Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793672

ABSTRACT

Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.


Subject(s)
Biomarkers , Feline Infectious Peritonitis , Luminescent Measurements , Orosomucoid , Cats , Animals , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Feline Infectious Peritonitis/blood , Biomarkers/blood , Orosomucoid/analysis , Orosomucoid/metabolism , Luminescent Measurements/methods , Prognosis , Antiviral Agents/therapeutic use , Female , Male , Coronavirus, Feline/isolation & purification
2.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712855

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine/analogs & derivatives , Plant Extracts , Sulfonic Acids , Vigna , Coronavirus, Feline/drug effects , Antiviral Agents/pharmacology , Animals , Plant Extracts/pharmacology , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Vigna/chemistry , Virus Replication/drug effects , Cell Line
3.
Vet Q ; 44(1): 1-9, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38288972

ABSTRACT

Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an in vitro feline microsome model with in vitro t1/2 and in vitro Clint calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. In vitro microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood in vitro, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.


Subject(s)
Adenosine Monophosphate , Adenosine , Alanine , Cat Diseases , Coronavirus Infections , Feline Infectious Peritonitis , Animals , Cats , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Cat Diseases/drug therapy , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/drug therapy , Plasma
4.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38236006

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine , Sulfonic Acids , Animals , Cats , Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy , Lactams/pharmacology , Leucine/analogs & derivatives , RNA , Sulfonic Acids/pharmacology
5.
J Vet Intern Med ; 38(1): 370-374, 2024.
Article in English | MEDLINE | ID: mdl-38032049

ABSTRACT

Feline infectious peritonitis (FIP) historically has been a fatal disease in cats. Recent unlicensed use of antiviral medication has been shown to markedly improve survival of this infection. An 8-month-old female spayed domestic short-haired cat undergoing treatment for presumptive FIP with the antiviral nucleoside analog GS-441524 developed acute progressive azotemia. Abdominal ultrasound examination identified multifocal urolithiasis including renal, ureteral, and cystic calculi. Unilateral ureteral obstruction progressed to suspected bilateral ureteral obstruction and subcutaneous ureteral bypass (SUB) was performed along with urolith removal and submission for analysis. A 2-year-old male neutered domestic medium-haired cat undergoing treatment for confirmed FIP with GS-441524 developed dysuria (weak urine stream, urinary incontinence, and difficulty expressing the urinary bladder). This cat also was diagnosed sonographically with multifocal urolithiasis requiring temporary tube cystostomy after cystotomy and urolith removal. In both cases, initial urolith analysis showed unidentified material. Additional testing confirmed the calculi in both cats to be 98% consistent with GS-441524. Additional clinical studies are required to determine best screening practices for cats presented for urolithiasis during treatment with GS-441524.


Subject(s)
Adenosine/analogs & derivatives , Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Ureteral Obstruction , Urinary Calculi , Urolithiasis , Male , Cats , Female , Animals , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/surgery , Ureteral Obstruction/veterinary , Urinary Calculi/veterinary , Urolithiasis/drug therapy , Urolithiasis/surgery , Urolithiasis/veterinary , Antiviral Agents/therapeutic use , Cat Diseases/diagnostic imaging , Cat Diseases/drug therapy , Cat Diseases/surgery
6.
Article in German | MEDLINE | ID: mdl-37956666

ABSTRACT

Feline infectious peritonitis (FIP) is one of the most common infectious diseases in cats that is fatal when untreated. So far, there is no legally available effective treatment in Germany. Treatment options include only symptomatic treatment (e. g. glucocorticoids, propentofylline), immunomodulatory approaches (e. g. interferons, polyprenyl immunostimulant), and antiviral chemotherapy with protease inhibitors (e. g. GC376) or nucleoside analogues (e. g. GS-441524, remdesivir). Symptomatic treatment does not cure FIP but may lead to a short-term improvement of clinical signs in a subset of cats. Immunomodulatory treatment has also not shown to be very promising. In contrary, the antiviral compounds GS-441524 and GC376 exhibited significant efficacy in several studies and their use saved the lives of many cats suffering from FIP. However, both agents are currently not licensed and thus cannot be legally administered by veterinarians in Germany. Legally, cats may only be legally treated with GS-441524 in a few countries (e.g. Great Britain and Australia). In other countries, GS-441524 is imported by cat owners via the black market and administered on their own. This article provides an overview of the available treatment options and an outlook on the legal use of effective antiviral drugs.


Subject(s)
Cat Diseases , Feline Infectious Peritonitis , Animals , Cats , Antiviral Agents/therapeutic use , Cat Diseases/drug therapy , Feline Infectious Peritonitis/drug therapy , Sulfonic Acids/therapeutic use , Treatment Outcome
7.
J Feline Med Surg ; 25(9): 1098612X231194460, 2023 09.
Article in English | MEDLINE | ID: mdl-37732386

ABSTRACT

OBJECTIVES: Feline infectious peritonitis (FIP) is a serious disease that arises due to feline coronavirus infection. The nucleoside analogues remdesivir and GS-441524 can be effective in its treatment, but most studies have used unregulated products of unknown composition. The aim of the present study was to describe the treatment of FIP using legally sourced veterinary-prescribed regulated veterinary compounded products containing known amounts of remdesivir (injectable) or GS-441524 (oral tablets). METHODS: Cats were recruited via email advice services, product sales contacts and study publicity. Cats were excluded if they were deemed unlikely to have FIP, were not treated exclusively with the veterinary compounded products, or if there was a lack of cat and/or treatment (including response) data. Extensive cat and treatment data were collected. RESULTS: Among the 307 cats recruited, the predominant type of FIP was most commonly abdominal effusive (49.5%) and then neurological (14.3%). Three treatment protocols were used; remdesivir alone (33.9%), remdesivir followed by GS-441524 (55.7%) and GS-441524 alone (10.4%). The median (range) initial treatment period duration and longest follow-up time point after starting treatment were 84 (1-330) days and 248 (1-814) days, respectively. The most common side effect was injection pain (in 47.8% of those given subcutaneous remdesivir). Of the 307 cats, 33 (10.8%) relapsed, 15 (45.5%) during and 18 (54.5%) after the initial treatment period. At the longest follow-up time point after completion of the initial treatment period, 84.4% of cats were alive. The cats achieving a complete response within 30 days of starting treatment were significantly more likely to be alive at the end of the initial treatment period than those cats that did not. CONCLUSIONS AND RELEVANCE: Legally sourced remdesivir and GS-441524 products, either alone or used sequentially, were very effective in the treatment of FIP in this group of cats. Variable protocols precluded statistical comparison of treatment regimens.


Subject(s)
Cat Diseases , Coronavirus Infections , Feline Infectious Peritonitis , Cats , Animals , Retrospective Studies , Feline Infectious Peritonitis/drug therapy , Coronavirus Infections/veterinary , Cat Diseases/drug therapy
8.
Viruses ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37632022

ABSTRACT

Nucleoside analogs GS-441524 and remdesivir (GS-5734) are effective in treating cats with feline infectious peritonitis (FIP). However, no studies have compared the efficacy between antiviral medications. The objective of this study was to evaluate the efficacy of orally administered GS-442514 (12.5-15 mg/kg) compared to orally administered remdesivir (25-30 mg/kg) in a double-blinded non-inferiority trial. Eighteen cats with effusive FIP were prospectively enrolled and randomly assigned to receive either GS-442514 or remdesivir. Cats were treated daily for 12 weeks and evaluated at week 0, 12, and 16. Survival and disease remission at week 16 were compared between groups. Five of 9 (55%) cats treated GS-441524 and 7/9 (77%) cats treated with remdesivir survived, with no difference in survival rate (p = 0.2). Remdesivir fulfilled the criteria for non-inferiority with a difference in survival of 22% (90% CI; -13.5-57.5%). Three of the 18 cats died within 48 h of enrollment. Excluding these cats, 5/6 (83%) of the cats treated with GS-441524 and 7/9 (77%) of the cats treated with remdesivir survived. These findings suggest that both orally administered GS-441524 and remdesivir are safe and effective anti-viral medications for the treatment of effusive FIP. Further optimization of the first 48 h of treatment is needed.


Subject(s)
Feline Infectious Peritonitis , Animals , Cats , Adenosine , Antiviral Agents/therapeutic use , Feline Infectious Peritonitis/drug therapy , Furans , Pyrroles , Triazines , Equivalence Trials as Topic , Double-Blind Method
9.
J Vet Intern Med ; 37(5): 1876-1880, 2023.
Article in English | MEDLINE | ID: mdl-37551843

ABSTRACT

BACKGROUND: Feline infectious peritonitis (FIP) is a viral disease in cats, caused by certain strains of coronavirus and has a high case fatality rate. OBJECTIVE: This case series reports the outcomes of treatment of cats with FIP using molnupiravir. ANIMALS: Eighteen cats diagnosed with FIP at the You-Me Animal Clinic, Sakura-shi, Japan between January and August 2022, and whose owners gave informed consent to this experimental treatment. METHODS: For this prospective observational study, molnupiravir tablets were compounded in-house at the You-Me Animal Clinic. Owners administered 10-20 mg/kg PO twice daily. Standard treatment duration was 84 days. RESULTS: Among 18 cats, 13 cats had effusive FIP and 5 had noneffusive FIP. Three cats had neurological or ocular signs of FIP before treatment. Four cats, all with effusive FIP, died or were euthanized within 7 days of starting treatment. The remaining 14 cats completed treatment and remained in remission at the time of writing (139-206 days after starting treatment). Elevated serum alanine transaminase (ALT) activity was found in 3 cats, all at Days 7-9, and all recovered without management. Two cats with jaundice were hospitalized, 1 during treatment (Day 37) and 1 with severe anemia at the start of treatment. CONCLUSIONS AND CLINICAL IMPORTANCE: This case series suggests that molnupiravir might be an effective and safe treatment for domestic cats with FIP at a dose of 10-20 mg/kg twice daily.


Subject(s)
Cat Diseases , Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Virus Diseases , Cats , Animals , Feline Infectious Peritonitis/drug therapy , Coronavirus Infections/veterinary , Virus Diseases/veterinary , Cat Diseases/drug therapy
10.
Vet Q ; 43(1): 1-9, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37556736

ABSTRACT

The adenosine analogue GS-441524 has demonstrated efficacy in treatment of feline infectious peritonitis (FIP). With no commercially registered formulations of GS-441524 available, global focus shifted to its pro-drug remdesivir, as it became more accessible throughout the COVID-19 pandemic. This study developed and validated a simple liquid chromatography equipped with a fluorescence detector to quantify plasma concentrations of GS-441524 applicable for routine therapeutic monitoring of remdesivir or GS-441524 therapy for FIP infected cats. A Waters X-Bridge C18, 5 µm, 150 × 4.6 mm, column was used and mixtures of 20 mM ammonium acetate (pH 4.5) with acetonitrile of 5% and 70% were prepared for gradient mobile phase. With a simple protein precipitation using methanol to clean plasma sample, GS-441524 was monitored at excitation and emission wavelengths of 250 nm and 475 nm, respectively. Using an external standard, the lowest and highest limits of quantification were 19.5 ng/mL to 10,000 ng/mL, respectively. The intra- and inter day trueness of the quality controls (QCs) were within 10% of their nominal concentrations and intra- and inter day precision of the QCs (expressed as the coefficient of variation) ranged from 1.7 to 5.7%, This assay was able to quantify plasma trough levels of GS-441524 (23.7-190.1 ng/mL) after the administration of remdesivir (9.9-15.0 mg/kg BW, IV or SC) in FIP cats (n = 12). Accordingly, this study generated an alternative and cost-effective way to quantify GS-441524 in feline biological fluids at least up to 24 hr after administrations of remdesivir.


Subject(s)
COVID-19 , Cat Diseases , Feline Infectious Peritonitis , Cats , Animals , Chromatography, High Pressure Liquid/veterinary , Chromatography, High Pressure Liquid/methods , COVID-19/veterinary , Pandemics , Feline Infectious Peritonitis/drug therapy
11.
J Vet Intern Med ; 37(5): 1784-1793, 2023.
Article in English | MEDLINE | ID: mdl-37403259

ABSTRACT

BACKGROUND: GS-441524 has been successfully used to treat feline infectious peritonitis (FIP) in cats. However, the use of its prodrug, remdesivir, in combination with a PO GS-441524 containing product for the treatment of FIP has not yet been described. OBJECTIVES: Describe treatment protocols, response to treatment and outcomes in cats with FIP treated with a combination of PO GS-441524 and injectable remdesivir. ANIMALS: Thirty-two client-owned cats diagnosed with effusive or non-effusive FIP including those with ocular and neurological involvement. METHODS: Cats diagnosed with FIP at a single university hospital between August 2021 and July 2022 were included. Variables were recorded from time of diagnosis, and subsequent follow-up information was obtained from the records of referring veterinarians. All surviving cats were observed for the entire 12-week treatment period. RESULTS: Cats received treatment with different combinations of IV remdesivir, SC remdesivir, and PO GS-441524 at a median (range) dosage of 15 (10-20) mg/kg. Clinical response to treatment was observed in 28 of 32 cats (87.5%) in a median (range) of 2 (1-5) days. Twenty-six of 32 cats (81.3%) were alive and in clinical and biochemical remission at the end of the 12-week treatment period. Six of 32 cats (18.8%) died or were euthanized during treatment with 4 of the 6 cats (66%) dying within 3 days of starting treatment. CONCLUSIONS: We describe the effective use of injectable remdesivir and PO GS-441524 for the treatment of FIP in cats. Success occurred using different treatment protocols and with different presentations of FIP including cats with ocular and neurological involvement.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Humans , Cats , Animals , Feline Infectious Peritonitis/drug therapy , Cat Diseases/drug therapy
12.
J Vet Intern Med ; 37(5): 1772-1783, 2023.
Article in English | MEDLINE | ID: mdl-37439383

ABSTRACT

BACKGROUND: Nucleoside analog GS-441524 is effective in treating cats with feline infectious peritonitis (FIP). Investigation into the use of parent nucleotide analog remdesivir (GS-5734) is needed. OBJECTIVES: To assess efficacy and tolerability of remdesivir with or without transition to GS-441524 in cats with FIP and document clinical and clinicopathologic progression over 6 months. ANIMALS: Twenty-eight client-owned cats with FIP. METHODS: Cats were prospectively recruited between May 2021 and May 2022. An induction dosage of remdesivir 10 to 15 mg/kg intravenously or subcutaneously q24h was utilized for 4 doses, with a maintenance dosage of remdesivir (6-15 mg/kg SC) or GS-441524 (10-15 mg/kg per os) every 24 hours continued for at least 84 days. Laboratory testing, veterinary, and owner assessments were recorded. RESULTS: Twenty-four cats survived to 6 months (86%). Three cats died within 48 hours. Excluding these, survival from 48 hours to 6 months was 96% (24/25). Remission was achieved by day 84 in 56% (14/25). Three cats required secondary treatment for re-emergent FIP. Remission was achieved in all 3 after higher dosing (15-20 mg/kg). Adverse reactions were occasional site discomfort and skin irritation with remdesivir injection. Markers of treatment success included resolution of pyrexia, effusions, and presenting signs of FIP in the first half of treatment and normalization of globulin concentration, and continued body weight gains in the latter half of the treatment period. CONCLUSIONS AND CLINICAL IMPORTANCE: Parenteral administration of remdesivir and oral administration of GS-441524 are effective and well-tolerated treatments for FIP. Early emphasis on clinical, and later emphasis on clinicopathologic response, appears prudent when monitoring treatment efficacy.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Humans , Cats , Animals , Feline Infectious Peritonitis/drug therapy , Exudates and Transudates , Cat Diseases/drug therapy
13.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: mdl-37112799

ABSTRACT

After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/prevention & control , Retrospective Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
14.
J Biol Chem ; 299(3): 102976, 2023 03.
Article in English | MEDLINE | ID: mdl-36738790

ABSTRACT

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Nucleocapsid Proteins , Virus Replication , Animals , Cats , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Culture Techniques , Coronavirus, Feline/drug effects , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/drug therapy , RNA, Viral/genetics , Virus Replication/drug effects
15.
Viruses ; 14(8)2022 08 06.
Article in English | MEDLINE | ID: mdl-36016355

ABSTRACT

Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Anti-Bacterial Agents/pharmacology , Cats , Cell Proliferation , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/drug therapy , Ionophores/pharmacology
16.
J Feline Med Surg ; 24(9): 905-933, 2022 09.
Article in English | MEDLINE | ID: mdl-36002137

ABSTRACT

CLINICAL IMPORTANCE: Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE: This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION: Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE: Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cat Diseases/diagnosis , Cat Diseases/drug therapy , Cats , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy
17.
J S Afr Vet Assoc ; 93(2): 112-115, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35934910

ABSTRACT

Historically, feline infectious peritonitis (FIP) has been considered almost invariably fatal. The recent COVID-19 pandemic has fuelled research in coronavirus pathophysiology and treatment. An unintended consequence is that we now have an effective treatment accessible for FIP. This paper reports on the successful resolution of immunohistochemistry-confirmed effusive FIP in an adolescent cat in South Africa following monotherapy with remdesivir at 4.9-5.6 mg/kg daily for 80 days.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy , South Africa , COVID-19 Drug Treatment
18.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: mdl-35632813

ABSTRACT

As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Cats , Coronavirus, Feline/genetics , Feces , Feline Infectious Peritonitis/drug therapy , Furans , Mutation , RNA, Viral/genetics
19.
BMC Vet Res ; 18(1): 55, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35078478

ABSTRACT

BACKGROUND: Coronaviruses (CoVs) are major human and animal pathogens and antiviral drugs are pursued as a complementary strategy, chiefly if vaccines are not available. Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by FIP virus (FIPV), a virulent pathotype of feline enteric coronavirus (FeCoV). Some antiviral drugs active on FIPV have been identified, but they are not available in veterinary medicine. ERDRP-0519 (ERDRP) is a non-nucleoside inhibitor, targeting viral RNA polymerase, effective against morbilliviruses in vitro and in vivo. RESULTS: The antiviral efficacy of ERDRP against a type II FIPV was evaluated in vitro in Crandell Reese Feline Kidney (CRFK) cells. ERDRP significantly inhibited replication of FIPV in a dose-dependent manner. Viral infectivity was decreased by up to 3.00 logarithms in cell cultures whilst viral load, estimated by quantification of nucleic acids, was reduced by nearly 3.11 logaritms. CONCLUSIONS: These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to assess whether ERDRP is suitable for treatment of FIPV in vivo.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline , Feline Infectious Peritonitis , Morpholines/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Animals , Cat Diseases/drug therapy , Cat Diseases/virology , Cats , Cell Line , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy
20.
Res Vet Sci ; 144: 27-33, 2022 May.
Article in English | MEDLINE | ID: mdl-35033848

ABSTRACT

Feline infectious peritonitis virus (FIPV: virulent feline coronavirus) causes a fatal disease called feline infectious peritonitis (FIP) in wild and domestic cat species. Recent studies identified several antiviral drugs that are effective against FIPV. Drug combination is one of the important strategies in the development of novel treatments for viral infections. GS-441524, a nucleoside analog, and itraconazole, a triazole antifungal drug, have been reported that have antiviral effect against FIPV. This study aims to investigate whether the combination of GS-441524 and itraconazole has synergic antiviral effect against FIPV. The antiviral effect was measured by plaque reduction assay using felis catus whole fatus-4 cell. The plaque reduction of GS-441524 against type I FIPVs increased as the concentration of itraconazole increased. The similar result was obtained for type II FIPV. In addition, the calculated combination index (CI) demonstrated that there was a strong synergy between GS-441524 and itraconazole. It is concluded that the combination of GS-441524 and itraconazole may enhance the individual effect of each drug against replication of type I FIPVs and may contribute to development more effective treatment strategy for FIP.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cat Diseases/drug therapy , Cats , Feline Infectious Peritonitis/drug therapy , Itraconazole/pharmacology , Itraconazole/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...