Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 589
Filter
1.
Int J Biol Sci ; 20(7): 2658-2685, 2024.
Article in English | MEDLINE | ID: mdl-38725851

ABSTRACT

Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.


Subject(s)
Fas-Associated Death Domain Protein , Gastric Mucosa , Hypertension, Portal , Mitochondria , Animals , Mice , Mitochondria/metabolism , Fas-Associated Death Domain Protein/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Humans , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Knockout , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism
2.
Nat Commun ; 15(1): 3791, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710704

ABSTRACT

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8 , Fas-Associated Death Domain Protein , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , HEK293 Cells , Models, Molecular , Protein Binding , Protein Domains , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
3.
Sci Rep ; 14(1): 9824, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684755

ABSTRACT

PANoptosis plays a crucial role in cancer initiation and progression. However, the roles of PANoptosis-related genes (PARGs) in the prognosis and immune landscape of head and neck squamous cell carcinoma (HNSCC) remain unclear. Integrated bioinformatics analyses based on the data of HNSCC patients in the TCGA database were conducted. We extracted 48 PARGs expression profile and then conducted differentially expressed analysis, following building a Cox model to predict the survival of HNSCC patients. Subsequently, the relationships between the risk score, immune landscape, chemo-, and immune-therapy responses were analyzed, respectively. Moreover, we investigated the prognostic value, and further predicted the pathways influenced by PARGs. Finally, we identified the biological function of crucial PARGs. A total of 18 differentially expressed PARGs were identified in HNSCC, and a Cox model including CASP8, FADD, NLRP1, TNF, and ZBP1 was constructed, which showed that the risk score was associated with the prognosis as well as immune infiltration of HNSCC patients, and the risk score could be regarded as an independent biomarker. Additionally, patients with high-risk score might be an indicator of lymph node metastasis and advanced clinical stage. High-risk scores also contributed to the chemotherapy resistance and immune escape of HNSCC patients. In addition, FADD and ZBP1 played a crucial role in various cancer-related pathways, such as the MAPK, WNT, and MTOR signaling pathways. On the other hand, we suggested that FADD facilitated the progression and 5-fluorouracil (5-FU) resistance of HNSCC cells. A signature based on PANoptosis showed great predictive power for lymph node metastasis and advanced stage, suggesting that the risk score might be an independent prognostic biomarker for HNSCC. Meanwhile, FADD, identified as a prognostic biomarker, may represent an effective therapeutic target for HNSCC.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/mortality , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Female , Male , Computational Biology/methods , Gene Expression Profiling , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Lymphatic Metastasis
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542202

ABSTRACT

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Subject(s)
Apoptosis , Neoplasms , Humans , Death Domain , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , fas Receptor/metabolism , Inflammation , Caspase 8/metabolism
5.
J Neurosci Res ; 102(2): e25296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361411

ABSTRACT

Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.


Subject(s)
Brain , Prefrontal Cortex , Humans , Rats , Male , Animals , Brain/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Fas-Associated Death Domain Protein/metabolism
6.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Article in English | MEDLINE | ID: mdl-37793571

ABSTRACT

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Fas-Associated Death Domain Protein , Humans , Apoptosis/genetics , Autoimmune Diseases/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Comparative Genomic Hybridization , DNA , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Germ Cells/pathology , Mutation
7.
Cell Rep ; 42(12): 113476, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37988267

ABSTRACT

TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.


Subject(s)
Apoptosis Regulatory Proteins , NF-kappa B , Humans , NF-kappa B/metabolism , Caspase 8/metabolism , Apoptosis Regulatory Proteins/pharmacology , Apoptosis , Inflammation , Cytokines/pharmacology , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases , Fas-Associated Death Domain Protein/metabolism
9.
Eur J Pharmacol ; 947: 175676, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37001580

ABSTRACT

PURPOSE: Ginsenoside Rb1 (GRb1), a dammarane-type triterpene saponin compound mainly distributed in ginseng (Panax ginseng), has been demonstrated to ameliorate cardiovascular diseases. However, it remains unclear whether GRb1 alleviates heart failure (HF) by maintaining cardiac energy metabolism balance. Therefore, this work aimed to investigate the cardiac benefits of GRb1 against cardiac energy deficit and explore its mechanism of action. METHODS AND RESULTS: Isoproterenol (ISO) induced HF Sprague-Dawley rats were administrated with GRb1 or fenofibrate for 6 weeks. ISO-induced primary neonatal rat cardiomyocytes (NRCMs) were used as the in vitro model. In vivo, GRb1 significantly improved the structural and metabolic disorder, as demonstrated by the restoration of cardiac function, inhibition of cardiac hypertrophy and fibrosis, and increased adenosine triphosphate (ATP) generation. In vitro, GRb1 effectively protected mitochondrial function and scavenged excessive reactive oxygen species. Moreover, in ISO-induced NRCMs, GRb1 significantly inhibited the abnormal upregulation of Fas-associated death domain (FADD), promoted transcriptional activation of peroxisome proliferator-activated receptor-alpha (PPARα), improved the aberrant expression of cardiac energy metabolism-related enzymes and cardiac fatty acid oxidation, and subsequently increased the synthesis of ATP. Noticeably, GRb1 could inhibit the increased binding between FADD and PPARα, which contributed to the activation of PPARα. Furthermore, GRb1 strengthened the thermal stabilization of FADD and might bind to FADD directly. CONCLUSIONS: Collectively, it's part of the in-depth mechanism of GRb1's cardio-protection that GRb1 could directly bind to FADD and counteract its negative role in the transcription of PPARα thus ameliorating cardiac energy derangement and HF.


Subject(s)
Ginsenosides , Heart Failure , Rats , Animals , PPAR alpha/metabolism , Rats, Sprague-Dawley , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Heart Failure/drug therapy , Heart Failure/metabolism , Adenosine Triphosphate , Fas-Associated Death Domain Protein/metabolism
10.
Oxid Med Cell Longev ; 2023: 3479688, 2023.
Article in English | MEDLINE | ID: mdl-36820406

ABSTRACT

Pancreatic cancer has higher incidence and mortality rates worldwide. PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one] is a carbazole derivative containing chalcone moiety which was designed for inhibiting tumorigenesis in human pancreatic cancer. This study is aimed at investigating PW06-induced anticancer effects in human pancreatic cancer MIA PaCa-2 cells in vitro. The results showed PW06 potent antiproliferative/cytotoxic activities and induced cell morphological changes in a human pancreatic cancer cell line (MIA PaCa-2), and these effects are concentration-dependent (IC50 is 0.43 µM). Annexin V and DAPI staining assays indicated that PW06 induced apoptotic cell death and DNA condensation. Western blotting indicated that PW06 increased the proapoptotic proteins such as Bak and Bad but decreased the antiapoptotic protein such as Bcl-2 and Bcl-xL. Moreover, PW06 increased the active form of caspase-8, caspase-9, and caspase-3, PARP, releasing cytochrome c, AIF, and Endo G from mitochondria in MIA PaCa-2 cells. Confocal laser microscopy assay also confirmed that PW06 increased Bak and decreased Bcl-xL. Also, the cells were pretreated with inhibitors of caspase-3, caspase-8, and caspase-9 and then were treated with PW06, resulting in increased viable cell number compared to PW06 treated only. Furthermore, PW06 showed a potent binding ability with hydrophobic interactions in the core site of the Fas-Fas death domains (FADD). In conclusion, PW06 can potent binding ability to the Fas-FADD which led to antiproliferative, cytotoxic activities, and apoptosis induction accompanied by the caspase-dependent and mitochondria-dependent pathways in human pancreatic cancer MIA PaCa-2 cells.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Line, Tumor , Fas-Associated Death Domain Protein/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
11.
Biosensors (Basel) ; 13(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36832063

ABSTRACT

Different programed cell death (PCD) modalities involve protein-protein interactions in large complexes. Tumor necrosis factor α (TNFα) stimulated assembly of receptor-interacting protein kinase 1 (RIPK1)/Fas-associated death domain (FADD) interaction forms Ripoptosome complex that may cause either apoptosis or necroptosis. The present study addresses the interaction of RIPK1 and FADD in TNFα signaling by fusion of C-terminal (CLuc) and N-terminal (NLuc) luciferase fragments to RIPK1-CLuc (R1C) or FADD-NLuc (FN) in a caspase 8 negative neuroblastic SH-SY5Y cell line, respectively. In addition, based on our findings, an RIPK1 mutant (R1C K612R) had less interaction with FN, resulting in increasing cell viability. Moreover, presence of a caspase inhibitor (zVAD.fmk) increases luciferase activity compared to Smac mimetic BV6 (B), TNFα -induced (T) and non-induced cell. Furthermore, etoposide decreased luciferase activity, but dexamethasone was not effective in SH-SY5Y. This reporter assay might be used to evaluate basic aspects of this interaction as well as for screening of necroptosis and apoptosis targeting drugs with potential therapeutic application.


Subject(s)
Neuroblastoma , Tumor Necrosis Factor-alpha , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology , Apoptosis , Cell Line , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/pharmacology
12.
Cell Cycle ; 22(5): 580-595, 2023 03.
Article in English | MEDLINE | ID: mdl-36281535

ABSTRACT

FADD, a classical apoptotic signaling adaptor, has recently been reported to exhibit a series of non-apoptotic functions. Here, we report that FADD may play a critical role in the development of renal fibrosis. Neutrophil infiltration in the renal interstitial part, glomerular mesangial cell proliferation, and base-membrane thickening were observed in FADD-D mice by H&E, PAS, and PASM staining. Immunofluorescence analysis revealed that macrophage infiltration was significantly enhanced in FADD-D mice. Renal fibrosis might be induced by IgA nephritis in FADD-D mice as evidenced by increased Ki67 and type IV collagen. Additionally, the levels of α-SMA, Fibronectin, and Vimentin were also found to be elevated. Mechanism study indicated that the TLR4/myD88/NF-κB signaling pathway was activated in FADD-D mice. Moreover, FADD phosphorylation activated the mTOR and TGF-ß/Smad pathway and accelerated the process of epithelial mesenchymal transition. Further studies indicated that the TGF-ß1 pathway was also activated and the process of EMT was accelerated in both FADD-disrupted HEK293 cells and FADD-deficient MES cells. Thus, we concluded that FADD phosphorylation could lead to IgA nephritis and eventually result in renal fibrosis. Taken together, our study provides evidence, for the first time, that FADD, especially in its phosphorylated form, has an effect on the development of renal fibrosis.Abbreviations: FADD: FAS-associated protein with death domain; DED: death effector domain; DD: death domain; CKD: chronic kidney disease; ECM: extracellular matrix; ESRD: end-stage renal disease; RRT: renal replacement therapy; H&E: hematoxylin and eosin; PASM: periodic acid silver methenamine.


Subject(s)
Kidney Diseases , Nephritis , Mice , Humans , Animals , Epithelial-Mesenchymal Transition , Phosphorylation , HEK293 Cells , Kidney Diseases/metabolism , Transforming Growth Factor beta1/metabolism , Fibrosis , Immunoglobulin A/metabolism , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/pharmacology
13.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499482

ABSTRACT

A reduction in FADD levels has been reported in precursor T-cell neoplasms and other tumor types. Such reduction would impact on the ability of tumor cells to undergo apoptosis and has been associated with poor clinical outcomes. However, FADD is also known to participate in non-apoptotic functions, but these mechanisms are not well-understood. Linking FADD expression to the severity of precursor T-cell neoplasms could indicate its use as a prognostic marker and may open new avenues for targeted therapeutic strategies. Using transcriptomic and clinical data from patients with precursor T-cell neoplasms, complemented by in vitro analysis of cellular functions and by high-throughput interactomics, our results allow us to propose a dual role for FADD in precursor T-cell neoplasms, whereby resisting cell death and chemotherapy would be a canonical consequence of FADD deficiency in these tumors, whereas deregulation of the cellular metabolism would be a relevant non-canonical function in patients expressing FADD. These results reveal that evaluation of FADD expression in precursor T-cell neoplasms may aid in the understanding of the biological processes that are affected in the tumor cells. The altered biological processes can be of different natures depending on the availability of FADD influencing its ability to exert its canonical or non-canonical functions. Accordingly, specific therapeutic interventions would be needed in each case.


Subject(s)
Apoptosis , Neoplasms , Humans , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Apoptosis/genetics , Gene Expression Profiling , Cell Death , T-Lymphocytes/metabolism
14.
Mol Med ; 28(1): 132, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348274

ABSTRACT

Cancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers' understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.


Subject(s)
Apoptosis , Neoplasms , Humans , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Apoptosis/genetics , Neoplastic Processes , Neoplasms/genetics , Signal Transduction
15.
Cells ; 11(12)2022 06 12.
Article in English | MEDLINE | ID: mdl-35741037

ABSTRACT

Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.


Subject(s)
Apoptosis , fas Receptor , Apoptosis/physiology , Cluster Analysis , Fas Ligand Protein/metabolism , Fas-Associated Death Domain Protein/metabolism , Receptors, Tumor Necrosis Factor/metabolism , fas Receptor/metabolism
16.
Immunology ; 167(2): 233-246, 2022 10.
Article in English | MEDLINE | ID: mdl-35753028

ABSTRACT

Intestinal intraepithelial lymphocytes (IELs) play a crucial role in host defence against pathogens in the intestinal mucosa. The development of intestinal IELs is distinct from peripheral T lymphocytes and remains elusive. Fas-associated protein with death domain (FADD) is important for T cell development in the thymus. Here we describe a novel function of FADD in the IEL development. FADD (S191A), a mouse FADD mutant at Ser191 to Ala mimicking constitutively unphosphorylated FADD, promoted a rapid expansion of TCRαß+ IELs, not TCRγδ+ IELs. Mechanism investigation indicated that the dephosphorylation of FADD was required for cell activation mainly in TCRαß+ CD8+ T cells. Consistently, FADD (S191A) as dephosphorylated FADD led to a high NF-κB activation in the TCR-dependent cell expansion. In addition, The FADD (S191A)-induced abnormal IEL populations resulted in the increased incidence and severity of colitis in mice. In summary, FADD signalling is involved in the intestinal IEL development and might be a regulator for intestinal mucosal homeostasis.


Subject(s)
Intraepithelial Lymphocytes , Receptors, Antigen, T-Cell, alpha-beta , Animals , CD8-Positive T-Lymphocytes/metabolism , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
17.
Int J Biol Sci ; 18(8): 3137-3155, 2022.
Article in English | MEDLINE | ID: mdl-35637951

ABSTRACT

The Fas-associated death domain (FADD) has long been regarded as a crucial adaptor protein in the extrinsic apoptotic pathway. Despite the non-apoptotic function of FADD is gradually being discovered and confirmed, its corresponding physiological and pathological significance is still unclear. Based on the database of GWAS catalog and GTEx Portal, 17 SNPs associated with leukemia susceptibility were found to be linked to FADD expression. We then investigated a regulatory role of FADD in T-acute lymphoblastic leukemia (T-ALL) using Jurkat cells as a model. Jurkat cells stably depleted of FADD (FADD-/- Jurkat) expression exhibited dampened proliferation, hypersensitivity to Etoposide-induced intrinsic apoptosis whereas near total resistance to TRAIL-induced extrinsic apoptosis. Comparison between wild type and FADD-/- Jurkat cells using iTRAQ-based proteomics revealed considerably altered expression spectrum of genes, and led us to focus on metabolic pathways. Investigation of glycolytic and mitochondrial pathways and relevant enzymes revealed that FADD knockout triggered a metabolic shift from glycolysis to mitochondrial respiration in Jurkat cells. Re-expression of FADD in FADD-/- Jurkat cells partially rescued glycolytic capacity. FADD loss triggers global metabolic reprogramming in Jurkat cells and therefore remains as a potential druggable target for ALL treatment.


Subject(s)
Apoptosis , Fas-Associated Death Domain Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Glycolysis/genetics , Humans , Jurkat Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
18.
Sci Rep ; 12(1): 116, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997083

ABSTRACT

Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Fas-Associated Death Domain Protein/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Apoptosis Regulatory Proteins/chemistry , Fas-Associated Death Domain Protein/chemistry , Humans , Mitogen-Activated Protein Kinase 1/chemistry , Molecular Dynamics Simulation , Multiprotein Complexes , Phosphorylation , Protein Binding , Protein Conformation , Serine , Static Electricity , Structure-Activity Relationship
19.
Cell Mol Neurobiol ; 42(6): 1841-1857, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33683530

ABSTRACT

Angiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Subject(s)
Astrocytes , Necroptosis , Neurons , Strongylida Infections , Tumor Necrosis Factor-alpha , Animals , Apoptosis/physiology , Astrocytes/pathology , Caspase 8/metabolism , Fas-Associated Death Domain Protein/metabolism , GTPase-Activating Proteins , Mice , Neurons/pathology , Protein Kinases/metabolism , Strongylida Infections/pathology , Tumor Necrosis Factor-alpha/metabolism
20.
Structure ; 30(2): 229-239.e5, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34800372

ABSTRACT

Cellular FLICE-like inhibitory protein (cFLIP) is a member of the Death Domain superfamily with pivotal roles in many cellular processes and disease states, including cancer and autoimmune disorders. In the context of the death-inducing signaling complex (DISC), cFLIP isoforms regulate extrinsic apoptosis by controlling procaspase-8 activation. The function of cFLIP is mediated through a series of protein-protein interactions, engaging the two N-terminal death effector domains (DEDs). Here, we solve the structure of an engineered DED1 domain of cFLIP using solution nuclear magnetic resonance (NMR) and we define the interaction with FADD and calmodulin, protein-protein interactions that regulate the function of cFLIP in the DISC. cFLIP DED1 assumes a canonical DED fold characterized by six α helices and is able to bind calmodulin and FADD through two separate interfaces. Our results clearly demonstrate the role of DED1 in the cFLIP/FADD association and contribute to the understanding of the assembly of DISC filaments.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Calmodulin/metabolism , Fas-Associated Death Domain Protein/metabolism , Protein Engineering/methods , Binding Sites , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Circular Dichroism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Domains , Protein Interaction Maps , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...