Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.175
Filter
1.
Nat Commun ; 15(1): 3962, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730247

ABSTRACT

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Subject(s)
Chalcones , Adult , Aged , Female , Humans , Male , Middle Aged , Adiponectin/metabolism , Adiponectin/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Chalcones/therapeutic use , Chalcones/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Propionates , Triglycerides/blood , Triglycerides/metabolism
3.
Pharmacol Rev ; 76(3): 454-499, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697855

ABSTRACT

Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.


Subject(s)
Fatty Liver , Humans , Fatty Liver/drug therapy , Fatty Liver/physiopathology , Animals
4.
Hereditas ; 161(1): 17, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755697

ABSTRACT

BACKGROUND: This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed. RESULTS: The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels. CONCLUSION: Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.


Subject(s)
Network Pharmacology , Humans , Hep G2 Cells , Dendrobium , Molecular Docking Simulation , Male , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/drug effects , Female , Proto-Oncogene Proteins c-akt/metabolism , Middle Aged , Fatty Liver/drug therapy , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Plant Extracts/therapeutic use , Plant Extracts/pharmacology
5.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727268

ABSTRACT

Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and ß-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and ß-Cat.


Subject(s)
Carnitine , Dietary Supplements , Dyslipidemias , Ginkgo biloba , Liver , Plant Extracts , Animals , Liver/drug effects , Liver/pathology , Liver/metabolism , Carnitine/pharmacology , Male , Rats , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology , Fatty Liver/metabolism , Rats, Sprague-Dawley , Lipid Metabolism/drug effects , Antioxidants/pharmacology , Diet, High-Fat/adverse effects , Ginkgo Extract
6.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38619434

ABSTRACT

BACKGROUND: Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS: l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS: Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS: Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Humans , Animals , Mice , Liver Neoplasms/prevention & control , Carcinoma, Hepatocellular/prevention & control , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Carnitine/pharmacology , Carnitine/therapeutic use , Fibrosis , Inflammation , Adaptor Proteins, Signal Transducing
7.
Food Funct ; 15(8): 4515-4526, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38567805

ABSTRACT

Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1ß, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Glycine , Glycine/analogs & derivatives , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Mice , Diet, High-Fat/adverse effects , Male , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/drug therapy , Glycine/pharmacology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Inflammation/drug therapy , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver/metabolism , Liver/drug effects , Dietary Supplements
8.
Biomed Pharmacother ; 174: 116520, 2024 May.
Article in English | MEDLINE | ID: mdl-38581924

ABSTRACT

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Subject(s)
Benzhydryl Compounds , Diet, High-Fat , Glucosides , Liver , Rats, Inbred SHR , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Male , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cardiotonic Agents/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Protective Agents/pharmacology , Hypertension/drug therapy
9.
Food Funct ; 15(8): 4421-4435, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563324

ABSTRACT

Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Inflammation , Insulin Resistance , Mice, Inbred C57BL , Tea , Animals , Male , Mice , Catechin/pharmacology , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Tea/chemistry
10.
Medicine (Baltimore) ; 103(16): e37846, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640324

ABSTRACT

The current study aimed to investigate the potential role of astragaloside IV (AS-IV) in improving cellular lipid deposition and its underlying mechanism. A fatty liver cell model was established by treating hepatoma cells with palmitic acid. AS-IV and SC79 were used for treatment. Oil Red O staining was applied to detect intracellular lipid deposition, and transmission electron microscopy was utilized to assess autophagosome formation. Immunofluorescence double staining was applied to determine microtubule-associated proteins 1A/1B light chain 3 (LC3) expression. Western blot analysis was performed to detect the expression of LC3, prostacyclin, Beclin-1, V-akt murine thymoma viral oncogene homolog (Akt), phosphorylated Akt, mTOR, and phosphorylated mTOR. Oil Red O staining revealed that AS-IV reduced intracellular lipid accumulation. Further, it increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in the cells. It also reduced the phosphorylation levels of Akt and mTOR and the levels of prostacyclin. However, the effects of AS-IV decreased with SC79 treatment. In addition, LC3B + BODIPY493/503 fluorescence double staining showed that AS-IV reduced intracellular lipid deposition levels by enhancing autophagy. AS-IV can reduce lipid aggregation in fatty liver cells, which can be related to enhanced hepatocyte autophagy by inhibiting the Akt/mTOR signaling pathway.


Subject(s)
Autophagy , Fatty Liver , Lipid Metabolism , Saponins , Triterpenes , Animals , Humans , Mice , Autophagy/drug effects , Azo Compounds , Beclin-1/metabolism , Fatty Liver/drug therapy , Lipids , Prostaglandins I , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Triterpenes/pharmacology , Lipid Metabolism/drug effects
11.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669300

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Subject(s)
Liver , Mice, Inbred C57BL , Xanthophylls , Xanthophylls/pharmacology , Animals , Humans , Mice , Male , Liver/metabolism , Liver/drug effects , Hep G2 Cells , Lipid Metabolism/drug effects , PPAR alpha/metabolism , PPAR alpha/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/genetics , Obesity/metabolism , Obesity/drug therapy , Obesity/genetics , Lipogenesis/drug effects , Mice, Obese
12.
Biomed Pharmacother ; 174: 116582, 2024 May.
Article in English | MEDLINE | ID: mdl-38642504

ABSTRACT

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Subject(s)
Catechin/analogs & derivatives , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Tea , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Male , Tea/chemistry , Mice , Fatty Acids, Volatile/metabolism , Liver/drug effects , Liver/metabolism , Lipid Metabolism/drug effects , Dyslipidemias/drug therapy , Dyslipidemias/prevention & control , Fatty Liver/prevention & control , Fatty Liver/drug therapy
13.
Nutrients ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542814

ABSTRACT

(1) Background: Modulators of the Neuropeptide Y (NPY) system are involved in energy metabolism, but the effect of NPY receptor antagonists on metabolic-dysfunction-associated steatotic liver disease (MASLD), a common obesity-related comorbidity, are largely unknown. In this study, we report on the effects of antagonists of the NPY-2 receptor (Y2R) in comparison with empagliflozin and semaglutide, substances that are known to be beneficial in MASLD. (2) Methods: Diet-induced obese (DIO) male Wistar rats were randomized into the following treatment groups: empagliflozin, semaglutide ± PYY3-36, the Y2R antagonists JNJ 31020028 and a food-restricted group, as well as a control group. After a treatment period of 8 weeks, livers were weighed and histologically evaluated. QrtPCR was performed to investigate liver inflammation and de novo lipogenesis (in liver and adipose tissue). Serum samples were analysed for metabolic parameters. (3) Results: Semaglutide + PYY3-36 led to significant weight loss, reduced liver steatosis (p = 0.05), and decreased inflammation, insulin resistance, and leptin levels. JNJ-31020028 prevented steatosis (p = 0.03) without significant weight loss. Hepatic downregulation of de novo lipogenesis-regulating genes (SREBP1 and MLXIPL) was observed in JNJ-31020028-treated rats (p ≤ 0.0001). Food restriction also resulted in significantly reduced weight, steatosis, and hepatic de novo lipogenesis. (4) Conclusions: Body weight reduction (e.g., by food restriction or drugs like semaglutide ± PYY3-36) is effective in improving liver steatosis in DIO rats. Remarkably, the body-weight-neutral Y2R antagonists may be effective in preventing liver steatosis through a reduction in de novo lipogenesis, making this drug class a candidate for the treatment of (early) MASLD.


Subject(s)
Benzamides , Benzhydryl Compounds , Fatty Liver , Glucagon-Like Peptides , Glucosides , Piperazines , Receptors, Neuropeptide Y , Rats , Male , Animals , Receptors, Neuropeptide Y/metabolism , Rats, Wistar , Obesity/complications , Obesity/drug therapy , Diet , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Weight Loss , Inflammation
14.
JAMA ; 331(11): 920-929, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38502074

ABSTRACT

Importance: Aspirin may reduce severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and lower the incidence of end-stage liver disease and hepatocellular carcinoma, in patients with MASLD. However, the effect of aspirin on MASLD is unknown. Objective: To test whether low-dose aspirin reduces liver fat content, compared with placebo, in adults with MASLD. Design, Setting, and Participants: This 6-month, phase 2, randomized, double-blind, placebo-controlled clinical trial was conducted at a single hospital in Boston, Massachusetts. Participants were aged 18 to 70 years with established MASLD without cirrhosis. Enrollment occurred between August 20, 2019, and July 19, 2022, with final follow-up on February 23, 2023. Interventions: Participants were randomized (1:1) to receive either once-daily aspirin, 81 mg (n = 40) or identical placebo pills (n = 40) for 6 months. Main Outcomes and Measures: The primary end point was mean absolute change in hepatic fat content, measured by proton magnetic resonance spectroscopy (MRS) at 6-month follow-up. The 4 key secondary outcomes included mean percentage change in hepatic fat content by MRS, the proportion achieving at least 30% reduction in hepatic fat, and the mean absolute and relative reductions in hepatic fat content, measured by magnetic resonance imaging proton density fat fraction (MRI-PDFF). Analyses adjusted for the baseline value of the corresponding outcome. Minimal clinically important differences for study outcomes were not prespecified. Results: Among 80 randomized participants (mean age, 48 years; 44 [55%] women; mean hepatic fat content, 35% [indicating moderate steatosis]), 71 (89%) completed 6-month follow-up. The mean absolute change in hepatic fat content by MRS was -6.6% with aspirin vs 3.6% with placebo (difference, -10.2% [95% CI, -27.7% to -2.6%]; P = .009). Compared with placebo, aspirin treatment significantly reduced relative hepatic fat content (-8.8 vs 30.0 percentage points; mean difference, -38.8 percentage points [95% CI, -66.7 to -10.8]; P = .007), increased the proportion of patients with 30% or greater relative reduction in hepatic fat (42.5% vs 12.5%; mean difference, 30.0% [95% CI, 11.6% to 48.4%]; P = .006), reduced absolute hepatic fat content by MRI-PDFF (-2.7% vs 0.9%; mean difference, -3.7% [95% CI, -6.1% to -1.2%]; P = .004]), and reduced relative hepatic fat content by MRI-PDFF (-11.7 vs 15.7 percentage points; mean difference, -27.3 percentage points [95% CI, -45.2 to -9.4]; P = .003). Thirteen participants (32.5%) in each group experienced an adverse event, most commonly upper respiratory tract infections (10.0% in each group) or arthralgias (5.0% for aspirin vs 7.5% for placebo). One participant randomized to aspirin (2.5%) experienced drug-related heartburn. Conclusions and Relevance: In this preliminary randomized clinical trial of patients with MASLD, 6 months of daily low-dose aspirin significantly reduced hepatic fat quantity compared with placebo. Further study in a larger sample size is necessary to confirm these findings. Trial Registration: ClinicalTrials.gov Identifier: NCT04031729.


Subject(s)
Anti-Inflammatory Agents , Aspirin , Fatty Liver , Liver , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Aspirin/adverse effects , Aspirin/pharmacology , Aspirin/therapeutic use , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/prevention & control , Double-Blind Method , End Stage Liver Disease/etiology , End Stage Liver Disease/prevention & control , Fatty Liver/complications , Fatty Liver/diagnostic imaging , Fatty Liver/drug therapy , Fatty Liver/metabolism , Follow-Up Studies , Liver/diagnostic imaging , Liver/drug effects , Liver Cirrhosis , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Proton Magnetic Resonance Spectroscopy
15.
Clin Res Hepatol Gastroenterol ; 48(4): 102314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467276

ABSTRACT

BACKGROUND: Primary dysfunction and rejection are more common in donor liver tissues with steatosis. AMP-activated protein kinase (AMPK) assumes organ-protective functions during ischemia. Metformin was used for the activation of AMPK in hepatocytes. The aim of this study is to investigate the effectiveness of metformin administration for the reversal of cold-ischemia-induced damage in hepatosteatosis. MATERIAL AND METHODS: Seven-week-old C7BL56 male-mice (n = 109) were separated into four groups depending on diet type and metformin use. A specific diet model was followed for 10 weeks to induce hepatosteatosis. A group of the animals was administered with metformin for the last four weeks via oral gavage. After resection, the liver tissues were perfused and kept for 0-6-12-24 h in the UW solution. Histopathological examinations were performed, and Western blot was utilized to analyze p-AMPK and AMPK expression levels. RESULTS: Hepatosteatosis decreased significantly with metformin. The steatotic liver group had more prominent pericentral inflammation, necrosis as well as showing a decreased and more delayed AMPK response than the non-fat group. All these alterations could be corrected using metformin. CONCLUSION: Metformin can increase the resistance of livers with hepatosteatosis to cold-ischemia-induced damage, which in turn may pave the way for successful transplantation of fatty living-donor livers.


Subject(s)
Fatty Liver , Liver Transplantation , Metformin , Organ Preservation Solutions , Reperfusion Injury , Male , Mice , Animals , Humans , Metformin/pharmacology , Metformin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Living Donors , Liver/pathology , Fatty Liver/drug therapy , Fatty Liver/etiology , Glutathione , Raffinose , Allopurinol , Insulin , Adenosine
16.
Eur J Gastroenterol Hepatol ; 36(6): 793-801, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38526942

ABSTRACT

BACKGROUND/AIMS: Pemafibrate is a selective peroxisome proliferator-activated receptor α modulator that improves serum alanine aminotransferase (ALT) in dyslipidemia patients. We previously reported that pemafibrate significantly improves liver function, serum triglyceride (TG) levels and liver stiffness in non-alcoholic fatty liver disease patients, however the influence of alcohol consumption was not considered. Therefore, we explored pemafibrate efficacy in patients with steatotic liver disease (SLD) and alcohol-associated liver disease (ALD). METHODS: We retrospectively evaluated pemafibrate efficacy on liver enzymes and lipids in metabolic dysfunction-associated SLD (MASLD) (n = 93), MASLD plus increased alcohol intake (MetALD; n = 23) and ALD (n = 22) patients who had taken pemafibrate for at least 48 weeks. Liver shear wave velocity (SWV, n = 75) was also evaluated. RESULTS: In MASLD group, ALT, aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GTP) and TG values were significantly decreased from baseline to week 24 and week 48 ( P  < 0.0001). ALT and TG values in MetALD group and ALT and AST values in ALD group were also significantly decreased from baseline to week 24 and week 48. Study participant SWV values decreased from baseline to week 48. We observed no significant difference in changes to ALT, AST, γ-GTP and TG (value at week 24 or week 48 minus value at baseline) among the three groups. CONCLUSION: Pemafibrate improves liver function and liver stiffness thus making it a promising therapeutic agent for SLD, even in patients with excess alcohol consumption (MetALD and ALD groups).


Subject(s)
Alanine Transaminase , Alcohol Drinking , Aspartate Aminotransferases , Benzoxazoles , Butyrates , Liver , Triglycerides , gamma-Glutamyltransferase , Humans , Male , Female , Middle Aged , Retrospective Studies , gamma-Glutamyltransferase/blood , Alcohol Drinking/adverse effects , Treatment Outcome , Butyrates/therapeutic use , Benzoxazoles/therapeutic use , Alanine Transaminase/blood , Triglycerides/blood , Aspartate Aminotransferases/blood , Aged , Liver/drug effects , Liver/pathology , Elasticity Imaging Techniques , Adult , Non-alcoholic Fatty Liver Disease/drug therapy , Time Factors , Biomarkers/blood , Fatty Liver/drug therapy , Fatty Liver, Alcoholic/drug therapy
17.
Phytomedicine ; 128: 155505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547616

ABSTRACT

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , PCSK9 Inhibitors , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Lipid Metabolism/drug effects , Animals , Proprotein Convertase 9/metabolism , Fatty Liver, Alcoholic/drug therapy , Liver/drug effects , Fatty Liver/drug therapy
18.
Diabetes Obes Metab ; 26(6): 2339-2348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504118

ABSTRACT

AIM: Dipeptidyl peptidase-4 (DPP-4) inhibitors suppress the inactivation of incretin hormones and lower blood glucose levels by inhibiting DPP-4 function. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels in an insulin-independent manner by inhibiting renal reabsorption of glucose. DPP-4 and SGLT2 inhibitors each have the potential to improve hepatic steatosis; however, their combined effects remain unclear. In this study, we examined the effects of the combination of these drugs on hepatic steatosis using high-fat diet-fed mice. METHOD: C57BL/6J male mice were fed a 60% high-fat diet for 2 months to induce hepatic steatosis. Mice were divided into four groups (control; DPP-4 inhibitor anagliptin; SGLT2 inhibitor luseogliflozin; anagliptin and luseogliflozin combination), and the effects of each drug and their combination on hepatic steatosis after a 4-week intervention were evaluated. RESULTS: There were no differences in blood glucose levels among the four groups. Anagliptin suppresses inflammation- and chemokine-related gene expression. It also improved macrophage fractionation in the liver. Luseogliflozin reduced body weight, hepatic gluconeogenesis and blood glucose levels in the oral glucose tolerance test. The combination treatment improved hepatic steatosis without interfering with the effects of anagliptin and luseogliflozin, respectively, and fat content and inflammatory gene expression in the liver were significantly improved in the combination group compared with the other groups. CONCLUSION: The combination therapy with the DPP-4 inhibitor anagliptin and the SGLT2 inhibitor luseogliflozin inhibits fat deposition in the liver via anti-inflammatory effects during the early phase of diet-induced liver steatosis.


Subject(s)
Diet, High-Fat , Dipeptidyl-Peptidase IV Inhibitors , Mice, Inbred C57BL , Sodium-Glucose Transporter 2 Inhibitors , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Male , Diet, High-Fat/adverse effects , Mice , Liver/drug effects , Liver/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Drug Therapy, Combination , Sorbitol/analogs & derivatives , Sorbitol/pharmacology , Sorbitol/therapeutic use , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Glucosides/pharmacology , Glucosides/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Blood Glucose/drug effects , Blood Glucose/metabolism , Drug Synergism , Sodium-Glucose Transporter 2
19.
Diabetes Obes Metab ; 26(6): 2001-2016, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511418

ABSTRACT

Despite its considerable and growing burden, there are currently no Food and Drug Administration-approved treatments for metabolic dysfunction-associated steatotic liver disease or its progressive form, metabolic dysfunction-associated steatohepatitis (MASH). Several glucagon-like peptide-1 receptor agonists (GLP-1RAs) and other agents are in various phases of clinical development for use in MASH; an ideal therapy should reduce liver fat content, improve chronic liver disease, help mitigate metabolic comorbidities and decrease all-cause mortality. Because of interconnected disease mechanisms, metabolic dysfunction-associated steatotic liver disease/MASH often coexists with type 2 diabetes (T2D), obesity and cardiovascular disease. Various GLP-1RAs are Food and Drug Administration-approved for use in T2D, and two, liraglutide and semaglutide, are approved for overweight and obesity. GLP-1RAs decrease glucose levels and body weight and improve cardiovascular outcomes in people with T2D who are at high risk of cardiovascular disease. In addition, GLP-1RAs have been reported to reduce liver fat content and liver enzymes, reduce oxidative stress and improve hepatic de novo lipogenesis and the histopathology of MASH. Weight loss may contribute to these effects; however, the exact mechanisms are unknown. Adverse events that are commonly associated with GLP-1RAs include vomiting, nausea and diarrhoea. There is a lack of evidence from meta-analyses regarding the increased risk of acute pancreatitis and various forms of cancer with GLP-1RAs. Large-scale, phase 3 trials, which will provide definitive data on GLP-1RAs and other potential therapies in MASH, are ongoing. Given the spectrum of modalities under investigation, it is hoped that these trials will support the identification of pharmacotherapies that provide clinical benefit for patients with MASH.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/analogs & derivatives , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Fatty Liver/drug therapy , Liraglutide/therapeutic use , Liraglutide/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/complications , Liver/metabolism , Liver/drug effects , Glucagon-Like Peptide-1 Receptor Agonists
20.
Cell Rep Med ; 5(3): 101477, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508143

ABSTRACT

Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.


Subject(s)
Fatty Liver , Receptor, Adenosine A1 , Humans , Mice , Animals , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Fatty Liver/drug therapy , Lipogenesis/genetics , Diet, High-Fat/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...