Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Theranostics ; 14(14): 5608-5620, 2024.
Article in English | MEDLINE | ID: mdl-39310104

ABSTRACT

Background: Current anti-obesity medications suffer from limited efficacy and side-effects because they act indirectly on either the central nervous system or gastrointestinal system. Herein, this work aims to introduce a transdermal photothermal and nanocatalytic therapy enabled by Prussian blue nanoparticles, which directly act on obese subcutaneous white adipose tissue (sWAT) to induce its beneficial remodeling including stimulation of browning, lipolysis, secretion of adiponectin, as well as reduction of oxidative stress, hypoxia, and inflammation. Methods: Prussian blue nanoparticles were synthesized and incorporated into silk fibroin hydrogel for sustained retention. The efficacy of mild photothermal (808 nm, 0.4 W/cm2, 5 min) and nanocatalytic therapy (mPTT-NCT) was assessed both in vitro (3T3-L1 adipocytes) and in vivo (obese mice). The underlying signaling pathways are carefully revealed. Additionally, biosafety studies were conducted to further validate the potential of this therapy for practical application. Results: On 3T3-L1 adipocytes, mPTT-NCT was able to induce browning, enhance lipolysis, and alleviate oxidative stress. On obese mice model, the synergistic treatment led to not only large mass reduction of the targeted sWAT (53.95%) but also significant improvement of whole-body metabolism as evidenced by the substantial decrease of visceral fat (65.37%), body weight (9.78%), hyperlipidemia, and systemic inflammation, as well as total relief of type 2 diabetes. Conclusions: By directly targeting obese sWAT to induce its beneficial remodeling, this synergistic therapy leads to significant improvements in whole-body metabolism and the alleviation of obesity-related conditions, including type 2 diabetes. The elucidation of underlying signaling pathways provides fundamental insights and shall inspire new strategies to combat obesity and its associated diseases.


Subject(s)
3T3-L1 Cells , Ferrocyanides , Nanoparticles , Obesity , Animals , Mice , Obesity/therapy , Nanoparticles/chemistry , Ferrocyanides/pharmacology , Oxidative Stress/drug effects , Male , Photothermal Therapy/methods , Mice, Inbred C57BL , Adipocytes/metabolism , Mice, Obese , Lipolysis/drug effects , Disease Models, Animal , Adipose Tissue, White/metabolism
2.
Nano Lett ; 24(37): 11697-11705, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39225479

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by obscure etiology and unsatisfactory therapeutic outcomes, making the development of new efficient therapies urgent. Superfluous reactive oxygen species (ROS) have historically been considered one of the crucial factors inducing the pathological progression of OA. Ultrasmall Prussian blue nanoparticles (USPBNPs), approximately sub-5 nm in size, are developed by regulating the configuration of polyvinylpyrrolidone chains. USPBNPs display an excellent ROS eliminating capacity and catalase-like activity, capable of decomposing hydrogen peroxide (H2O2) into O2. The anti-inflammatory mechanism of USPBNPs can be attributed to repolarizing macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype by decreasing the ROS levels accompanied by O2 improvement. Additionally, USPBNPs exhibit an exciting therapeutic efficiency against OA, comparable to that of hydrocortisone in vivo. This study not only develops a new therapeutic agent for OA but also offers an estimable insight into the application of the nanozyme.


Subject(s)
Ferrocyanides , Macrophages , Osteoarthritis , Reactive Oxygen Species , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Reactive Oxygen Species/metabolism , Animals , Macrophages/drug effects , Macrophages/metabolism , Mice , Nanoparticles/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Humans , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phenotype , Particle Size
3.
Nanomedicine (Lond) ; 19(25): 2049-2064, 2024.
Article in English | MEDLINE | ID: mdl-39225150

ABSTRACT

Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.


Photothermal therapy is a strategy to kill cancer cells that uses nanoparticles and lasers to generate heat. Here, we combine photothermal therapy with an immunotherapy that activates the body's T cells, a type of white blood cell, on a single platform, to treat melanoma, a type of skin cancer in a mouse. We find that this novel nanoparticle-based platform significantly improves the survival of mice bearing melanoma, without increasing liver toxicity.


Subject(s)
Ferrocyanides , Nanoparticles , Photothermal Therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Animals , Mice , Photothermal Therapy/methods , Nanoparticles/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Cell Line, Tumor , Humans , Melanoma, Experimental/drug therapy , Melanoma, Experimental/therapy , Liver/drug effects , Liver/metabolism , Melanoma/drug therapy , Melanoma/therapy
4.
ACS Nano ; 18(36): 24770-24783, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39164631

ABSTRACT

Regulating the complex microenvironment after tooth extraction to promote alveolar bone regeneration is a pressing challenge for restorative dentistry. In this study, through modulating the mechanical properties of the cellular matrix, we guided various types of cells by self-organizing to form multicellular spheroids (MCSs) and hybridized MCSs with Prussian Blue nanoparticles (PBNPs) in the process. The constructed Prussian Blue nanohybridized multicellular spheroids (PBNPs@MCSs) with empowered antioxidant functions effectively reduced cell apoptosis under peroxidative conditions and exhibited enhanced ability to regulate the microenvironment and promote bone repair both in vitro and in vivo. In addition, the PBNPs@MCSs exhibited enhanced photoacoustic imaging ability to trace low doses of PBNPs. Therefore, the constructed PBNPs@MCSs based on the biomimetic hydrogel can be used as a form of an engraftment building block, with a greater potential for pro-bone repair application in the complex microenvironment of the oral cavity.


Subject(s)
Antioxidants , Bone Regeneration , Ferrocyanides , Nanoparticles , Photoacoustic Techniques , Spheroids, Cellular , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Animals , Bone Regeneration/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Spheroids, Cellular/drug effects , Nanoparticles/chemistry , Mice , Humans , Tomography , Apoptosis/drug effects
5.
Int J Biol Macromol ; 278(Pt 1): 134606, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127276

ABSTRACT

To mitigate food spoilage caused by microbial contamination and extend the shelf life of food, antibacterial and eco-friendly biological packaging materials as an alternative to petroleum-based plastics is encouraged. Herein, an innovative and green composite film with triple antibacterial activity has been fabricated by introducing prussian blue nanoparticles (PBNPs) into chitosan (CS)-based films blended with gelatin (Gel) for the preservation of food, named CS/Gel/PB film. Due to the incorporation of PBNPs, CS/Gel/PB film exhibits enhanced mechanical, barrier and water resistance, and thermal abilities. The inherent bacterial trapping and killing capabilities of CS (contact killing), photothermal/photodynamic killing based on the excellent photothermal property of PBNPs under NIR irradiation synergistically facilitate the sterilization against Escherichia coli and Staphylococcus aureus (antibacterial ratio = 99.99 %). The film exhibits outstanding preservation capability in product storage, significantly extending the shelf life of strawberry and pork to 15 and 7 days, respectively. Meanwhile, the cytotoxicity assessment of CS/Gel/PB against HepG2 cells ascertains a cell viability exceeding 96 %, indicating a negligible toxicity level. Additionally, this film also exhibits superior biodegradability (preliminary degradation on the 10th day and completion on the 40th day) compared with PE film. Overall, these properties demonstrate great potential of CS/Gel/PB film as a novel packaging material.


Subject(s)
Anti-Bacterial Agents , Chitosan , Escherichia coli , Ferrocyanides , Food Packaging , Food Preservation , Gelatin , Nanoparticles , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Gelatin/chemistry , Food Packaging/methods , Food Preservation/methods , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Humans , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sterilization/methods , Hep G2 Cells , Animals
6.
Colloids Surf B Biointerfaces ; 244: 114184, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39214032

ABSTRACT

Human health is under growing threat from the increasing incidence of bacterial infections. Through their antimicrobial mechanisms, bacteria use appropriate strategies to overcome the antimicrobial effects of antibiotics. The enhanced effects of synergistic strategies on drug-resistant bacteria and biofilms have led to increasing interest in these approaches in recent years. Herein, biomimetic hydroxyethyl cellulose @ Prussian blue microparticles (HEC@PB MPs) generated by the gas-shearing method show a synergistic antibacterial property induced by antibiotic-, photothermal- and photodynamic- effect. MPs, as tri-modality antibacterial agents, exhibit ideal antibacterial activity and biofilm removal effect, and their mode of action on bacteria was investigated. Additionally, a drug release concept encouraged by the ROS-driven breakdown of cellulose, as seen in brown-rot fungi, was introduced. It combines ROS-responsive HEC and photodynamic PB and is likely to fit a niche in many applications.


Subject(s)
Anti-Bacterial Agents , Biofilms , Cellulose , Ferrocyanides , Microbial Sensitivity Tests , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Biofilms/drug effects , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Particle Size , Drug Liberation , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Humans , Surface Properties , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Biomimetics/methods , Reactive Oxygen Species/metabolism
7.
Int Immunopharmacol ; 141: 113009, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39191123

ABSTRACT

Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.


Subject(s)
Diabetes Mellitus, Experimental , Ferrocyanides , Macrophages , Reactive Oxygen Species , Wound Healing , Animals , Wound Healing/drug effects , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Rats , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species/metabolism , Male , Humans , Rats, Sprague-Dawley , Zirconium/chemistry , Human Umbilical Vein Endothelial Cells , Mice , Endothelial Cells/drug effects , Nanoparticles/chemistry , RAW 264.7 Cells , Macrophage Activation/drug effects
8.
Int J Nanomedicine ; 19: 6829-6843, 2024.
Article in English | MEDLINE | ID: mdl-39005958

ABSTRACT

Background: With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods: Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results: The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion: HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.


Subject(s)
Doxorubicin , Ferrocyanides , Glucose Oxidase , Phosphates , Photothermal Therapy , Zinc Compounds , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Mice , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Humans , Zinc Compounds/chemistry , Phosphates/chemistry , Phosphates/pharmacology , Photothermal Therapy/methods , Porosity , Nanoparticles/chemistry , Cell Line, Tumor , Drug Liberation , Mice, Inbred BALB C , Drug Delivery Systems/methods , Neoplasms/drug therapy , Neoplasms/therapy , Drug Carriers/chemistry
9.
Colloids Surf B Biointerfaces ; 241: 114065, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943768

ABSTRACT

Nanomaterial-based synergistic antibacterial agents are considered as promising tools to combat infections caused by antibiotic-resistant bacteria. Herein, multifunctional mesoporous silica nanoparticle (MSN)-based nanocomposites were fabricated for synergistic photothermal/photodynamic/chemodynamic therapy against methicillin-resistant Staphylococcus aureus (MRSA). MSN loaded with indocyanine green (ICG) as a core, while Prussian blue (PB) nanostructure was decorated on MSN surface via in situ growth method to form a core-shell nanohybrid (MSN-ICG@PB). Upon a near infrared (NIR) laser excitation, MSN-ICG@PB (200 µg mL-1) exhibited highly efficient singlet oxygen (1O2) generation and hyperthermia effect (48.7℃). In the presence of exogenous H2O2, PB with peroxidase-like activity promoted the generation of toxic hydroxyl radicals (•OH) to achieve chemodynamic therapy (CDT). PTT can greatly increase the permeability of bacterial lipid membrane, facilitating the generated 1O2 and •OH to kill bacteria more efficiently. Under NIR irradiation and exogenous H2O2, MSN-ICG@PB (200 µg mL-1) with good biocompatibility exhibited a synergistic antibacterial effect against MRSA with high bacterial killing efficiency (>98 %). Moreover, due to the synergistic bactericidal mechanism, MSN-ICG@PB with satisfactory biosafety makes it a promising antimicrobial agent to fight against MRSA.


Subject(s)
Anti-Bacterial Agents , Ferrocyanides , Indocyanine Green , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Silicon Dioxide , Methicillin-Resistant Staphylococcus aureus/drug effects , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Porosity , Microbial Sensitivity Tests , Photothermal Therapy , Nanoparticles/chemistry , Surface Properties , Particle Size , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/chemistry , Nanocomposites/chemistry , Infrared Rays , Humans , Animals
10.
Colloids Surf B Biointerfaces ; 241: 114045, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897024

ABSTRACT

Prussian blue (PB) is authenticated in clinical treatment, while it generally exhibits unfavorable chemodynamic therapy (CDT) performance. Herein, we developed manganese-doped prussian blue (PBM) nanoparticles to significantly enhance both CDT and photothermal therapy (PTT) effect. The lower redox potential of Mn3+/2+ (0.088 V) in PBM against that of Fe2+/3+ (0.192 V) in PB leads to favorable electron transfer of PBM with respect to PB. Besides, PBM has a lower charge-transfer resistance (Rct) of 2.98 Ω than 4.83 Ω of PB. Once PBM entering the tumor microenvironment (TME), Mn3+ may be readily reduced by glutathione (GSH) and therein to enhance intracellular oxidative stress. Meanwhile, the superoxide dismutase (SOD)-like activity of PBM facilitates the conversion of endogenous superoxide (O2•-) into H2O2. Mn2+ subsequently catalyzes H2O2 to generate toxic hydroxyl radicals (•OH). Notably, the PBM plus laser irradiation can effectively trigger a robust immunogenic cell death (ICD) due to the combination therapy of CDT and PTT. Additionally, the mice treated by PBM followed by laser irradiation efficiently avoided splenomegaly and lung metastasis, along with significant up-regulation of the Stimulator of Interferon Genes (STING) expression. Overall, PBM significantly inhibits tumor growth and metastasis, making it a promising multifunctional nanoplatform for cancer treatment.


Subject(s)
Ferrocyanides , Manganese , Nanoparticles , Photothermal Therapy , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Manganese/chemistry , Manganese/pharmacology , Animals , Mice , Humans , Nanoparticles/chemistry , Electrodes , Mice, Inbred BALB C , Combined Modality Therapy , Particle Size , Cell Line, Tumor , Tumor Microenvironment/drug effects , Cell Proliferation/drug effects , Surface Properties , Oxidative Stress/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
11.
Nanotechnology ; 35(36)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38834038

ABSTRACT

Give the emergence of drug resistance in bacteria resulting from antibiotic misuse, there is an urgent need for research and application of novel antibacterial approaches. In recent years, nanoparticles (NPs) have garnered significant attention due to their potential to disrupt bacteria cellular structure through loading drugs and special mechanisms, thus rendering them inactive. In this study, the surface of hollow polydopamine (HPDA) NPs was utilized for the growth of Prussian blue (PB), resulting in the formation of HPDA-PB NPs. Incorporation of Co element during the preparation process led to partial doping of PB with Co2+ions. The performance test results demonstrated that the HPDA-PB NPs exhibited superior photothermal conversion efficiency and peroxidase-like activity compared to PB NPs. HPDA-PB NPs have the ability to catalyze the formation of hydroxyl radicals from H2O2in a weakly acidic environment. Due to the tiny PB particles on the surface and the presence of Co2+doping, they have strong broad-spectrum antibacterial properties. Bothin vitroandin vivoevaluations confirm their efficacy against various bacterial strains, particularlyStaphylococcus aureus, and their potential to promote wound healing, making them a promising candidate for advanced wound care and antimicrobial applications.


Subject(s)
Anti-Bacterial Agents , Cobalt , Ferrocyanides , Indoles , Polymers , Staphylococcus aureus , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Polymers/pharmacology , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Cobalt/chemistry , Cobalt/pharmacology , Staphylococcus aureus/drug effects , Animals , Nanoparticles/chemistry , Microbial Sensitivity Tests , Mice , Wound Healing/drug effects
12.
Colloids Surf B Biointerfaces ; 240: 113998, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823340

ABSTRACT

Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanocomposites , Staphylococcus aureus , Wound Healing , Nanocomposites/chemistry , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Photochemotherapy , Microbial Sensitivity Tests , Mice , Sterilization/methods , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Particle Size , Zinc/chemistry , Zinc/pharmacology , Photothermal Therapy , Surface Properties , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Graphite
13.
ACS Nano ; 18(20): 13196-13213, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717096

ABSTRACT

There is an increasingly growing demand to balance tissue repair guidance and opportunistic infection (OI) inhibition in clinical implant surgery. Herein, we developed a nanoadjuvant for all-stage tissue repair guidance and biofilm-responsive OI eradication via in situ incorporating Cobaltiprotoporphyrin (CoPP) into Prussian blue (PB) to prepare PB-CoPP nanozymes (PCZs). Released CoPP possesses a pro-efferocytosis effect for eliminating apoptotic and progressing necrotic cells in tissue trauma, thus preventing secondary inflammation. Once OIs occur, PCZs with switchable nanocatalytic capacity can achieve bidirectional pyroptosis regulation. Once reaching the acidic biofilm microenvironment, PCZs possess peroxidase (POD)-like activity that can generate reactive oxygen species (ROS) to eradicate bacterial biofilms, especially when synergized with the photothermal effect. Furthermore, generated ROS can promote macrophage pyroptosis to secrete inflammatory cytokines and antimicrobial proteins for biofilm eradication in vivo. After eradicating the biofilm, PCZs possess catalase (CAT)-like activity in a neutral environment, which can scavenge ROS and inhibit macrophage pyroptosis, thereby improving the inflammatory microenvironment. Briefly, PCZs as nanoadjuvants feature the capability of all-stage tissue repair guidance and biofilm-responsive OI inhibition that can be routinely performed in all implant surgeries, providing a wide range of application prospects and commercial translational value.


Subject(s)
Biofilms , Pyroptosis , Biofilms/drug effects , Pyroptosis/drug effects , Animals , Mice , Reactive Oxygen Species/metabolism , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Prostheses and Implants , Macrophages/metabolism , Macrophages/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Humans , Efferocytosis
14.
ACS Appl Mater Interfaces ; 16(22): 28172-28183, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38772043

ABSTRACT

Caries is a destructive condition caused by bacterial infection that affects the hard tissues of the teeth, significantly reducing the quality of life for individuals. Photothermal therapy (PTT) offers a noninvasive and painless treatment for caries, but the use of unsafe laser irradiance limits its application. To address this challenge, we prepared nanoparticles of silver ion-doped Prussian blue (AgPB), which was encased within cationic guar gum (CG) to form the antibacterial PTT hydrogel CG-AgPB with a photothermal conversion efficiency of 34.4%. When exposed to an 808 nm laser at a power density of 0.4 W/cm2, the hydrogel readily reached a temperature of over 50 °C in just 3 min, synchronized by the discharge of Ag+ ions from the interstitial sites of AgPB crystals, resulting in broad-spectrum and synergistic antibacterial activities (>99%) against individual oral pathogens (Streptococcus sanguinis, Streptococcus mutans, and Streptococcus sobrinus) and pathogen-induced biofilms. In vivo, CG-AgPB-mediated PTT demonstrated a capability to profoundly reduce the terminal number of cariogenic bacteria to below 1% in a rat model of caries. Given the outstanding biocompatibility, injectability, and flushability, this CG-AgPB hydrogel may hold promise as a next-generation oral hygiene adjunct for caries management in a clinical setting.


Subject(s)
Anti-Bacterial Agents , Dental Caries , Ferrocyanides , Hydrogels , Silver , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Dental Caries/therapy , Dental Caries/drug therapy , Dental Caries/microbiology , Animals , Rats , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Photothermal Therapy , Biofilms/drug effects , Streptococcus mutans/drug effects , Microbial Sensitivity Tests , Humans , Rats, Sprague-Dawley
15.
Int J Biol Macromol ; 267(Pt 1): 131361, 2024 May.
Article in English | MEDLINE | ID: mdl-38574902

ABSTRACT

The survival rate of flap is a crucial factor for determining the success of tissue repair and reconstruction. Flap transplantation surgery often leads to ischemic and reperfusion injury, causing apoptosis and tissue necrosis, which significantly reduces the survival rate of flap. To address this issue, we developed a porcine skin decellularized matrix gel nanocomplex loaded with alprostadil (Alp) in Prussian blue nanoparticles (PB NPs) called Alp@PB-Gel. This gel not only maintained the cell affinity of the extracellular scaffold but also exhibited a high degree of plasticity. In vitro assays demonstrated that Alp@PB-Gel possessed antioxidant activity, scavenging ROS ability, and effectively promoted the angiogenesis and migration of human vascular endothelial cells (HUVECs) by stimulating the proliferation of vascular epithelial cells and fibroblasts. In vivo assays further confirmed that Alp@PB-Gel could effectively alleviate necrosis in the early and late stages after surgery, downregulate the levels of NLRP3 and CD68 to inhibit apoptosis and attenuate inflammation, while upregulate the levels of VEGF and CD31 to promote vascular tissue regeneration. Moreover, Alp@PB-Gel exhibited excellent cell affinity and biocompatibility, highlighting its potential for clinical application.


Subject(s)
Ferrocyanides , Gelatin , Ischemia , Nanoparticles , Animals , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Nanoparticles/chemistry , Humans , Gelatin/chemistry , Swine , Ischemia/drug therapy , Extracellular Matrix/metabolism , Surgical Flaps , Skin/drug effects , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic/drug effects , Mice
16.
Adv Healthc Mater ; 13(18): e2304536, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519046

ABSTRACT

Intense and persistent oxidative stress, excessive inflammation, and impaired angiogenesis severely hinder diabetic wound healing. Bioactive hydrogel dressings with immunoregulatory and proangiogenic properties have great promise in treating diabetic wounds. However, the therapeutic effects of dressings always depend on drugs with side effects, expensive cytokines, and cell therapies. Herein, a novel dynamic borate-bonds crosslinked hybrid multifunctional hydrogel dressings with photothermal properties are developed to regulate the microenvironment of diabetic wound sites and accelerate the whole process of its healing without additional medication. The hydrogel is composed of phenylboronic acid-modified chitosan and hyaluronic acid (HA) crosslinked by tannic acid (TA) through borate bonds and Prussian blue nanoparticles (PBNPs) with photothermal response characteristics are embedded in the polymer networks. The results indicate hydrogels show inherent broad-spectrum antioxidative activities through the integrated interaction of borate bonds, TA, and PBNPs. Meanwhile, combined with the regulation of macrophage phenotype by HA, the inflammatory microenvironment of diabetic wounds is transformed. Moreover, the angiogenesis is then enhanced by the mild photothermal effect of PBNPs, followed by promoted epithelialization and collagen deposition. In summary, this hybrid hydrogel system accelerates all stages of wound repair through antioxidative stress, immunomodulation, and proangiogenesis, showing great potential applications in diabetic wound management.


Subject(s)
Chitosan , Hyaluronic Acid , Hydrogels , Tannins , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Mice , Chitosan/chemistry , Tannins/chemistry , Tannins/pharmacology , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/therapy , Nanoparticles/chemistry , RAW 264.7 Cells , Antioxidants/chemistry , Antioxidants/pharmacology , Boronic Acids/chemistry , Boronic Acids/pharmacology , Male , Humans , Hot Temperature , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Rats
17.
Int J Biol Macromol ; 266(Pt 1): 131106, 2024 May.
Article in English | MEDLINE | ID: mdl-38552685

ABSTRACT

The process of diabetic wound healing was influenced by the excessive proliferation of reactive oxygen species (ROS). Therefore, in the process of healing diabetic wounds, it was crucial to removing ROS. This study designed composited nanoparticles: KBP, consisted by Konjac glucomannan, bovine serum albumin, and Prussian blue. Then they were embedded in Konjac glucomannan and hydroxypropyl trimethylammonium chloride chitosan composite hydrogel (KH), The KBP@KH hydrogel finally achieved excellent efficacy in diabetic wound healing. The in vitro and in vivo experiments demonstrated that KPB nanoparticles exhibited favorable ROS scavenging capability and biosafety. The KBP@KH hydrogel not only effectively eliminated ROS from diabetic wounds, but also exhibited excellent wound adaptability. The KBP@KH hydrogel facilitated angiogenesis and suppressed the production of inflammatory factors. Overall, the KBP@KH hydrogel dressing was characterized by its user-friendly nature, safety, and high efficiency.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Ferrocyanides , Hydrogels , Mannans , Nanocomposites , Reactive Oxygen Species , Serum Albumin, Bovine , Wound Healing , Animals , Cattle , Humans , Male , Mice , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Bandages , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Mannans/chemistry , Mannans/pharmacology , Nanocomposites/chemistry , Reactive Oxygen Species/metabolism , Serum Albumin, Bovine/chemistry , Wound Healing/drug effects
18.
Nanoscale ; 15(20): 9214-9228, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37158103

ABSTRACT

Numerous research studies have proved that lactate is pivotal in tumor proliferation, metastasis, and recurrence, so disrupting the lactate metabolism in the tumor microenvironment (TME) has become one of the effective methods of tumor treatment. Herein, we have developed a versatile nanoparticle (HCLP NP) based on hollow Prussian blue (HPB) as the functional carrier for loading α-cyano-4-hydroxycinnamate (CHC), and lactate oxidase (LOD), followed by coating with polyethylene glycol to enhance chemodynamic therapy (CDT) and the antimetastatic effect of cancer. The obtained HCLP NPs would be degraded under endogenous mild acidity within the TME to simultaneously release CHC and LOD. CHC inhibits the expression of monocarboxylate transporter 1 in tumors, thereby interrupting the uptake of lactate from the outside and alleviating tumor hypoxia by reducing lactate aerobic respiration. Meanwhile, the released LOD can catalyze the decomposition of lactate into hydrogen peroxide, further enhancing the efficacy of CDT by generating plenty of toxic reactive oxygen species through the Fenton reaction. The strong absorbance at about 800 nm endows HCLP NPs with excellent photoacoustic imaging properties. Both in vitro and in vivo studies have demonstrated that HCLP NPs can inhibit tumor growth and metastasis, providing a new possibility for tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Biological Transport , Ferrocyanides/pharmacology , Cell Respiration , Lactic Acid , Hydrogen Peroxide , Tumor Microenvironment , Cell Line, Tumor
19.
Biometals ; 36(5): 1125-1140, 2023 10.
Article in English | MEDLINE | ID: mdl-37222858

ABSTRACT

The similarities between thallium and potassium have suggested the use of calcium polystyrene sulfonate (CPS), an oral ion exchange resin, as a potential agent against thallium intoxication. Therefore, the study was an attempt to evaluate the efficacy of CPS and Prussian blue when given alone or in combination against thallium toxicity. The effect on binding capacity was investigated in terms of contact time, amount of CPS, influence of pH, simulated physiological solutions and interference of potassium ions. Also, rats were given single dose of thallium chloride (20 mg kg-1) and the treatment with PB and CPS was given for 28 days as CPS 30 g kg-1, orally, twice a day, PB 3 g kg-1, orally, twice a day and their combination. The effect of antidotal treatment was evaluated by calculating the thallium levels in various organs, blood, urine and feces. The results of the in vitro study indicated exceedingly quick binding in the combination of CPS and PB as compared to PB alone. Also, it was found that the binding capacity at pH 2.0 was considerably increased for PB with CPS (184.656 mg g-1) as compared to PB (37.771 mg g-1). Furthermore, statistically significant results were obtained in the in vivo study as after 7th day, thallium levels in blood of rats treated with combination were reduced by 64% as compared to control group and 52% as compared to alone PB treated group. Also, Tl retention in liver, kidney, stomach, colon and small intestine of combination treated rats was significantly reduced to 46%, 28%, 41%, 32% and 33% respectively, as compared to alone PB treated group. These findings demonstrate this as a good antidotal option against thallium intoxication.


Subject(s)
Antidotes , Thallium , Rats , Animals , Thallium/metabolism , Antidotes/pharmacology , Antidotes/therapeutic use , Ferrocyanides/pharmacology , Ferrocyanides/therapeutic use
20.
ACS Appl Mater Interfaces ; 15(14): 18191-18204, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36975190

ABSTRACT

Chemodynamic therapy (CDT) is an emerging tumor treatment; however, it is hindered by insufficient endogenous hydrogen peroxide (H2O2) and high glutathione (GSH) concentrations in the tumor microenvironment (TME). Furthermore, CDT has limited therapeutic efficacy as a monotherapy. To overcome these limitations, in this study, a nanoplatform is designed and constructed from Cu-doped mesoporous Prussian blue (CMPB)-encapsulated glucose oxidase (GOx) with a coating of hyaluronic acid (HA) modified with a nitric oxide donor (HN). In the proposed GOx@CMPB-HN nanoparticles, the dopant Cu2+ ions are crucial to combining and mutually promoting multiple therapeutic approaches, namely, CDT, photothermal therapy (PTT), and starvation therapy. The dopant Cu2+ ions in CMPB protect against reactive oxygen species to deplete the intracellular GSH in the TME. Additionally, the byproduct Cu+ ions act as a substrate for a Fenton-like reaction that activates CDT. Moreover, H2O2, which is another important substrate, is produced in large quantities through intracellular glucose depletion caused by the nanoparticle-loaded GOx, and the gluconic acid produced in this reaction further enhances the TME acidity and creates a better catalytic environment for CDT. In addition, Cu2+ doping greatly improves the mesoporous Prussian blue (MPB) photothermal conversion performance, and the resultant increase in temperature accelerates CDT catalysis. Finally, the HN coating enables the nanoparticles to actively target CD44 receptors in cancer cells and also enhances vascular permeability. Therefore, this coating has multiple effects, such as facilitating enhanced permeability and retention and deep laser penetration. In vitro and in vivo experiments demonstrate that the proposed GOx@CMPB-HN nanoplatform significantly inhibits tumor growth with the help of in situ enhanced synergistic therapies based on the properties of the TME. The developed nanoplatform has the potential to be applied to cancer treatment and introduces new avenues for tumor treatment research.


Subject(s)
Nanoparticles , Neoplasms , Humans , Hydrogen Peroxide , Photothermal Therapy , Catalysis , Ferrocyanides/pharmacology , Glucose Oxidase , Glutathione , Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL