Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Theriogenology ; 216: 127-136, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38181538

ABSTRACT

Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.


Subject(s)
MicroRNAs , Swine Diseases , Animals , Female , Pregnancy , Swine , Fetal Growth Retardation/genetics , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , Transcriptome , Birth Weight , Placenta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Trophoblasts/physiology , RNA, Messenger/metabolism , Mammals , Swine Diseases/metabolism
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38271555

ABSTRACT

This study tested the hypothesis that dietary supplementation with glycine enhances the synthesis and concentrations of glutathione (GSH, a major antioxidant) in tissues of pigs with intrauterine growth restriction (IUGR). At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of two groups, representing supplementation with 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Blood and other tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine GSH, oxidized GSH (GSSG), and activities of GSH-metabolic enzymes. Results indicated that concentrations of GSH + GSSG or GSH in plasma, liver, and jejunum (P < 0.001) and concentrations of GSH in longissimus lumborum and gastrocnemius muscles (P < 0.05) were lower in IUGR pigs than in NBW pigs. In contrast, IUGR increased GSSG/GSH ratios (an indicator of oxidative stress) in plasma (P < 0.001), jejunum (P < 0.001), both muscles (P < 0.05), and pancreas (P = 0.001), while decreasing activities of γ-glutamylcysteine synthetase and GSH synthetase in liver (P < 0.001) and jejunum (P < 0.01); and GSH reductase in jejunum (P < 0.01), longissimus lumborum muscle (P < 0.01), gastrocnemius muscle (P < 0.05), and pancreas (P < 0.01). In addition, IUGR pigs had greater (P < 0.001) concentrations of thiobarbituric acid reactive substances (TBARS; an indicator of lipid peroxidation) in plasma, jejunum, muscles, and pancreas than NBW pigs. Compared with isonitrogenous controls, dietary glycine supplementation increased concentrations of GSH plus GSSG and GSH in plasma (P < 0.01), liver (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P = 0.001), and gastrocnemius muscle (P < 0.05); activities of GSH-synthetic enzymes in liver (P < 0.01) and jejunum (P < 0.05), while reducing GSSG/GSH ratios in plasma (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P < 0.001), gastrocnemius muscle (P = 0.01), pancreas (P < 0.05), and kidneys (P < 0.01). Concentrations of GSH plus GSSG, GSH, and GSSG/GSH ratios in kidneys were not affected (P > 0.05) by IUGR. Furthermore, glycine supplementation reduced (P < 0.001) TBARS concentrations in plasma, jejunum, muscles, and pancreas. Collectively, IUGR reduced GSH availability and induced oxidative stress in pig tissues, and these abnormalities were prevented by dietary glycine supplementation in a tissue-specific manner.


Pigs have the highest rate of intrauterine growth restriction (IUGR) among livestock species. These pigs, which have low birth weights (<1.1 kg) and account for ~15% to 20% of newborn pigs, are often culled after birth because they have lower growth performance and feed efficiency due to multiple factors (including oxidative stress in tissues), when compared with litter mates with normal birth weights (NBW). Much evidence shows that glutathione, which is a tripeptide synthesized from glutamate, glycine, and cysteine via enzymes (biological catalysts, γ-glutamylcysteine synthetase, and glutathione synthetase), is a major low-molecular-weight antioxidant in animal cells. Based on the findings of our recent study that dietary glycine supplementation enhanced the growth performance of IUGR pigs from weaning to market weight, the current study tested the hypothesis that this nutritional strategy increased the synthesis and availability of glutathione in their tissues. Our results indicated that the key organs of the digestive system (the small intestine, liver, and pancreas) as well as both longissimus lumborum and gastrocnemius muscles of IUGR pigs had lower concentrations of glutathione as compared with NBW pigs, due to reductions in both the activities of glutathione-synthetic enzymes and the availability of glycine. Dietary supplementation with 1% glycine prevented these metabolic deficiencies in tissues of IUGR pigs. Our findings support the notion that IUGR pigs fed conventional corn- and soybean meal-based diets do not synthesize adequate glutathione and that dietary glycine supplementation plays an important role in enhancing the availability of glutathione and mitigating oxidative stress to improve health and growth in these compromised animals.


Subject(s)
Fetal Growth Retardation , Swine Diseases , Female , Swine , Animals , Fetal Growth Retardation/veterinary , Glycine , Glutathione Disulfide , Thiobarbituric Acid Reactive Substances , Glutathione , Dietary Supplements , Animal Feed
3.
J Sci Food Agric ; 104(6): 3719-3728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160249

ABSTRACT

BACKGROUND: Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS: Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION: Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.


Subject(s)
Fibroblast Growth Factors , Insulin Resistance , Female , Swine , Animals , Male , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Liver/metabolism , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Muscle, Skeletal/metabolism , Insulin/metabolism , Muscle Development
4.
Animal ; 18(1): 101044, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128172

ABSTRACT

Intrauterine growth restriction (IUGR) refers to impaired foetal growth during gestation, resulting in permanent stunting effects on the offspring. This study aimed to investigate the effects of IUGR on growth performance, body composition, blood metabolites, and meat quality of pigs from birth (n = 268) to slaughter (n = 93). IUGR piglets have prioritised brain development as a foetal adaptive reaction to placental insufficiency. This survival mechanism results in a higher brain-to-liver weight ratio (BrW/LW). One day (±1) after birth, computed tomography (CT) was performed on each piglet to assess their brain and liver weights. A threshold value of 0.78 (mean + SD) was chosen to divide the piglets into two categories - NORM (BrW/LW < 0.78) and IUGR (BrW/LW > 0.78). Moreover, each piglet was classified as either normal (score 1), mild IUGR (score 2), or severe IUGR (score 3) based on the head morphology. BW was recorded weekly, and average daily gain (ADG) was calculated for lactation, starter, grower, and finisher periods. Body composition was assessed after weaning (29.6 ± 0.7 d), at 20 kg (64 ± 7.2 d), 100 kg (165 ± 12.3 d), and on the carcasses using Dual-energy X-ray absorptiometry (DXA). Content and deposition rates of single nutrients, as well as energy and CP efficiency, were measured at 20 and 100 kg. Feed intake was recorded from 20 kg to slaughter. Meat quality was assessed on the carcasses. A total of 70% of the piglets assigned a score of 3 were NORM according to their BrW/LW. The IUGR category showed a lower ADG in the lactation (P < 0.01), starter (P = 0.07), and grower phases (P < 0.05) and a reduced CP efficiency in the grower-finisher period (P < 0.01) compared to the NORM group. IUGR pigs had a lower gain-to-feed ratio in the finisher period (P = 0.01) despite similar average daily feed intake, and they required more days (P < 0.01) to reach the slaughter weight. Additionally, their meat was darker (P = 0.01) than that of NORM pigs. The BrW/LW was inversely proportional to the ADG from birth to slaughter and negatively correlated with the CP deposition rate and efficiency in the grower-finisher period (P < 0.01). Furthermore, the higher the BrW/LW, the longer it took the pigs to reach the slaughter weight (P < 0.01). In conclusion, the identification of IUGR piglets based on the head morphology does not always agree with an increased BrW/LW. IUGR affects growth performance from birth to slaughter, CP efficiency in the grower-finisher period and meat quality.


Subject(s)
Fetal Growth Retardation , Swine Diseases , Swine , Animals , Pregnancy , Female , Fetal Growth Retardation/veterinary , Placenta , Eating , Brain/diagnostic imaging , Liver , Animal Feed/analysis
5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37837640

ABSTRACT

Pigs with intrauterine growth restriction (IUGR) have suboptimum growth performance and impaired synthesis of glycine (the most abundant amino acid in the body). Conventional corn- and soybean meal-based diets for postweaning pigs contain relatively low amounts of glycine and may not provide sufficient glycine to meet requirements for IUGR pigs. This hypothesis was tested using 52 IUGR pigs and 52 litter mates with normal birth weights (NBW). At weaning (21 d of age), IUGR or NBW pigs were assigned randomly to one of two nutritional groups: supplementation of a corn-soybean meal-based diet with either 1% glycine plus 0.19% cornstarch or 1.19% L-alanine (isonitrogenous control). Feed consumption and body weight (BW) of pigs were recorded daily and every 2 or 4 wks, respectively. All pigs had free access to their respective diets and clean drinking water. Within 1 wk after the feeding trial ended at 188 d of age, blood and other tissue samples were obtained from pigs to determine concentrations of amino acids and meat quality. Neither IUGR nor glycine supplementation affected (P > 0.05) feed intakes of pigs per kg BW. The final BW, gain:feed ratio, carcass dressing percentages, and four-lean-cuts percentages of IUGR pigs were 13.4 kg, 4.4%, 2%, and 15% lower (P < 0.05) for IUGR pigs than NBW pigs, respectively. Compared with pigs in the alanine group, dietary glycine supplementation increased (P < 0.05) final BW, gain:feed ratio, and meat a* value (a redness score) by 3.8 kg, 11%, and 10%, respectively, while reducing (P < 0.05) backfat thickness by 18%. IUGR pigs had lower (P < 0.05) concentrations of glycine in plasma (-45%), liver (-25%), jejunum (-19%), longissimus dorsi muscle (-23%), gastrocnemius muscle (-26%), kidney (-15%), and pancreas (-6%), as compared to NBW pigs. In addition, dietary glycine supplementation increased (P < 0.05) concentrations of glycine in plasma and all analyzed tissues. Thus, supplementing 1% of glycine to corn-soybean meal-based diets improves the growth performance, feed efficiency, and meat quality of IUGR pigs.


About 15­20% of pigs are born naturally with low birth weights (<1.1 kg) due to intrauterine growth restriction (IUGR). These pigs are often culled after birth because they have lower growth performance and feed efficiency during the production period from weaning to market weight, compared with litter mates with normal birth weights (NBW). In many countries and regions (including North America, South America, and Asia), postweaning pigs are generally fed corn- and soybean meal-based diets that contain relatively a low amount of glycine. Glycine is the most abundant amino acid in the plasma and tissue proteins of pigs but may not be formed adequately from other amino acids in the body, particularly IUGR pigs that are now known to have an impaired ability for glycine synthesis. Results of the present study indicate that IUGR pigs fed conventional corn-SBM-based diets had lower concentrations of glycine in plasma and tissues (including skeletal muscle), compared with NBW litter mates. Dietary supplementation with 1% glycine improved the growth performance, feed efficiency, and meat quality of IUGR pigs. This simple nutritional means is expected to enhance the productivity of the global swine industry.


Subject(s)
Fetal Growth Retardation , Swine Diseases , Animals , Female , Amino Acids , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Body Composition/physiology , Diet/veterinary , Dietary Supplements , Fetal Growth Retardation/veterinary , Glycine/pharmacology , Meat , Glycine max , Swine
6.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37812936

ABSTRACT

The present experiment was conducted to study the effects of dietary epidermal growth factor (EGF) supplementation on the liver antioxidant capacity of piglets with intrauterine growth retardation (IUGR). The present study consists of two experiments. In experiment 1, six normal-birth-weight (NBW) and six IUGR newborn piglets were slaughtered within 2 to 4 h after birth to compare the effects of IUGR on the liver antioxidant capacity of newborn piglets. The results showed that compared with NBW piglets, IUGR piglets had a lower birth weight and liver relative weight; IUGR piglets had a higher serum malondialdehyde (MDA) level, liver MDA level and hydrogen peroxide (H2O2) level, and had a lower liver total antioxidant capacity (T-AOC) level and glutathione peroxidase (GSH-Px) activity; IUGR trended to increase serum alanine aminotransferase activity, aspartate aminotransferase activity, and H2O2 level, and trended to decrease liver total superoxide dismutase activity. In experiment 2, six NBW piglets, and 12 IUGR piglets weaned at 21 d of age were randomly divided into the NC group (NBW piglets fed with basal diet); IC group (IUGR piglets fed with basal diet), and IE group (IUGR piglets fed with basal diet plus 2 mg/kg EGF), and feeding for 14 d. Organ index, serum parameters, liver antioxidant capacity, and liver antioxidant-related genes expression were measured. The results showed that compared to the IC group, dietary EGF supplementation (IE group) significantly reduced serum malondialdehyde level and H2O2 level, and liver protein carbonyl (PC) level and 8-hydroxydeoxyguanosine level of piglets with IUGR; dietary EGF supplementation (IE group) significantly increased serum T-AOC level, liver T-AOC level and GSH-Px activity; dietary supplemented with EGF (IE group) enhanced liver Nrf2, NQO1, HO1, and GPX1 mRNA expression compared to IC group. Pearson's correlation analysis further showed that EGF can alleviate liver oxidative injury caused by IUGR and improve the performance of IUGR piglets. In conclusion, EGF exhibited potent protective effects on IUGR-induced liver oxidative injury, by activating the Nrf2 signaling pathway to mediate the expression of downstream antioxidant enzymes and phase II detoxification enzymes (NQO1 and HO1), thereby alleviating liver oxidative damage and promoting the growth performance of IUGR piglets.


The liver is an important metabolic and secretory organ in vertebrates, which plays an important role in the overall health of animals. Studies have shown that intrauterine growth retardation (IUGR) can cause liver injury in piglets, which is unfavorable to the growth and development of piglets. Epidermal growth factor (EGF) has antioxidant properties, but its effect on liver oxidative damage caused by IUGR remains uncertain. In the present study, we chose newborn piglets with low birth weight as the IUGR models to investigate whether IUGR could cause oxidative damage in the liver. Then, the diet supplemented with EGF was fed to IUGR piglets to study the effects of EGF supplementation on the liver antioxidant function of IUGR-weaned piglets. Results showed that IUGR caused serious damage to the liver of piglets, while dietary EGF supplementation could reverse the oxidative injury induced by IUGR to some extent. Therefore, this study confirmed that EGF has positive effects on the liver health of piglets with IUGR.


Subject(s)
Antioxidants , Swine Diseases , Female , Animals , Swine , Antioxidants/metabolism , Epidermal Growth Factor/pharmacology , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/metabolism , Liver/metabolism , Dietary Supplements/analysis , Malondialdehyde/metabolism , Swine Diseases/metabolism
7.
Placenta ; 142: 119-127, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699274

ABSTRACT

INTRODUCTION: This study was designed to test the efficacy of an ultrasound flow measurement method to evaluate placental function in a hyperandrogenic sheep model that produces placental morphologic changes and an intrauterine growth restriction (IUGR) phenotype. MATERIALS AND METHODS: Pregnant ewes were assigned randomly between control (n = 12) and testosterone-treatment (T-treated, n = 22) groups. The T-treated group was injected twice weekly intramuscularly (IM) with 100 mg testosterone propionate. Control sheep were injected with corn oil vehicle. Lambs were delivered at 119.5 ± 0.48 days gestation. At the time of delivery of each lamb, flow spectra were generated from one fetal artery and two fetal veins, and the spectral envelopes examined using fast Fourier transform analysis. Base 10 logarithms of the ratio of the amplitudes of the maternal and fetal spectral peaks (LRSP) in the venous power spectrum were compared in the T-treated and control populations. In addition, we calculated the resistive index (RI) for the artery defined as ((peak systole - min diastole)/peak systole). Two-tailed T-tests were used for comparisons. RESULTS: LRSPs, after removal of significant outliers, were -0.158 ± 0.238 for T-treated and 0.057 ± 0.213 for control (p = 0.015) animals. RIs for the T-treated sheep fetuses were 0.506 ± 0.137 and 0.497 ± 0.086 for controls (p = 0.792) DISCUSSION: LRSP analysis distinguishes between T-treated and control sheep, whereas RIs do not. LRSP has the potential to identify compromised pregnancies.


Subject(s)
Fetus , Placenta , Sheep , Pregnancy , Animals , Female , Humans , Placenta/blood supply , Fetus/blood supply , Umbilical Veins , Arteries , Umbilical Arteries , Fetal Growth Retardation/veterinary
8.
Anim Biotechnol ; 34(9): 4900-4909, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37149789

ABSTRACT

Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.


Subject(s)
Antioxidants , Coumaric Acids , Swine Diseases , Female , Animals , Swine , Antioxidants/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Metabolism , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Liver , Dietary Supplements , RNA, Messenger/metabolism
9.
J Anim Sci ; 100(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36370127

ABSTRACT

Compromised pregnancies result in a poorly functioning placenta restricting the amount of oxygen and nutrient supply to the fetus resulting in intrauterine growth restriction (IUGR). Supplementing dietary melatonin during a compromised pregnancy increased uteroplacental blood flow and prevented IUGR in a seasonal-dependent manner. The objectives were to evaluate seasonal melatonin-mediated changes in temporal alterations of the bovine placental vascularity and transcript abundance of clock genes, angiogenic factors, and nutrient sensing genes in 54 underfed pregnant Brangus heifers (Fall, n = 29; Summer, n = 25). At day 160 of gestation, heifers were assigned to treatments consisting of adequately fed (ADQ-CON; 100% NRC; n = 13), nutrient restricted (RES-CON; 60% NRC; n = 13), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL, n = 13; RES-MEL, n = 15). The animals were fed daily at 0900 hours until day 240 where Cesarean sections were performed in the morning (0500 hours) or afternoon (1300 hours) for placentome collections. In both seasons, we observed a temporal alteration of the core clock genes in the cotyledonary tissue in a season-dependent manner. In the fall, ARNTL, CLOCK, NR1D1, and RORA transcript abundance were decreased (P ≤ 0.05) in the afternoon compared to the morning; whereas in the summer, ARNTL, PER2, and RORA expression were increased (P ≤ 0.05) in the afternoon. Interestingly, in both seasons, there was a concomitant temporal increase (P ≤ 0.05) of cotyledonary blood vessel perfusion and caruncular melatonin receptor 1A transcript abundance. Melatonin supplementation did not alter the melatonin receptor 1A transcript abundance (P > 0.05), however, in the summer, melatonin supplementation increased cotyledonary VEGFA, CRY1, and RORA (P ≤ 0.05) transcript abundance. In addition, during the summer the placentomes from underfed dams had increased average capillary size and HIF1α transcript abundance compared to those adequately fed (P ≤ 0.05). In conclusion, these data indicate increased cotyledonary blood vessel size and blood distribution after feeding to better facilitate nutrient transport. Interestingly, the maternal nutritional plane appears to play a crucial role in regulating the bovine placental circadian clock. Based on these findings, the regulation of angiogenic factors and clock genes in the bovine placenta appears to be an underlying mechanism of the therapeutic effect of dietary melatonin supplementation in the summer.


Maternal nutrient restriction during the last trimester of pregnancy impairs the fetal development, increases morbidity and mortality, and reduces its performance in adult life. Animals with compromised pregnancies exhibit a reduction in uterine blood flow thereby limiting the nutrients available for the fetus to grow and develop. Melatonin, a hormone that many people use as a sleep aid, could be a solution as a potential therapeutic in cattle since it has antioxidant properties and has been shown to regulate blood flow and rescue fetal weight during compromised pregnancies. In the current study, we examined the changes in placental vascularity and gene expression when supplementing underfed dams with dietary melatonin during late gestation in a group of fall-calving and spring-calving heifers. Contrary to our hypothesis melatonin did not control the placental circadian clock gene network, while maternal nutrient restriction disrupted the gene expression in the placenta. Furthermore, this study found that gene expression in the placenta is seasonally dependent.


Subject(s)
Cattle Diseases , Melatonin , Pregnancy , Animals , Cattle , Female , Placenta/blood supply , Seasons , ARNTL Transcription Factors/pharmacology , Receptors, Melatonin , Dietary Supplements , Fetal Growth Retardation/veterinary
10.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908792

ABSTRACT

Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) ß-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.


Myoblasts are stems cells whose functional capacity can limit muscle growth. However, stressful intrauterine conditions cause these cells to be intrinsically dysfunctional. This restricts muscle growth capacity, leading to intrauterine growth restriction (IUGR) of the fetus, low birth weight, and less muscle mass after birth. Consequently, meat yield is reduced in IUGR-born food animals and glucose homeostasis is impaired in IUGR-born humans, which contributes to metabolic dysfunction. Intrinsic dysfunction of IUGR myoblasts has been previously observed, but the fetal programming changes (i.e., permanent changes in the development of cellular mechanisms that explains different functional outcomes) have not been identified. This study shows that one mechanism is the enhancement of signaling pathways for TNF-α and other inflammatory cytokines. These cytokines have roles in stress responses and regulation of muscle growth. Programmed enhancement of these pathways means that IUGR myoblasts are more responsive to even normal amounts of circulating cytokines. Unfortunately, the primary response of myoblasts to cytokines is slower differentiation (i.e., cellular transformation necessary for muscle growth). Programmed enhancement of this response directly impedes myoblast-dependent muscle growth, and the deficit is lifelong. However, identifying this mechanism is a fundamental step for developing strategies to improve muscle growth in low birth weight offspring.


Subject(s)
Fetal Growth Retardation , Sheep Diseases , Animals , Cell Proliferation , Desmin/metabolism , Female , Fetal Growth Retardation/veterinary , Fetus/metabolism , Insulin/metabolism , Insulin/pharmacology , Interleukin-6/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myogenin/metabolism , Norepinephrine , Placenta/metabolism , Pregnancy , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sheep , Signal Transduction
11.
J Vet Med Sci ; 84(9): 1261-1264, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35908938

ABSTRACT

Changes in body weight (BW), systolic blood pressure (SBP), and localization of renin in the kidneys of neonates born to normal mothers (C neonates) or to five-sixths (5/6) nephrectomized (2/3 left kidney and right kidney) mothers (Nx neonates) were studied. Maternal 5/6 nephrectomy caused weight loss in neonates but no differences in SBP or renin localization. Culling Nx neonates to a litter of 3 at 1 day after birth resulted in growth catching up with C neonates from 3 weeks old and increases in both SBP and renin-positive cells in neonatal kidney. These findings revealed that maternal 5/6 nephrectomy results in low-birth-weight neonates and that these neonates are at increased risk of metabolic syndrome by catch-up growth.


Subject(s)
Fetal Growth Retardation , Renin , Animals , Blood Pressure , Female , Fetal Growth Retardation/etiology , Fetal Growth Retardation/veterinary , Kidney/surgery , Nephrectomy/adverse effects , Nephrectomy/methods , Nephrectomy/veterinary , Renin/pharmacology
12.
J Med Primatol ; 51(6): 329-344, 2022 12.
Article in English | MEDLINE | ID: mdl-35855511

ABSTRACT

BACKGROUND: Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS: IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS: Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION: Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.


Subject(s)
Fetal Growth Retardation , Kidney , Humans , Animals , Female , Male , Fetal Growth Retardation/etiology , Fetal Growth Retardation/veterinary , Kidney/pathology , Papio , Blood Pressure
13.
Anim Sci J ; 93(1): e13741, 2022.
Article in English | MEDLINE | ID: mdl-35707899

ABSTRACT

Dietary curcumin possessing multiple biological activities may be an effective way to alleviate oxidative damage and fat deposition in intrauterine growth retardation (IUGR) finishing pigs. Therefore, this study was conducted to evaluate effects of dietary curcumin on meat quality, antioxidant capacity, and fat deposition of longissimus dorsi muscle in IUGR finishing pigs. Twelve normal birth weight (NBW) and 24 IUGR female piglets at 26 days of age were divided into 3 dietary groups: NBW (basal diet), IUGR (basal diet), and IUGR + Cur (basal diet supplemented with 200 mg/kg curcumin). The trial lasted for 169 days. Results showed that IUGR increased concentrations of malondialdehyde (MDA) and protein carbonyls (PC) and fat deposition in longissimus dorsi muscle. However, curcumin decreased the intramuscular fat content and the levels of MDA and PC and improved meat quality in IUGR pigs. Furthermore, curcumin inhibited the decrease of nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and decreased peroxisome pro liferator-activated receptors γ (PPARγ) expression in IUGR pigs. These findings suggested that dietary addition of 200 mg/kg curcumin could improve meat quality, alleviate oxidative stress through activating Nrf2 signaling pathway, and reduce fat deposition via inhibiting PPARγ expression in longissimus dorsi muscle of IUGR finishing pigs.


Subject(s)
Curcumin , Swine Diseases , Animals , Curcumin/metabolism , Curcumin/pharmacology , Dietary Supplements , Female , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/veterinary , Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , PPAR gamma/metabolism , Swine , Swine Diseases/metabolism
14.
J Anim Sci ; 100(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35366314

ABSTRACT

Neonatal piglets often suffer low birth weights and poor growth performance accompanied by the disruption of protein metabolism, when intrauterine growth restriction (IUGR) takes place during pregnancy, leading to a higher mortality and bigger economic loss than expected. Leucine has been proposed to function as a nutritional signal-regulating protein synthesis in numerous studies. The aim of this study was to determine the effect of dietary leucine supplementation on the blood parameters and hepatic protein metabolism in IUGR piglets. Weaned piglets were assigned to one of four treatments in a 2 × 2 factorial arrangement: 1) piglets fed a basal diet with normal birth weight, 2) piglets fed a basal diet plus 0.35% l-leucine with normal birth weight, 3) IUGR piglets fed a basal diet with low birth weight, and 4) IUGR piglets fed a basal diet plus 0.35% l-leucine with low birth weight. The results showed that IUGR decreased serum aspartate aminotransferase and alkaline phosphatase activities and increased serum cortisol and prostaglandin E2 levels at 35 d of age (P < 0.05), suggesting the occurrence of liver dysfunction and stress response. Leucine supplementation increased serum alkaline phosphatase activity and decreased serum cortisol levels at 35 d of age (P < 0.05). IUGR decreased the lysozyme activity and complement 3 level in serum (P < 0.05), which were prevented by dietary leucine supplementation. IUGR piglets showed increased hepatic DNA contents while showing a reduced RNA/DNA ratio (P < 0.05). Piglets supplied with leucine had decreased RNA/DNA ratio in the liver (P < 0.05). Leucine supplementation stimulated hepatic protein anabolism through upregulating protein synthesis-related genes expression and activating the phosphorylation of mammalian/mechanistic target of rapamycin (mTOR) (P < 0.05). Moreover, IUGR inhibited the mRNA expression of hepatic protein degradation-related genes, indicating a compensatory mechanism for the metabolic response. Dietary leucine supplementation attenuated the suppression of the protein catabolism induced by IUGR in the liver. These results demonstrate that dietary leucine supplementation could alter the blood parameters and alleviated the disrupted protein metabolism induced by IUGR via enhanced mTOR phosphorylation to promote protein synthesis in weaned piglets.


Intrauterine growth restriction (IUGR) produces a notable disturbance of protein metabolism in piglets, leading to lower birth weights and economic loss. Leucine supplementation positively regulates protein metabolism in animals and has the potential to recover the impaired balance between protein synthesis and degradation. Our study showed that leucine supplementation alleviated the abnormal changes in blood parameters and stimulated protein synthesis through the mammalian/mechanistic target of rapamycin signal pathway in the liver. Leucine supplementation attenuated the suppression of protein degradation induced by IUGR, which might be involved in a hepatic compensatory mechanism contributing to health status.


Subject(s)
Dietary Supplements , Fetal Growth Retardation , Alkaline Phosphatase/metabolism , Animals , Animals, Newborn , Birth Weight , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/veterinary , Hydrocortisone/metabolism , Leucine/metabolism , Leucine/pharmacology , Liver/metabolism , Mammals/genetics , Mammals/metabolism , Pregnancy , Protein Biosynthesis , RNA/metabolism , Sirolimus/pharmacology , Swine , TOR Serine-Threonine Kinases/metabolism
15.
J Anim Sci ; 100(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35439319

ABSTRACT

Neonates with intrauterine growth retardation (IUGR) are prone to suffer from delayed postnatal growth and development during the early stages of life. Ferulic acid (FA) is a phenolic compound that is abundantly present in fruits and vegetables and has various health benefits. Hence, we explored whether FA supplementation could favorably affect the growth performance, antioxidant capacity, and intestinal development of piglets with IUGR. In total, eight normal-birth-weight (NBW) piglets and 16 piglets with IUGR (age, 7 d) were assigned to be fed either basic formula milk (NBW and IUGR groups, respectively) or basic formula milk supplemented with 100 mg/kg FA (IUGR + FA group) for 21 d. At necropsy, the serum and intestinal tissues were collected. FA supplementation increased (P < 0.05) the feed conversion ratio and serum total superoxide dismutase and catalase activities in piglets with IUGR. Moreover, FA supplementation elevated (P < 0.05) the duodenal lactase and maltase activities, jejunal villus height and jejunal maltase activity but reduced (P < 0.05) the duodenal crypt depth and duodenal and jejunal cell apoptosis, cleaved cysteinyl aspartic acid protease-3 (caspase-3) content and cleaved caspase-9 content in piglets with IUGR. In summary, FA supplementation could elevate antioxidant capacity and facilitate intestinal development, thus resulting in increased feed efficiency in piglets with IUGR.


Intrauterine growth retardation (IUGR) impairs postnatal growth and development in neonatal piglets. Ferulic acid (FA) is a ubiquitous phenolic compound that is present in numerous fruits and vegetables and possesses various biological activities. However, little is known about whether FA supplementation has beneficial effects on the growth performance, antioxidant capacity, and intestinal development of piglets with IUGR. Our findings provide important implications for treating piglets with IUGR after birth by stimulating intestinal development with FA supplementation.


Subject(s)
Fetal Growth Retardation , Swine Diseases , Animals , Animals, Newborn , Antioxidants , Coumaric Acids , Dietary Supplements , Female , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/veterinary , Swine , Swine Diseases/drug therapy , alpha-Glucosidases
16.
J Anim Sci ; 100(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34865027

ABSTRACT

In humans and animals, intrauterine growth restriction (IUGR) results from fetal programming responses to poor intrauterine conditions. Chronic fetal hypoxemia elevates circulating catecholamines, which reduces skeletal muscle ß2 adrenoceptor content and contributes to growth and metabolic pathologies in IUGR-born offspring. Our objective was to determine whether intermittent maternofetal oxygenation during late gestation would improve neonatal growth and glucose metabolism in IUGR-born lambs. Pregnant ewes were housed at 40 °C from the 40th to 95th day of gestational age (dGA) to produce IUGR-born lambs (n = 9). A second group of IUGR-born lambs received prenatal O2 supplementation via maternal O2 insufflation (100% humidified O2, 10 L/min) for 8 h/d from dGA 130 to parturition (IUGR+O2, n = 10). Control lambs (n = 15) were from pair-fed thermoneutral ewes. All lambs were weaned at birth, hand-reared, and fitted with hindlimb catheters at day 25. Glucose-stimulated insulin secretion (GSIS) and hindlimb hyperinsulinemic-euglycemic clamp (HEC) studies were performed at days 28 and 29, respectively. At day 30, lambs were euthanized and ex vivo HEC studies were performed on isolated muscle. Without maternofetal oxygenation, IUGR lambs were 40% lighter (P < 0.05) at birth and maintained slower (P < 0.05) growth rates throughout the neonatal period compared with controls. At 30 d of age, IUGR lambs had lighter (P < 0.05) hindlimbs and flexor digitorum superficialis (FDS) muscles. IUGR+O2 lambs exhibited improved (P < 0.05) birthweight, neonatal growth, hindlimb mass, and FDS mass compared with IUGR lambs. Hindlimb insulin-stimulated glucose utilization and oxidation rates were reduced (P < 0.05) in IUGR but not IUGR+O2 lambs. Ex vivo glucose oxidation rates were less (P < 0.05) in muscle from IUGR but not IUGR+O2 lambs. Surprisingly, ß2 adrenoceptor content and insulin responsiveness were reduced (P < 0.05) in muscle from IUGR and IUGR+O2 lambs compared with controls. In addition, GSIS was reduced (P < 0.05) in IUGR lambs and only modestly improved (P < 0.05) in IUGR+O2. Insufflation of O2 also increased (P < 0.05) acidosis and hypercapnia in dams, perhaps due to the use of 100% O2 rather than a gas mixture with a lesser O2 percentage. Nevertheless, these findings show that intermittent maternofetal oxygenation during late gestation improved postnatal growth and metabolic outcomes in IUGR lambs without improving muscle ß2 adrenoceptor content.


Subject(s)
Fetal Growth Retardation , Sheep Diseases , Animals , Birth Weight , Female , Fetal Growth Retardation/veterinary , Insulin , Muscle, Skeletal , Pregnancy , Sheep , Sheep, Domestic
17.
Animal ; 16 Suppl 2: 100350, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34801424

ABSTRACT

Newborn piglets have a high incidence of preweaning mortality that is not only associated with low birth weights but also with the presence of intra-uterine growth-restricted (IUGR) piglets. Such IUGR piglets are commonly seen in litters from hyperprolific sows as a result of insufficient placental transfer of nutrients. Nutritional strategies can be used prior to and during gestation to enhance foetal development and can also be implemented in the transition period to reduce the duration of farrowing and increase colostrum yield. Recent findings showed that the energy status of sows at the onset of farrowing is crucial to diminish stillbirth rate. Newborn piglets often fail to consume enough colostrum to promote thermostability and subsequent growth, and this is particularly problematic in very large litters when there are fewer available teats than the number of suckling piglets. One injection of 75 IU of oxytocin approximately 14 h after farrowing can prolong the colostral phase, hence increasing the supply of immunoglobulins to piglets. Nevertheless, assistance must be provided to piglets after birth in order to increase their chance of survival. Various approaches can be used, such as: (1) optimising the farrowing environment, (2) supervising farrowing and assisting newborn piglets, (3) using cross-fostering techniques, (4) providing nurse sows, and 5) providing artificial milk. Although research advances have been made in developing feeding and management strategies for sows that increase performance of their newborn piglets, much work still remains to be done to ensure that maximal outcomes are achieved.


Subject(s)
Animals, Newborn , Colostrum , Fetal Growth Retardation , Lactation , Swine , Animals , Female , Pregnancy , Animals, Newborn/physiology , Colostrum/metabolism , Fetal Growth Retardation/veterinary , Immunoglobulins/administration & dosage , Litter Size , Milk/physiology , Oxytocin/administration & dosage , Placenta/physiology , Swine/physiology
18.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34473279

ABSTRACT

The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.


Subject(s)
Fetal Growth Retardation , Swine Diseases , Animals , Bacillus subtilis , Fetal Growth Retardation/veterinary , Jejunum , Oxidation-Reduction , Swine
19.
Anim Sci J ; 92(1): e13613, 2021.
Article in English | MEDLINE | ID: mdl-34374164

ABSTRACT

This study investigated the effects of intrauterine growth restriction during late pregnancy on the ovine fetal renal function and renal antioxidant capacity. Eighteen ewes pregnant were randomly divided into control group (CG, ad libitum, 0.67 MJ ME·BW-0.75 ·day-1 , n = 6), restricted group 1 (RG1, 0.18 MJ ME·BW-0.75 ·day-1 , n = 6), and restricted group 2 (RG2, 0.33 MJ ME·BW-0.75 ·day-1 , n = 6). At 140 days, the fetal blood, allantoic fluid and kidney tissue were collected to determinate fetal renal function and renal antioxidant capacity. The results showed that the fetal weight, kidney weight, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), aquaporin-2 (AQP-2) and aquaporin-3 (AQP-3), and total antioxidant capacity (T-AOC) in RG1 group were decreased compared with the CG (P < 0.05), but the contents of ß2-Microglobulin (ß 2-MG), cystatin C (Cys-C), filtered sodium excretion fraction (FENa), malondialdehyde (MDA), and hydroxyl radical (OH) in RG1 group were increased (P < 0.05). The impaired ovine fetal renal growth, antioxidant imbalance and dysfunction of glomerulus ultrafiltration, and the renal tubules reabsorption were induced by maternal malnutrition during late pregnancy.


Subject(s)
Fetal Growth Retardation , Sheep Diseases , Animals , Antioxidants , Female , Fetal Growth Retardation/veterinary , Fetus , Kidney/physiology , Malondialdehyde , Maternal-Fetal Exchange , Pregnancy , Sheep , Sheep, Domestic
20.
J Anim Sci ; 99(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34107017

ABSTRACT

Few studies have focused on the role of dimethylglycine sodium (DMG-Na) salt in protecting the redox status of skeletal muscle, although it is reported to be beneficial in animal husbandry. This study investigated the beneficial effects of DMG-Na salt on the growth performance, longissimus dorsi muscle (LM) redox status, and mitochondrial function in weaning piglets that were intrauterine growth restricted (IUGR). Ten normal birth weight (NBW) newborn piglets (1.53 ± 0.04 kg) and 20 IUGR newborn piglets (0.76 ± 0.06 kg) from 10 sows were obtained. All piglets were weaned at 21 d of age and allocated to the three groups with 10 replicates per group: NBW weaned piglets fed a common basal diet (N); IUGR weaned piglets fed a common basal diet (I); IUGR weaned piglets fed a common basal diet supplemented with 0.1% DMG-Na (ID). They were slaughtered at 49 d of age to collect the serum and LM samples. Compared with the N group, the growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression deteriorated in group I (P < 0.05). The ID group showed improved growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression compared with those in the I group (P < 0.05). The above results indicated that the DMG-Na salt treatment could improve the LM redox status and mitochondrial function in IUGR weaned piglets via the nuclear factor erythroid 2-related factor 2/sirtuin 1/peroxisome proliferator-activated receptorγcoactivator-1α network, thus improving their growth performance.


Subject(s)
DNA, Mitochondrial , Swine Diseases , Animals , Dietary Supplements , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/veterinary , Muscle, Skeletal/metabolism , Oxidation-Reduction , Sarcosine/analogs & derivatives , Sodium , Swine , Swine Diseases/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...