggest that mouse parents with uveitis can increase their offspring's susceptibility to EAU, probably through altering cell adhesion molecules and antigen processing and presentation related to the T-cell proliferation and Th17 response.


Subject(s)
Autoimmune Diseases/etiology , Uveitis/etiology , Animals , Autoantigens/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Cell Proliferation , Disease Models, Animal , Disease Susceptibility , Eye Proteins/immunology , Female , Gene Expression Profiling , Immunization , Male , Maternal Inheritance/genetics , Maternal Inheritance/immunology , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/immunology , Mice , Paternal Inheritance/genetics , Paternal Inheritance/immunology , Peptide Fragments/immunology , Pregnancy , Retinol-Binding Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Th17 Cells/immunology , Uveitis/genetics , Uveitis/immunology
9.
PLoS One ; 15(7): e0234792, 2020.
Article in English | MEDLINE | ID: mdl-32614850

ABSTRACT

The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of >5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95-100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues.


Subject(s)
Angiogenic Proteins/biosynthesis , Myofibroblasts/metabolism , Receptors, G-Protein-Coupled/biosynthesis , Amino Acid Substitution , Angiogenic Proteins/chemistry , Angiogenic Proteins/genetics , Angiogenic Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Antigen-Antibody Reactions , Brain/cytology , Carrier Proteins/analysis , Cell Lineage , Epitopes/immunology , Eye Proteins/biosynthesis , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Muscle Development , MyoD Protein/analysis , Organ Specificity , Protein Conformation , Protein Domains , Rabbits , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Repetitive Sequences, Amino Acid , Skin/cytology , Species Specificity , Tattooing , Young Adult
10.
J Neuroimmunol ; 345: 577286, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32559555

ABSTRACT

We investigated the effects of matairesinol (MAT) in the experimental autoimmune uveitis (EAU), a classical animal model of uveitis. We found that treatment with MAT could alleviate intraocular inflammation of EAU. Notably, Th17 cells in eyes of EAU mice could be predominantly restrained by MAT. Furthermore, MAT could inhibit Th17 differentiation in vitro. In addition, MAT inhibited the signaling of MAPK and ROR-γt, a pivotal transcription factor for Th17 cell differentiation in vitro and in vivo. Taken together, these results suggested that MAT had immune-suppressive effects on autoimmune inflammation through Th17 cells.


Subject(s)
Autoimmune Diseases/drug therapy , Eye Proteins/antagonists & inhibitors , Furans/therapeutic use , Lignans/therapeutic use , Retinol-Binding Proteins/antagonists & inhibitors , Th17 Cells/drug effects , Uveitis/drug therapy , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Eye Proteins/immunology , Eye Proteins/metabolism , Female , Freund's Adjuvant/toxicity , Furans/pharmacology , Lignans/pharmacology , Mice , Mice, Inbred C57BL , Retinol-Binding Proteins/immunology , Retinol-Binding Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Uveitis/immunology , Uveitis/metabolism
11.
OMICS ; 24(3): 129-139, 2020 03.
Article in English | MEDLINE | ID: mdl-32125911

ABSTRACT

Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.


Subject(s)
Anterior Chamber/immunology , Cornea/immunology , Eye Proteins/genetics , Gene Regulatory Networks/immunology , Immune Privilege , Eye Proteins/classification , Eye Proteins/immunology , Focal Adhesions/immunology , Gene Expression Profiling , Gene Expression Regulation , Humans , Lysosomes/immunology , Neutrophils/immunology , Phagosomes/immunology , Proteomics/methods , Signal Transduction , Spliceosomes/immunology
12.
Int Immunopharmacol ; 81: 106270, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32044663

ABSTRACT

BACKGROUND: Berberine (BBR) was reported to have immunoregulatory and anti-inflammatory properties. In this study, we investigated whether BBR could exert its effects on the development of experimental autoimmune uveitis (EAU), and if so, what was the underlying mechanism? METHODS: EAU was induced in B10R.III mice by immunization with IRBP 161-180, followed by 100 mg/kg/d BBR intragastric administration. Disease severity was assessed by evaluation of clinical and histopathological scores. Blood-retinal barrier (BRB) breakdown was tested by Evans blue. Effector and regulatory T (Treg) cell balance was evaluated by quantitative real-time PCR and flow cytometry. Spleen transcriptome was characterized by RNA sequencing (RNA-seq). Gut microbiota composition was investigated by 16S rRNA analysis. RESULTS: BBR treatment significantly blocked EAU as shown by the decrease of the clinical and histological scores, as well as the inhibition of BRB breakdown. The frequency of splenic Th1 and Th17 cells was decreased, whereas Treg cells were increased in the BBR-treated group. RNA-seq of the spleen revealed 476 differentially expressed genes (DEGs) between the EAU and EAU-BBR group. GO functional classification, as well as KEGG analysis demonstrated that BBR treatment markedly influences genes belonging to chromatin remodeling and immune-related pathways. Intervention with BBR modified the gut microbiome in EAU mice, increasing the number of bacteria with immunomodulatory capacity. Depletion of gut microbiota affected the efficacy of BBR on EAU. Moreover, the altered bacterial strains showed a significant correlation with the expression of histones. CONCLUSIONS: BBR inhibited IRBP induced EAU, which was associated with a significant change in the spleen transcriptome and intestinal microbial composition.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Berberine/therapeutic use , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Spleen/drug effects , Th1 Cells/immunology , Th17 Cells/immunology , Uveitis/drug therapy , Animals , Eye Proteins/immunology , Gastrointestinal Microbiome/drug effects , Humans , Mice , Mice, Inbred Strains , Models, Animal , Retinol-Binding Proteins/immunology , Sequence Analysis, RNA , Spleen/physiology , Transcriptome
13.
Curr Mol Med ; 20(8): 624-632, 2020.
Article in English | MEDLINE | ID: mdl-32072910

ABSTRACT

PURPOSE: A small molecular compound, aminooxy-acetic acid (AOA), has been shown to modulate experimental autoimmune encephalomyelitis (EAE). The current study was designed to investigate whether AOA has a similar effect on the development of experimental autoimmune uveitis (EAU) and to further explore underlying mechanisms of this drug. METHODS: EAU was induced in C57BL/6J mice by immunization with interphotoreceptor retinoid-binding protein peptide 651-670 (IRBP 651-670). AOA (500µg or 750µg) or vehicle was administered by intraperitoneal injection from day 10 to 14 after EAU induction. The severity was assessed by clinical and histological scores. The integrity of the blood retinal barrier was detected with Evans Blue. Frequencies of splenic Th1, Th17 and Foxp3+ Treg cells were examined by flow cytometry. The production of cytokines was tested by ELISA. The mRNA expression of IL-17, IFN-γ and IL-10 was detected by RT-PCR. The expression of p-Stat1 and NF-κB was detected by Western Blotting. RESULTS: AOA was found to markedly inhibit the severity of EAU, as determined by clinical and histopathological examinations. AOA can relieve the leakage of blood retinal barrier (BRB). Functional studies found a decreased frequency of Th1 and Th17 cells and an increased frequency of Treg cells in EAU mice as compared with controls. Further studies showed that AOA not only downregulated the production of the proinflammatory cytokines including IFN-γ and IL-17 but also upregulated the expression of an anti-inflammatory cytokine such as IL-10, which might be caused by inhibiting the expressions of p-Stat1 and NF-κB. CONCLUSION: This study shows that AOA inhibits the severity and development of EAU by modulating the balance between regulatory and pathogenic lymphocyte subsets.


Subject(s)
Aminooxyacetic Acid/pharmacology , Autoimmune Diseases/prevention & control , GABA Agents/pharmacology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Uveitis/prevention & control , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Eye Proteins/immunology , Female , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Retinol-Binding Proteins/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Uveitis/etiology , Uveitis/metabolism , Uveitis/pathology
14.
FEBS Lett ; 593(24): 3583-3608, 2019 12.
Article in English | MEDLINE | ID: mdl-31769017

ABSTRACT

Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.


Subject(s)
Adenoviruses, Human/pathogenicity , Biological Evolution , Eye Proteins/genetics , Host-Pathogen Interactions/genetics , Keratitis/genetics , Keratoconjunctivitis/genetics , Viral Proteins/genetics , Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Animals , Conjunctiva/immunology , Conjunctiva/metabolism , Conjunctiva/pathology , Conjunctiva/virology , Cornea/immunology , Cornea/metabolism , Cornea/pathology , Cornea/virology , Disease Models, Animal , Eye Proteins/immunology , Gene Expression Regulation , Genomics/methods , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Keratitis/immunology , Keratitis/pathology , Keratitis/virology , Keratoconjunctivitis/immunology , Keratoconjunctivitis/pathology , Keratoconjunctivitis/virology , Phylogeny , Viral Proteins/immunology , Viral Tropism/genetics , Viral Tropism/immunology
15.
Biomed Res Int ; 2019: 1401894, 2019.
Article in English | MEDLINE | ID: mdl-31309100

ABSTRACT

Toll-like receptors (TLRs) play a key role in the innate immune response to numerous pathogens, including Acanthamoeba spp. The aim of this study was to determine the expression of TLR2 and TLR4 in the eyes of mice following intranasal infection with Acanthamoeba spp. in relation to the host's immunological status. Amoebae used in this study were isolated from the bronchial aspirate of a patient with acute myeloid leukemia (AML) and atypical symptoms of pneumonia. We found statistically significant differences in the expression of TLR2 and TLR4 in the eye of immunocompetent mice at 8, 16, and 24 days after Acanthamoeba spp. infection (dpi) compared to control group. Immunosuppressed mice showed significant differences in the expression of TLR2 at 16 and 24 dpi compared to uninfected animals. Our results indicate that TLR2 and TLR4 are upregulated in the eyes of mice in response to Acanthamoeba spp. We suggest that it is possible for trophozoites to migrate through the optic nerve from the brain to the eyes. The course of disseminated acanthamoebiasis may be influenced by the host's immunological status, and the observed changes in expression of TLR2 and TLR4 in the host's organs may indicate the role of these receptors in the pathomechanism of acanthamoebiasis.


Subject(s)
Amebiasis/immunology , Eye Proteins/immunology , Eye/immunology , Gene Expression Regulation/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 7/immunology , Acanthamoeba/immunology , Amebiasis/pathology , Animals , Eye/parasitology , Humans , Male , Mice , Mice, Inbred BALB C
16.
PLoS One ; 14(6): e0217548, 2019.
Article in English | MEDLINE | ID: mdl-31185026

ABSTRACT

PURPOSE: Retinal detachment (RD) is one of the most frequently diagnosed ophthalmologic conditions requiring prompt surgical intervention. Combination of proper surgical technique and new diagnostic markers, both clinical and molecular, can help improve the diagnosis and prognosis of RD treatment. METHODS: 12 patients with rhegmatogenous RD (rRD) were included into the study after obtaining patient consent and Regional Ethical Approval (average age: 58.1 ± 17.4 years). OCT was performed before and after 23G vitrectomy for RD. Pure subretinal fluid (SRF) was collected during surgery and analyzed by protein array profiling on a panel of 105 inflammatory cytokines (Human XL Cytokine Array), while the effect of SRF upon human macrophages-driven phagocytosis of apoptotic retinal pigment epithelial (RPE) cells ex vivo was quantified by flow cytometry. Immunohistochemistry (IHC) of retinectomized tissue due to PVR caused by RD was performed to determine presence of markers for microglial cells (CD34), macrophages and activated microglia (CD68), regulator of the immune response to infection (NFkB), progenitor and stem cell marker (Sox2), pluripotency marker (Oct4) and intermediate filament markers (GFAP and Nestin). RESULTS: OCT of fresh RD patients contained pre-operatively hyper reflective points (HRPs) at the detached neuroretina border and proximal to the RPE layer-their size and number decreased following successful reattachment surgery. IHC of the retinectomized tissue from detached retina due to severe PVR showed presence of cell conglomerates at the detached neuroretina border which were positive for CD68, NFkB, Sox2 and GFAP, less positive for CD47 and Nestin and negative for Oct4 and CD34. The SRF contained at least 37 cytokines with higher, and 4 cytokine with lower concentration compared to that in vitreous from non-RD pathology; when used as conditional medium to human macrophages ex vivo, the SRF doubled their capacity for engulfing dying RPEs. CONCLUSIONS: Fresh RD can be hallmarked by presence of HRPs at the detached neuroretina border on OCT; the HRPs decrease in size and number after successful reattachment surgery, and likely resemble the macrophage conglomerates seen by IHC. The neuroretina in RD contains progenitor/stem-like cells and signs of inflammatory reaction, while the SRF contains inflammatory cytokines and other factors which increase the ability of professional phagocytes to engulf dying RPE, or for that matter, other dying cells in the retina.


Subject(s)
Antigens, Differentiation/immunology , Eye Proteins/immunology , Retinal Detachment/immunology , Retinal Pigment Epithelium/immunology , Stem Cells/immunology , Adult , Aged , Apoptosis/immunology , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/surgery , Macrophages/immunology , Macrophages/pathology , Male , Microglia/immunology , Microglia/pathology , Middle Aged , Phagocytosis , Retinal Detachment/pathology , Retinal Detachment/surgery , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/surgery , Stem Cells/pathology
17.
Invest Ophthalmol Vis Sci ; 60(6): 2034-2037, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31067323

ABSTRACT

Antibodies are key reagents used in vision research, indeed across biomedical research, but they often do not reveal the whole story about a sample. It is important for researchers to be aware of aspects of antibodies that may affect or limit data interpretation. Federal agencies now require funded grants to demonstrate how they will authenticate reagents used. There is also a push for recombinant antibodies, enabled by phage display technology awarded the 2018 Nobel Prize in Chemistry, which allow for thorough validation and a fixed DNA sequence. Here, we discuss how issues surrounding antibodies are pertinent to detecting myocilin, a protein found in trabecular meshwork and associated with a portion of hereditary glaucoma. Confirmation of myocilin expression in tissues and cell culture has been adopted as validation standard in trabecular meshwork research; thus, a discussion of antibody characteristics and fidelity is critical. Further, based on our basic structural understanding of myocilin architecture and its biophysical aggregation properties, we provide a wish list for the characteristics of next-generation antibody reagents for vision researchers. In the long term, well-characterized antibodies targeting myocilin will enable new insights into its function and involvement in glaucoma pathogenesis.


Subject(s)
Antibodies/immunology , Cytoskeletal Proteins/metabolism , Eye Proteins/metabolism , Glaucoma/immunology , Glycoproteins/metabolism , Trabecular Meshwork/metabolism , Cytoskeletal Proteins/immunology , Eye Proteins/immunology , Glaucoma/diagnosis , Glaucoma/metabolism , Glycoproteins/immunology , Humans
18.
PLoS One ; 14(4): e0214758, 2019.
Article in English | MEDLINE | ID: mdl-30973903

ABSTRACT

Myo/Nog cells are identified by their expression of the skeletal muscle specific transcription factor MyoD and the bone morphogenetic protein inhibitor noggin, and binding of the G8 monoclonal antibody. Their release of noggin is critical for morphogenesis and skeletal myogenesis. In the adult, Myo/Nog cells are present in normal tissues, wounds and skin tumors. Myo/Nog cells in the lens give rise to myofibroblasts that synthesize skeletal muscle proteins. The purpose of this study was to screen human lens tissue, rhabdomyosarcoma cell lines, and tissue sections from rhabdomyosarcoma, Wilms and tumors lacking features of skeletal muscle for co-localization of antibodies to Myo/Nog cell markers and the lens beaded filament proteins filensin and CP49. Immunofluorescence localization experiments revealed that Myo/Nog cells of the lens bind antibodies to beaded filament proteins. Co-localization of antibodies to G8, noggin, filensin and CP49 was observed in most RC13 and a subpopulation of RD human rhabdomyosarcoma cell lines. Western blotting with beaded filament antibodies revealed bands of similar molecular weights in RC13 and murine lens cells. Human alveolar, embryonal, pleomorphic and spindle cell rhabdomyosarcomas and Wilms tumors contained a subpopulation of cells immunoreactive for G8, noggin, MyoD and beaded filaments. G8 was also co-localized with filensin mRNA. Staining for beaded filament proteins was not detected in G8 positive cells in leiomyosarcomas, squamous and basal cell carcinomas, syringocarciomas and malignant melanomas. Lens beaded filament proteins were thought to be present only in the lens. Myo/Nog-like cells immunoreactive for beaded filaments may be diagnostic of tumors related to the skeletal muscle lineage.


Subject(s)
Carrier Proteins/metabolism , Eye Proteins/metabolism , Intermediate Filament Proteins/metabolism , MyoD Protein/metabolism , Rhabdomyosarcoma/pathology , Wilms Tumor/pathology , Animals , Antibodies, Monoclonal/immunology , Carrier Proteins/immunology , Cell Line , Eye Proteins/genetics , Eye Proteins/immunology , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/immunology , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Mice , Microscopy, Fluorescence , MyoD Protein/immunology , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Wilms Tumor/metabolism
19.
J Autoimmun ; 100: 75-83, 2019 06.
Article in English | MEDLINE | ID: mdl-30885419

ABSTRACT

Gene and protein expression profiles of iris biopsies, aqueous humor (AqH), and sera in patients with juvenile idiopathic arthritis-associated uveitis (JIAU) in comparison to control patients with primary open-angle glaucoma (POAG) and HLA-B27-positive acute anterior uveitis (AAU) were investigated. Via RNA Sequencing (RNA-Seq) and mass spectrometry-based protein expression analyses 136 genes and 56 proteins could be identified as being significantly differentially expressed (DE) between the JIAU and POAG group. Gene expression of different immunoglobulin (Ig) components as well as of the B cell-associated factors ID3, ID1, and EBF1 was significantly upregulated in the JIAU group as compared to POAG patients. qRT-PCR analysis showed a significantly higher gene expression of the B cell-related genes CD19, CD20, CD27, CD138, and MZB1 in the JIAU group. At the protein level, a significantly higher expression of Ig components in JIAU than in POAG was confirmed. The B cell-associated protein MZB1 showed a higher expression in JIAU patients than in POAG which was confirmed by western blot analysis. Using bead-based immunoassay analysis we were able to detect a significantly higher concentration of the B cell-activating and survival factors BAFF, APRIL, and IL-6 in the AqH of JIAU and AAU patients than in POAG patients. The intraocularly upregulated B cell-specific genes and proteins in iris tissue suggest that B cells participate in the immunopathology of JIAU. The intracameral environment in JIAU may facilitate local effector and survival functions of B cells, leading to disease course typical for anterior uveitis.


Subject(s)
Aqueous Humor/immunology , Arthritis, Juvenile/immunology , Eye Proteins/immunology , Gene Expression Regulation/immunology , Iris/immunology , Transcriptome/immunology , Uveitis/immunology , Adolescent , Adult , Aged , Arthritis, Juvenile/complications , Arthritis, Juvenile/pathology , Child , Child, Preschool , Female , Humans , Iris/pathology , Male , Middle Aged , Proteomics , Uveitis/etiology , Uveitis/pathology
20.
J Pept Sci ; 25(4): e3153, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30734396

ABSTRACT

The aim of the study was to determine the in vitro immunomodulatory, cytotoxic, and insulin-releasing activities of seven phylloseptin-TR peptides and plasticin-TR, first isolated from the frog Phyllomedusa trinitatis. The most cationic peptides, phylloseptin-1.1TR and phylloseptin-3.1TR, showed greatest cytotoxic potency against A549, MDA-MB231, and HT-29 human tumor-derived cells and against mouse erythrocytes. Phylloseptin-4TR was the most hydrophobic and the most effective peptide at inhibiting production of the proinflammatory cytokines TNF-α and IL-1ß by mouse peritoneal cells but was without effect on production of the antiinflammatory cytokine IL-10. Phylloseptin-2.1TR and phylloseptin-3.3TR were the most effective at stimulating the production of IL-10. The noncytotoxic peptide, plasticin-TR, inhibited production of TNF-α and IL-1ß but was without effect on IL-10 production. The results of CD spectroscopy suggest that the different properties of plasticin-TR compared with the immunostimulatory activities of the previously characterized plasticin-L1 from Leptodactylus laticeps may arise from greater ability of plasticin-TR to oligomerize and adopt a stable helical conformation in a membrane-mimetic environment. All peptides stimulated release of insulin from BRIN-BD11 rat clonal ß cells with phylloseptin-3.2TR being the most potent and effective and phylloseptin-2.1TR the least effective suggesting that insulinotropic potency correlates inversely with helicity. The study has provided insight into structure-activity relationships among the phylloseptins. The combination of immunomodulatory and insulinotropic activities together with low cytotoxicity suggests that phylloseptin-3.3TR and plasticin-TR may represent templates for the development of agents for use in antiinflammatory and type 2 diabetes therapies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Anura , Cytotoxins/pharmacology , Eye Proteins/pharmacology , Immunomodulation/drug effects , Insulin/metabolism , Nerve Tissue Proteins/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/isolation & purification , Cell Line , Cell Survival/drug effects , Eye Proteins/chemistry , Eye Proteins/immunology , Eye Proteins/isolation & purification , Humans , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/isolation & purification , Rats
SELECTION OF CITATIONS
SEARCH DETAIL