Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95.102
Filter
2.
Food Res Int ; 187: 114373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763649

ABSTRACT

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Subject(s)
Digestion , Fatty Acids , Lauric Acids , Manihot , Starch , X-Ray Diffraction , Manihot/chemistry , Starch/chemistry , Lauric Acids/chemistry , Fatty Acids/chemistry , Decanoic Acids/chemistry , Rheology , Caprylates/chemistry , Magnetic Resonance Spectroscopy
3.
PLoS One ; 19(5): e0300751, 2024.
Article in English | MEDLINE | ID: mdl-38717999

ABSTRACT

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Subject(s)
Animals, Newborn , Pulmonary Alveoli , Animals , Mice , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Female , Repressor Proteins/genetics , Repressor Proteins/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Male , Fatty Acids/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Apoptosis Regulatory Proteins
4.
Article in English | MEDLINE | ID: mdl-38722758

ABSTRACT

Strain TC023T, a Gram-positive, long, rod-shaped, spore-forming anaerobe, was isolated from the faeces of a heart failure mouse model. The strain formed greyish-white coloured colonies with a convex elevation on brain-heart infusion medium supplemented with 0.1 % sodium taurocholate, incubated at 37 °C for 2 days. Taxonomic analysis based on the 16S rRNA gene sequence showed that TC023T belonged to the genus Turicibacter, and was closely related to Turicibacter bilis MMM721T (97.6 %) and Turicibacter sanguinis MOL361T (97.4 %). The whole genome of the strain has a G+C content of 37.3 mol%. The average nucleotide identity and genome-to-genome distance between TC023T and Turicibacter bilis MMM721T were 77.6 % and 24.3 %, respectively, and those with Turicibacter sanguinis MOL361T were 75.4 % and 24.3 %, respectively. These genotypic, phenotypic, and biochemical analyses indicated that the isolate represents a novel species in the genus Turicibacter, and the name Turicibacter faecis sp. nov. is proposed. The type strain is TC023T (RIMD 2002001T=TSD 372T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Disease Models, Animal , Feces , Heart Failure , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Animals , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Mice , DNA, Bacterial/genetics , Heart Failure/microbiology , Genome, Bacterial , Male , Fatty Acids
5.
Article in English | MEDLINE | ID: mdl-38722771

ABSTRACT

Obligately anaerobic, Gram-stain-negative, wavy rods, strains 17YCFAHCo10, 18YCFAH0.3Co2 and 19YCFAH0.3Co2, were isolated from faecal samples of healthy Japanese people. The three isolates showed the highest 16S rRNA gene sequence similarity to Waltera intestinalis WCA3-601-WT-6HT (99.2-100 %) and Brotolimicola acetigignens f_CXYT (99.2-99.7 %). The 16S rRNA gene sequence analysis showed that the three isolates formed a cluster with W. intestinalis WCA3-601-WT-6HT. Strain 19YCFAH0.3Co2 formed a subcluster with the type strain of W. intestinalis and did not form a cluster with the other two isolates. B. acetigignens f_CXYT also formed a cluster with W. intestinalis WCA3-601-WT-6HT and three isolates. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain 19YCFAH0.3Co2 and W. intestinalis WCA3-601-WT-6HT were higher (72 % dDDH and 97 % ANI) than the cut-off values for species delimitation, indicating that strain 19YCFAH0.3Co2 is W. intestinalis. On the other hand, the dDDH and ANI values between strains 17YCFAHCo10 and 18YCFAH0.3Co2 and the type strain of W. intestinalis were lower (<34 % dDDH and <87 % ANI) than the cut-off values for species delimitation, indicating that these two isolates are different species from W. intestinalis. The percentage of conserved proteins and the average amino acid identity values support the assignment of the isolates to the genus Waltera. Strains 17YCFAHCo10 and 18YCFAH0.3Co2 could be distinguished from W. intestinalis by their inability to ferment melibiose and ribose and lack of activity for ß-glucuronidase. In addition, the dDDH and ANI values between two strains (17YCFAHCo10 and 18YCFAH0.3Co2) and B. acetigignens f_CXYT were higher (>78 % dDDH and >97 % ANI), indicating these two strains and B. acetigignens are the same species. As the genus Waltera has priority, B. acetigignens is transferred to the genus Waltera as Waltera acetigignens comb. nov. The type strain of W. acetigignens is f_CXYT (=JCM 34988T=DSM 107528T).


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Feces/microbiology , DNA, Bacterial/genetics , Japan , Humans , Fatty Acids/chemistry , Base Composition
6.
Article in English | MEDLINE | ID: mdl-38722773

ABSTRACT

A yellow pigmented, Gram-stain-positive, motile, facultatively anaerobic and irregular rod-shaped bacteria (strain M0-14T) was isolated from a till sample collected from the foreland of a high Arctic glacier near the settlement of Ny-Ålesund in the Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that M0-14T formed a lineage within the family Cellulomonadaceae, suborder Micrococcineae. M0-14T represented a novel member of the genus Pengzhenrongella and had highest 16S rRNA gene sequence similarity to Pengzhenrongella sicca LRZ-2T (97.3 %). Growth occurred at 4-25 °C (optimum 4-18 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0-5 % (w/v) NaCl. The predominant menaquinone was MK-9(H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol, one undefined phospholipid and five undefined phosphoglycolipids. The cell-wall diamino acid was l-ornithine whereas rhamnose and mannose were the cell-wall sugars. Polyphosphate particles were found inside the cells of M0-14T. Polyphosphate kinase and polyphosphate-dependent glucokinase genes were detected during genomic sequencing of M0-14. In addition, the complete pstSCAB gene cluster and phnCDE synthesis genes, which are important for the uptake and transport of phosphorus in cells, were annotated in the genomic data. According to the genomic data, M0-14T has a metabolic pathway related to phosphorus accumulation. The DNA G+C content of the genomic DNA was 70.8 %. On the basis of its phylogenetic relationship, phenotypic properties and chemotaxonomic distinctiveness, strain M0-14T represents a novel species of the genus Pengzhenrongella, for which the name Pengzhenrongella phosphoraccumulans sp. nov. is proposed. The type strain is M0-14T (= CCTCC AB 2012967T = NRRL B-59105T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Ice Cover , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Arctic Regions , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , Ice Cover/microbiology , Phospholipids , Svalbard
7.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731536

ABSTRACT

The quality of fat in infant milk is determined by the fatty acid profile and selected indices describing nutritional value. The aim of this study was to analyze the fatty acid profile and lipid quality indices of infant formulas and compare these data with breast milk. The study material included seven types of cow's milk-based follow-on infant formulas and samples of mature breast milk. The determination of fatty acids was performed using the gas chromatography (GC) technique. Lipid quality indices were calculated based on the relevant equations. Infant formulas contained more medium-chain fatty acids (MCFAs) and oleic acid. Moreover, they contained more than 30% more linoleic acid and more than twice as much α-linolenic acid and docosahexaenoic acid. In contrast, significant amounts of trans fatty acids (TFAs) were noted in breast milk, while infant formulas contained trace amounts. Infant formulas were characterized by a lower AI (Index of Atherogenicity) (0.49-0.98) and TI (Index of Thrombogenicity) (0.48-0.60) and a higher H/H (hypocholesterolemic/hypercholesterolemic) ratio (1.93-2.30) compared with breast milk (1.47, 1.60, and 1.21, respectively). The composition of infant formulas depended on the type of fat added at the production stage and differed significantly from breast milk, particularly in terms of polyunsaturated fatty acids and lipid quality indices.


Subject(s)
Fatty Acids , Infant Formula , Lipids , Milk, Human , Infant Formula/chemistry , Infant Formula/analysis , Humans , Fatty Acids/analysis , Milk, Human/chemistry , Infant , Lipids/analysis , Female , Nutritive Value , Animals
8.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731554

ABSTRACT

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.


Subject(s)
Fatty Acids , Plant Shoots , Fatty Acids/analysis , Plant Shoots/chemistry , Gas Chromatography-Mass Spectrometry , alpha-Linolenic Acid/analysis , Plant Oils/chemistry , Plant Oils/analysis
9.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
10.
Article in English | MEDLINE | ID: mdl-38739684

ABSTRACT

The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Anthozoa/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , China , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Phospholipids/analysis
11.
Article in English | MEDLINE | ID: mdl-38739685

ABSTRACT

An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Eubacterium , Fatty Acids , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Humans , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Female , Eubacterium/genetics , Eubacterium/isolation & purification , Eubacterium/classification , Feces/microbiology , Butyrates/metabolism , Genome, Bacterial , China , Adult
12.
Article in English | MEDLINE | ID: mdl-38728064

ABSTRACT

A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3T, was isolated from the faeces of an alpaca (Lama pacos). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Clostridium with the highest sequence similarities to Clostridium magnum DSM 2767T (96.8 %), Clostridium carboxidivorans P7T (96.3 %) and Clostridium aciditolerans JW/YJL-B3T (96.1 %). The average nucleotide identity between A1-XYC3T, C. magnum, C. carboxidivorans and C. aciditolerans was 77.4, 76.1 and 76.6  %, respectively. The predominant components of the cellular fatty acids of A1-XYC3T were C14 : 0, C16 : 0 and summed feature 10, containing C18:0/C17:0 cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within Clostridium sensu stricto for which the name Clostridium tanneri sp. nov. is proposed. The type strain of this species is strain A1-XYC3T (=CCM 9376T=NRRL B-65691T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Camelids, New World , Clostridium , DNA, Bacterial , Fatty Acids , Feces , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Camelids, New World/microbiology , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Animals , Clostridium/genetics , Clostridium/classification , Clostridium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , Molecular Sequence Data
13.
Article in English | MEDLINE | ID: mdl-38728074

ABSTRACT

A novel plant-beneficial bacterium strain, designated as JGH33T, which inhibited Peronophythora litchii sporangia germination, was isolated on Reasoner's 2A medium from a litchi rhizosphere soil sample collected in Gaozhou City, Guangdong Province, PR China. Cells of strain JGH33T were Gram-stain-positive, aerobic, non-motile, bent rods. The strain grew optimally at 30-37 °C and pH 6.0-8.0. Sequence similarity analysis based on 16S rRNA genes indicated that strain JGH33T exhibited highest sequence similarity to Sinomonas albida LC13T (99.2 %). The genomic DNA G+C content of the isolate was 69.1 mol%. The genome of JGH33T was 4.7 Mbp in size with the average nucleotide identity value of 83.45 % to the most related reference strains, which is lower than the species delineation threshold of 95 %. The digital DNA-DNA hybridization of the isolate resulted in a relatedness value of 24.9 % with its closest neighbour. The predominant respiratory quinone of JGH33T was MK-9(H2). The major fatty acids were C15 : 0 anteiso (43.4 %), C16 : 0 iso (19.1 %) and C17 : 0 anteiso (19.3 %), and the featured component was C18 : 3 ω6c (1.01 %). The polar lipid composition of strain JGH33T included diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, phosphatidylinositol and glycolipids. On the basis of polyphasic taxonomy analyses data, strain JGH33T represents a novel species of the genus Sinomonas, for which the name Sinomonas terricola sp. nov. is proposed, with JGH33T (=JCM 35868T=GDMCC 1.3730T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Litchi , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Litchi/microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phospholipids/analysis
14.
Article in English | MEDLINE | ID: mdl-38728177

ABSTRACT

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phaeophyceae , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Shewanella , Ubiquinone , Vibrio , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vibrio/genetics , Vibrio/classification , Vibrio/isolation & purification , Ubiquinone/analogs & derivatives , Shewanella/genetics , Shewanella/isolation & purification , Shewanella/classification , Phaeophyceae/microbiology , Vitamin K 2/analogs & derivatives , Phospholipids , Nucleic Acid Hybridization , Seawater/microbiology
15.
Article in English | MEDLINE | ID: mdl-38728178

ABSTRACT

A Gram-negative, facultative anaerobic, non-motile and rod-shaped bacterium, designated 10c7w1T, was isolated from a human gastrointestinal tract. Colonies on agar plates were small, circular, smooth and beige. The optimal growth conditions were determined to be 37 °C, pH 7.0-7.5 and 0 % (w/v) NaCl. Comparative analysis of complete 16S rRNA gene sequences revealed that strain 10c7w1T showed the highest sequence similarity of 95.8 % to Ottowia beijingensis MCCC 1A01410T, followed by Ottowia thiooxydans (95.2 %) JCM 11629T. The average amino acid identity values between 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were above 60 % (71.4 and 69.5 %). The average nucleotide identity values between strain 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were 76.9 and 72.5 %, respectively. The dominant fatty acids (≥10 %) were straight chain ones, with summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) and C16 : 00 being the most abundant. Q-8 was the only respiratory quinone. The major polar lipids of strain 10c7w1T were phosphatidylethanolamine, diphosphatidylglycerol and unknown lipids. The DNA G+C content of strain 10c7w1T was 63.6 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic data, strain 10c7w1T is considered to represent a novel species within the genus Ottowia, for which the name Ottowia cancrivicina sp. nov. is proposed. The type strain is 10c7w1T (=MCCC 1H01399T=KCTC 92200T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Stomach , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Humans , DNA, Bacterial/genetics , Stomach/microbiology , Nucleic Acid Hybridization , Ubiquinone , Phospholipids/chemistry
16.
Article in English | MEDLINE | ID: mdl-38728210

ABSTRACT

Two rod-shaped, obligate anaerobic, Gram-stain-positive bacteria isolated from the pig faeces were designated YH-ols2216 and YH-ols2217T. Analysis of 16S rRNA gene sequences revealed that these isolates were most related to the members of the family Atopobiaceae, within the order Coriobacteriales, and Granulimonas faecalis KCTC 25474T with 92.0 and 92.5% similarities, respectively. The 16S rRNA gene sequence similarity within isolates was 99.9 %; and those between isolates YH-ols2216 and YH-ols2217T, and Atopobium minutum DSM 20586T, the type species of the type genus Atopobium within the family Atopobiaceae, were 88.5 and 88.7 %, respectively. Those between isolates and Coriobacterium glomerans PW2T, the type species of the type genus Coriobacterium within the family Coriobacteriaceae, were 88.7 and 89.1 %, respectively. The multi-locus sequence tree revealed that the isolates, alongside the genera Granulimonas and Leptogranulimonas, formed a distinct cluster between the families Atopobiaceae and Coriobacteriaceae. The average nucleotide identities and digital DNA-DNA hybridization values for the isolates and their most closely related strains ranged from 67.7 to 76.2 % and from 18.4 to 23.3 %, respectively. The main cellular fatty acids of the isolates were C18 : 0 DMA, C18 : 1 ω9c, C18 : 0 12OH, C18 : 0, and C16 : 0. The cell wall contained the peptidoglycan meso-diaminopimelic acid. Lactate was the main end-product of the isolates. The major polar lipids of isolate YH-ols2217T were aminophospholipid, aminolipids, and lipids. Menaquinones were not identified in the cells of the isolates. The DNA G+C contents of isolates YH-ols2216 and YH-ols2217T were 67.5 and 67.6 mol%, respectively. Considering these chemotaxonomic, phenotypic, and phylogenetic properties, Kribbibacteriaceae fam. nov. is proposed within the order Coriobacteriales. YH-ols2216 (=KCTC 25708=NBRC 116429) and YH-ols2217T (=KCTC 25709T=NBRC 116430T) represent a novel taxon within this new family and the name Kribbibacterium absianum gen. nov., sp. nov. is proposed. In addition, the genera Granulimonas and Leptogranulimonas are transferred to the family Kribbibacteriaceae fam. nov.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Feces , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Animals , Feces/microbiology , Swine , Nucleic Acid Hybridization , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Peptidoglycan
17.
Article in English | MEDLINE | ID: mdl-38728208

ABSTRACT

A Gram-stain-negative and rod-shaped bacterium, designated strain CY04T, was isolated from a sediment sample collected from the Yellow Sea. CY04T exhibited the highest 16S rRNA gene sequence similarity of 98.7 % to Zongyanglinia huanghaiensis CY05T, followed by the similarities of 98.6 %, 98.0 and 98.0 % to Zongyanglinia marina DSW4-44T, Parasedimentitalea marina W43T and Parasedimentitalea psychrophila QS115T respectively. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on genome sequences revealed that CY04T formed a robust cluster with Z. huanghaiensis CY05T, Z. marina DSW4-44T, P. marina W43T and P. psychrophila QS115T. Calculated digital DNA-DNA hybridisation and average nucleotide identity values between CY04T and its closely related species were 22.2-23.7 % and 79.0-81.2 % respectively. Cells of CY04T were strictly aerobic, non-motile and positive for catalase, oxidase and denitrification. CY04T harboured a set of genes encoding the enzymes involved in denitrification. Growth occurred at 10-30 °C (optimum, 20 °C), at pH 6.5-9.5 (optimum, pH 8.0) and with 1-6 % (w/v) (optimum, 2.5 %,) NaCl. The major component of the fatty acids was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The isoprenoid quinone was Q-10. Results of the phenotypic, chemotaxonomic and molecular study indicate that strain CY04T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea denitrificans sp. nov. is proposed. The type strain is CY04T (=MCCC 1K08635T=KCTC 62199T). It is also proposed that Zongyanglinia huanghaiensis and Zongyanglinia marina should be reclassified as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. An emended description of the genus Parasedimentitalea is also proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Denitrification , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Geologic Sediments/microbiology , China , Seawater/microbiology , Ubiquinone
18.
Food Res Int ; 186: 114350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729698

ABSTRACT

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Subject(s)
Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
19.
Food Res Int ; 186: 114355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729701

ABSTRACT

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Subject(s)
Digestion , Fatty Acids , Hordeum , Oleic Acid , Starch , Starch/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Hordeum/chemistry , Oleic Acid/chemistry , Stearic Acids/chemistry , Linoleic Acid/chemistry , alpha-Linolenic Acid/chemistry , Oleic Acids
20.
Food Res Int ; 186: 114317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729709

ABSTRACT

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Subject(s)
Digestion , Infant Formula , Infant, Premature , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant Formula/chemistry , Infant, Newborn , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Gastrointestinal Tract/metabolism , Models, Biological , Monoglycerides/metabolism , Monoglycerides/analysis , Dietary Fats/metabolism , Dietary Fats/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...