Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690917

ABSTRACT

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Subject(s)
Aggrecans , Extracellular Matrix , Fetal Proteins , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Smad3 Protein , T-Box Domain Proteins , Smad3 Protein/metabolism , Smad3 Protein/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Animals , Extracellular Matrix/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Humans , Rats , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Aggrecans/metabolism , Aggrecans/genetics , Male , Fetal Proteins/genetics , Fetal Proteins/metabolism , Collagen Type II/metabolism , Collagen Type II/genetics , Gene Expression Regulation , Female , Adult , Middle Aged , Cells, Cultured , Transcription, Genetic
2.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579720

ABSTRACT

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Subject(s)
Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
3.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542387

ABSTRACT

Mesenchymal-epithelial transition (MET) is a widely spread and evolutionarily conserved process across species during development. In Ciona embryogenesis, the notochord cells undergo the transition from the non-polarized mesenchymal state into the polarized endothelial-like state to initiate the lumen formation between adjacent cells. Based on previously screened MET-related transcription factors by ATAC-seq and Smart-Seq of notochord cells, Ciona robusta Snail (Ci-Snail) was selected for its high-level expression during this period. Our current knockout results demonstrated that Ci-Snail was required for notochord cell MET. Importantly, overexpression of the transcription factor Brachyury in notochord cells resulted in a similar phenotype with failure of lumen formation and MET. More interestingly, expression of Ci-Snail in the notochord cells at the late tailbud stage could partially rescue the MET defect caused by Brachyury-overexpression. These results indicated an inverse relationship between Ci-Snail and Brachyury during notochord cell MET, which was verified by RT-qPCR analysis. Moreover, the overexpression of Ci-Snail could significantly inhibit the transcription of Brachyury, and the CUT&Tag-qPCR analysis demonstrated that Ci-Snail is directly bound to the upstream region of Brachyury. In summary, we revealed that Ci-Snail promoted the notochord cell MET and was essential for lumen formation via transcriptionally repressing Brachyury.


Subject(s)
Ciona intestinalis , Notochord , Animals , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Ciona intestinalis/genetics , Gene Expression Regulation, Developmental
4.
Mol Cancer Res ; 22(2): 137-151, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37847650

ABSTRACT

Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS: This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.


Subject(s)
Neoplasms , Proteomics , Humans , Protein Processing, Post-Translational , Neoplasms/genetics , Ubiquitin/metabolism , Cells, Cultured , Fetal Proteins/metabolism , Protein-Tyrosine Kinases/metabolism
5.
Nat Commun ; 14(1): 6594, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852970

ABSTRACT

The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.


Subject(s)
Notochord , Zebrafish , Animals , Humans , Mice , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Mammals/genetics , Notochord/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
6.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37882764

ABSTRACT

The node and notochord are important signaling centers organizing the dorso-ventral patterning of cells arising from neuro-mesodermal progenitors forming the embryonic body anlage. Owing to the scarcity of notochord progenitors and notochord cells, a comprehensive identification of regulatory elements driving notochord-specific gene expression has been lacking. Here, we have used ATAC-seq analysis of FACS-purified notochord cells from Theiler stage 12-13 mouse embryos to identify 8921 putative notochord enhancers. In addition, we established a new model for generating notochord-like cells in culture, and found 3728 of these enhancers occupied by the essential notochord control factors brachyury (T) and/or Foxa2. We describe the regulatory landscape of the T locus, comprising ten putative enhancers occupied by these factors, and confirmed the regulatory activity of three of these elements. Moreover, we characterized seven new elements by knockout analysis in embryos and identified one new notochord enhancer, termed TNE2. TNE2 cooperates with TNE in the trunk notochord, and is essential for notochord differentiation in the tail. Our data reveal an essential role of Foxa2 in directing T-expressing cells towards the notochord lineage.


Subject(s)
Enhancer Elements, Genetic , Notochord , Mice , Animals , Enhancer Elements, Genetic/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental/genetics
7.
Structure ; 31(12): 1589-1603.e6, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37776857

ABSTRACT

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.


Subject(s)
Molecular Chaperones , Polyubiquitin , Humans , Polyubiquitin/chemistry , Protein Binding , Crystallization , Protein Structure, Tertiary , Protein Domains , Molecular Chaperones/metabolism , Fetal Proteins/metabolism , Protein-Tyrosine Kinases/metabolism
8.
Dev Cell ; 58(18): 1627-1642.e7, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37633271

ABSTRACT

Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.


Subject(s)
Gastrulation , T-Box Domain Proteins , Mice , Animals , Gastrulation/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Mesoderm/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Mammals/metabolism
9.
Sci Rep ; 13(1): 9382, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296138

ABSTRACT

Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans.


Subject(s)
Cnidaria , Hydrozoa , Animals , Hydrozoa/genetics , Phylogeny , Cnidaria/genetics , Biological Evolution , Fetal Proteins/genetics , Fetal Proteins/metabolism
10.
CNS Neurosci Ther ; 29(11): 3351-3363, 2023 11.
Article in English | MEDLINE | ID: mdl-37211949

ABSTRACT

BACKGROUND: As a new type of regulatory cell death, ferroptosis has been proven to be involved in cancer pathogenesis and therapeutic response. However, the detailed roles of ferroptosis or ferroptosis-associated genes in glioma remain to be clarified. METHODS: Here, we performed the TMT/iTRAQ-Based Quantitative Proteomic Approach to identify the differentially expressed proteins between glioma specimens and adjacent tissues. Kaplan-Meier survival was used to estimate the survival values. We also explored the regulatory roles of abnormally expressed formin homology 2 domain-containing protein 1 (FHOD1) in glioma ferroptosis sensitivity. RESULTS: In our study, FHOD1 was identified to be the most significantly upregulated protein in glioma tissues. Multiple glioma datasets revealed that the glioma patients with low FHOD1 expression displayed favorable survival time. Functional analysis proved that the knockdown of FHOD1 inhibited cell growth and improved the cellular sensitivity to ferroptosis in glioma cells T98G and U251. Mechanically, we found the up-regulation and hypomethylation of HSPB1, a negative regulator of ferroptosis, in glioma tissues. FHOD1 knockdown could enhance the ferroptosis sensitivity of glioma cells via up-regulating the methylated heat-shock protein B (HSPB1). Overexpression of HSPB1 significantly reversed FHOD1 knockdown-mediated ferroptosis. CONCLUSIONS: In summary, this study demonstrated that the FHOD1-HSPB1 axis exerts marked regulatory effects on ferroptosis, and might affect the prognosis and therapeutic response in glioma.


Subject(s)
Ferroptosis , Glioma , Humans , Proteomics , Signal Transduction , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Glioma/metabolism , Formins/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
11.
J Mol Biol ; 435(2): 167890, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36402225

ABSTRACT

14-3-3s are abundant proteins that regulate essentially all aspects of cell biology, including cell cycle, motility, metabolism, and cell death. 14-3-3s work by docking to phosphorylated Ser/Thr residues on a large network of client proteins and modulating client protein function in a variety of ways. In recent years, aided by improvements in proteomics, the discovery of 14-3-3 client proteins has far outpaced our ability to understand the biological impact of individual 14-3-3 interactions. The rate-limiting step in this process is often the identification of the individual phospho-serines/threonines that mediate 14-3-3 binding, which are difficult to distinguish from other phospho-sites by sequence alone. Furthermore, trial-and-error molecular approaches to identify these phosphorylations are costly and can take months or years to identify even a single 14-3-3 docking site phosphorylation. To help overcome this challenge, we used machine learning to analyze predictive features of 14-3-3 binding sites. We found that accounting for intrinsic protein disorder and the unbiased mass spectrometry identification rate of a given phosphorylation significantly improves the identification of 14-3-3 docking site phosphorylations across the proteome. We incorporated these features, coupled with consensus sequence prediction, into a publicly available web app, called "14-3-3 site-finder". We demonstrate the strength of this approach through its ability to identify 14-3-3 binding sites that do not conform to the loose consensus sequence of 14-3-3 docking phosphorylations, which we validate with 14-3-3 client proteins, including TNK1, CHEK1, MAPK7, and others. In addition, by using this approach, we identify a phosphorylation on A-kinase anchor protein-13 (AKAP13) at Ser2467 that dominantly controls its interaction with 14-3-3.


Subject(s)
14-3-3 Proteins , Protein Interaction Maps , Humans , 14-3-3 Proteins/metabolism , Binding Sites , Fetal Proteins/metabolism , Machine Learning , Mitogen-Activated Protein Kinase 7/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proteome/metabolism , Serine/metabolism , Threonine/metabolism
12.
J Biol Chem ; 298(12): 102664, 2022 12.
Article in English | MEDLINE | ID: mdl-36334623

ABSTRACT

Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.


Subject(s)
Protein-Tyrosine Kinases , src Homology Domains , Humans , Fetal Proteins/metabolism , Mammals/metabolism , Peptides/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Substrate Specificity , Tyrosine/metabolism
13.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628559

ABSTRACT

Colorectal cancer (CRC) and ovarian cancer (OvC) patients frequently develop peritoneal metastasis, a condition associated with a very poor prognosis. In these cancers, tumor-derived extracellular vesicles (EVs) cause immunosuppression, facilitate the direct attachment and invasion of cancer cells through the mesothelium, induce the conversion of peritoneal mesothelial cells (PMCs) into cancer-associated fibroblasts (CAFs) and transfer a more aggressive phenotype amongst cancer cells. Although the promoting role of EVs in CRC and OvC peritoneal metastasis is well established, the specific molecules that mediate the interactions between tumor-derived EVs and immune and non-immune target cells remain elusive. Here, we employed the SKOV-3 (ovarian adenocarcinoma) and Colo-320 (colorectal adenocarcinoma) human cell lines as model systems to study the interactions and uptake of EVs produced by ovarian carcinoma and colorectal carcinoma cells, respectively. We established that the adhesion molecule ALCAM/CD166 is involved in the interaction of cancer-derived EVs with recipient cancer cells (a process termed "EV binding" or "EV docking") and in their subsequent uptake by these cells. The identification of ALCAM/CD166 as a molecule mediating the docking and uptake of CRC and OvC-derived EVs may be potentially exploited to block the peritoneal metastasis cascade promoted by EVs in CRC and OvC patients.


Subject(s)
Adenocarcinoma , Antigens, CD , Cell Adhesion Molecules, Neuronal , Extracellular Vesicles , Fetal Proteins , Ovarian Neoplasms , Peritoneal Neoplasms , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Adenocarcinoma/pathology , Antigens, CD/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Vesicles/metabolism , Female , Fetal Proteins/metabolism , Humans , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/metabolism
14.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35156681

ABSTRACT

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Subject(s)
MicroRNAs/metabolism , Spinal Cord Regeneration/genetics , Spinal Cord/metabolism , 3' Untranslated Regions , Ambystoma mexicanum/metabolism , Animals , Antagomirs/metabolism , Cell Differentiation , Fetal Proteins/genetics , Fetal Proteins/metabolism , Mesoderm/cytology , Mesoderm/metabolism , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/cytology , Neuroglia/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Spinal Cord/cytology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Stem Cells/cytology , Stem Cells/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/physiology , Wnt Signaling Pathway , beta Catenin/antagonists & inhibitors , beta Catenin/chemistry , beta Catenin/metabolism
15.
Am J Respir Cell Mol Biol ; 66(4): 415-427, 2022 04.
Article in English | MEDLINE | ID: mdl-35073245

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by fibroproliferative matrix molecule accumulation, collagen deposition, and apoptosis. Activated leukocyte cell-adhesion molecule (ALCAM; CD166) is a cell-adhesion molecule that has been implicated in adhesive and migratory attribution, including leukocyte homing and trafficking and cancer metastasis. We investigated the role of ALCAM on pulmonary fibrosis development in murine models. Thus, a bleomycin-induced pulmonary fibrosis model was established with wild-type and ALCAM-/- mice. Pulmonary fibrosis was also induced in transforming growth factor-ß1 (TGF-ß1)-transgenic mice that conditionally overexpress TGF-ß1 upon doxycycline administration. In both models, observed reduced ALCAM levels in lung tissue and BAL fluid in pulmonary fibrosis-induced wild-type mice compared with control mice. We also observed reduced ALCAM expression in the lung tissue of patients with pulmonary fibrosis compared with normal lung tissue. ALCAM-/- mice showed an exacerbated lung fibrosis response compared with wild-type mice, and this was accompanied by increased cell death. Further investigation for identification of the signaling pathway revealed that PI3K and ERK signaling pathways are involved in bleomycin-induced fibrosis. Collectively, these results highlight that ALCAM plays a protective role in the pathogenesis of pulmonary fibrosis that inhibits epithelial cell apoptosis through the PI3K-Akt signaling pathway. Our findings demonstrate the potential of ALCAM as a therapeutic target for IPF and may aid the development of new strategies for the management and treatment of patients with IPF.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule , Antigens, CD/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Fetal Proteins/metabolism , Idiopathic Pulmonary Fibrosis , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Animals , Bleomycin , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Leukocytes/pathology , Lung/pathology , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta1/metabolism
16.
Dev Biol ; 483: 128-142, 2022 03.
Article in English | MEDLINE | ID: mdl-35038441

ABSTRACT

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Subject(s)
Ectoderm/cytology , Ectoderm/metabolism , Embryonic Development/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , RNA-Seq/methods , Sea Urchins/embryology , Sea Urchins/genetics , Single-Cell Analysis/methods , T-Box Domain Proteins/metabolism , Animals , Blastula/metabolism , Ectoderm/embryology , Endoderm/embryology , Endoderm/metabolism , Gastrula/metabolism , Gene Regulatory Networks , Signal Transduction/genetics
17.
Stem Cell Reports ; 16(11): 2628-2641, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34678211

ABSTRACT

Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.


Subject(s)
Cell Differentiation/genetics , Endoderm/metabolism , Induced Pluripotent Stem Cells/metabolism , Integrin beta1/genetics , Polymorphism, Single Nucleotide , Cell Adhesion/genetics , Cell Line , Endoderm/cytology , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Profiling/methods , Germ Layers/cytology , Germ Layers/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Phenotype , Proteomics/methods , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
18.
Dev Cell ; 56(20): 2841-2855.e8, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34559979

ABSTRACT

Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.


Subject(s)
Cell Movement/physiology , Formins/metabolism , Glioblastoma/metabolism , Neoplasm Invasiveness/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Fetal Proteins/metabolism , Glioblastoma/pathology , Humans , Microfilament Proteins/metabolism
19.
Nat Commun ; 12(1): 5337, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504101

ABSTRACT

TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.


Subject(s)
14-3-3 Proteins/genetics , Fetal Proteins/genetics , Lymphocytes/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein-Tyrosine Kinases/genetics , Ubiquitin/genetics , 14-3-3 Proteins/metabolism , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Fetal Proteins/antagonists & inhibitors , Fetal Proteins/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lymphocytes/drug effects , Lymphocytes/pathology , Mice , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyrimidines/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction , Survival Analysis , Tumor Burden/drug effects , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
20.
Nat Commun ; 12(1): 5136, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446717

ABSTRACT

One fundamental yet unresolved question in biology remains how cells interpret the same signalling cues in a context-dependent manner resulting in lineage specification. A key step for decoding signalling cues is the establishment of a permissive chromatin environment at lineage-specific genes triggering transcriptional responses to inductive signals. For instance, bipotent neuromesodermal progenitors (NMPs) are equipped with a WNT-decoding module, which relies on TCFs/LEF activity to sustain both NMP expansion and paraxial mesoderm differentiation. However, how WNT signalling activates lineage specific genes in a temporal manner remains unclear. Here, we demonstrate that paraxial mesoderm induction relies on the TALE/HOX combinatorial activity that simultaneously represses NMP genes and activates the differentiation program. We identify the BRACHYURY-TALE/HOX code that destabilizes the nucleosomes at WNT-responsive regions and establishes the permissive chromatin landscape for de novo recruitment of the WNT-effector LEF1, unlocking the WNT-mediated transcriptional program that drives NMPs towards the paraxial mesodermal fate.


Subject(s)
Fetal Proteins/metabolism , Mesoderm/metabolism , Multigene Family , Neural Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Wnt Signaling Pathway , Animals , Cell Differentiation , Cell Lineage , Fetal Proteins/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mesoderm/embryology , Mice , Mice, Knockout , Neural Stem Cells/cytology , Nucleosomes/genetics , Nucleosomes/metabolism , T-Box Domain Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...