Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Chem Res Toxicol ; 37(5): 804-813, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38646980

ABSTRACT

With the increasing use of oral contraceptives and estrogen replacement therapy, the incidence of estrogen-induced cholestasis (EC) has tended to rise. Psoralen (P) and isopsoralen (IP) are the major bioactive components in Psoraleae Fructus, and their estrogen-like activities have already been recognized. Recent studies have also reported that ERK1/2 plays a critical role in EC in mice. This study aimed to investigate whether P and IP induce EC and reveal specific mechanisms. It was found that P and IP increased the expression of esr1, cyp19a1b and the levels of E2 and VTG at 80 µM in zebrafish larvae. Exemestane (Exe), an aromatase antagonist, blocked estrogen-like activities of P and IP. At the same time, P and IP induced cholestatic hepatotoxicity in zebrafish larvae with increasing liver fluorescence areas and bile flow inhibition rates. Further mechanistic analysis revealed that P and IP significantly decreased the expression of bile acids (BAs) synthesis genes cyp7a1 and cyp8b1, BAs transport genes abcb11b and slc10a1, and BAs receptor genes nr1h4 and nr0b2a. In addition, P and IP caused EC by increasing the level of phosphorylation of ERK1/2. The ERK1/2 antagonists GDC0994 and Exe both showed significant rescue effects in terms of cholestatic liver injury. In conclusion, we comprehensively studied the specific mechanisms of P- and IP-induced EC and speculated that ERK1/2 may represent an important therapeutic target for EC induced by phytoestrogens.


Subject(s)
Cholestasis , Ficusin , Furocoumarins , Psoralea , Zebrafish , Animals , Furocoumarins/pharmacology , Furocoumarins/chemistry , Ficusin/pharmacology , Cholestasis/chemically induced , Cholestasis/metabolism , Psoralea/chemistry , Estrogens/metabolism , Estrogens/pharmacology , Biological Products/pharmacology , Biological Products/chemistry , MAP Kinase Signaling System/drug effects
2.
Photochem Photobiol Sci ; 23(4): 693-709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457118

ABSTRACT

Psoralens are eponymous for PUVA (psoralen plus UV-A radiation) therapy, which inter alia can be used to treat various skin diseases. Based on the same underlying mechanism of action, the synthetic psoralen amotosalen (AMO) is utilized in the pathogen reduction technology of the INTERCEPT® Blood System to inactivate pathogens in plasma and platelet components. The photophysical behavior of AMO in the absence of DNA is remarkably similar to that of the recently studied psoralen 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). By means of steady-state and time-resolved spectroscopy, intercalation and photochemistry of AMO and synthetic DNA were studied. AMO intercalates with a higher affinity into A,T-only DNA (KD = 8.9 × 10-5 M) than into G,C-only DNA (KD = 6.9 × 10-4 M). AMO covalently photobinds to A,T-only DNA with a reaction quantum yield of ΦR = 0.11. Like AMT, it does not photoreact following intercalation into G,C-only DNA. Femto- and nanosecond transient absorption spectroscopy reveals the characteristic pattern of photobinding to A,T-only DNA. For AMO and G,C-only DNA, signatures of a photoinduced electron transfer are recorded.


Subject(s)
Ficusin , Furocoumarins , Ficusin/pharmacology , Ficusin/chemistry , Furocoumarins/pharmacology , Furocoumarins/chemistry , DNA/chemistry , Spectrum Analysis
3.
J Cancer Res Clin Oncol ; 150(3): 130, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489072

ABSTRACT

Psoralen is a family of naturally occurring photoactive compounds found in plants that acquire potential cytotoxicity when activated by specific frequencies of electromagnetic waves. Psoralens penetrate the phospholipid cellular membranes and insert themselves between the pyrimidines of deoxyribonucleic acid (DNA). Psoralens are initially biologically inert and acquire photoreactivity when exposed to certain classes of electromagnetic radiation, such as ultraviolet light. Once activated, psoralens form mono- and di-adducts with DNA, leading to marked cell apoptosis. This apoptotic effect is more pronounced in tumor cells due to their high rate of cell division. Moreover, photoactivated psoralen can inhibit tyrosine kinase signaling and influence the immunogenic properties of cells. Thus, the cytotoxicity of photoactivated psoralen holds promising clinical applications from its immunogenic properties to potential anti-cancer treatments. This narrative review aims to provide an overview of the current understanding and research on psoralen and to explore its potential future pharmacotherapeutic benefits in specific diseases.


Subject(s)
Ficusin , Furocoumarins , Humans , Ficusin/pharmacology , Ficusin/therapeutic use , Furocoumarins/pharmacology , Ultraviolet Rays , DNA
4.
Appl Microbiol Biotechnol ; 108(1): 222, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372782

ABSTRACT

Pseudomonas aeruginosa is a common opportunistic pathogen with growing resistance and presents heightened treatment challenges. Quorum sensing (QS) is a cell-to-cell communication system that contributes to the production of a variety of virulence factors and is also related to biofilm formation of P. aeruginosa. Compared to traditional antibiotics which kill bacteria directly, the anti-virulence strategy by targeting QS is a promising strategy for combating pseudomonal infections. In this study, the QS inhibition potential of the compounds derived from the Traditional Chinese Medicines was evaluated by using in silico, in vitro, and in vivo analyses. The results showed that psoralen, a natural furocoumarin compound derived from Psoralea corylifolia L., was capable of simultaneously inhibiting the three main QS regulators, LasR, RhlR, and PqsR of P. aeruginosa. Psoralen had no bactericidal activity but could widely inhibit the production of extracellular proteases, pyocyanin, and biofilm, and the cell motilities of the model and clinical P. aeruginosa strains. RNA-sequencing and quantitative PCR analyses further demonstrated that a majority of QS-activated genes in P. aeruginosa were suppressed by psoralen. The supplementation of psoralen could protect Caenorhabditis elegans from P. aeruginosa challenge, especially for the hypervirulent strain PA14. Moreover, psoralen showed synergistic antibacterial effects with polymyxin B, levofloxacin, and kanamycin. In conclusions, this study identifies the anti-QS and antibiofilm effects of psoralen against P. aeruginosa strains and sheds light on the discovery of anti-pseudomonal drugs among Traditional Chinese Medicines. KEY POINTS: • Psoralen derived from Psoralea corylifolia L. inhibits the virulence-related phenotypes of P. aeruginosa. • Psoralen simultaneously targets the three core regulators of P. aeruginosa QS system and inhibits the expression of a large part of downstream genes. • Psoralen protects C. elegans from P. aeruginosa challenge and enhances the susceptibility of P. aeruginosa to antibiotics.


Subject(s)
Fabaceae , Furocoumarins , Pseudomonas Infections , Animals , Pseudomonas aeruginosa/genetics , Ficusin/pharmacology , Quorum Sensing , Virulence , Caenorhabditis elegans , Pseudomonas Infections/drug therapy , Furocoumarins/pharmacology , Anti-Bacterial Agents/pharmacology
5.
J Orthop Surg Res ; 18(1): 622, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37872583

ABSTRACT

OBJECTIVE: To explore the mechanism of psoralen synergized with exosomes (exos)-loaded SPC25 on nucleus pulposus (NP) cell senescence in intervertebral disc degeneration (IVDD). METHODS: IVDD cellular models were established on NP cells by tert-butyl hydroperoxide (TBHP) induction, followed by the treatment of psoralen or/and exos from adipose-derived stem cells (ADSCs) transfected with SPC25 overexpression vector (ADSCs-oe-SPC25-Exos). The viability, cell cycle, apoptosis, and senescence of NP cells were examined, accompanied by the expression measurement of aggrecan, COL2A1, Bcl-2, Bax, CDK2, p16, and p21. RESULTS: After TBHP-induced NP cells were treated with psoralen or ADSCs-oe-SPC25-Exos, cell proliferation and the expression of aggrecan, COL2A1, Bcl-2, and CDK2 were promoted; however, the expression of Bax, p16, p21, and inflammatory factors was decreased, and cell senescence, cycle arrest, and apoptosis were inhibited. Of note, psoralen combined with ADSCs-oe-SPC25-Exos further decelerated NP cell senescence and cycle arrest compared to psoralen or ADSCs-oe-SPC25-Exos alone. CONCLUSION: Combined treatment of psoralen and ADSCs-oe-SPC25-Exos exerted an alleviating effect on NP cell senescence, which may provide an insightful idea for IVDD treatment.


Subject(s)
Exosomes , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Exosomes/metabolism , Aggrecans/metabolism , Ficusin/pharmacology , bcl-2-Associated X Protein/metabolism , Intervertebral Disc/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/pharmacology
6.
Chem Biodivers ; 20(11): e202300867, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37752710

ABSTRACT

Since long ago, medicinal plants have played a vital role in drug discovery. Being blessed and rich in chemovars with diverse scaffolds, they have unique characteristics of evolving based on the need. The World Health Organization also mentions that medicinal plants remain at the center for meeting primary healthcare needs as the population relies on them. The plant-derived natural products have remained an attractive choice for drug development owing to their specific biological functions relevant to human health and also the high degree of potency and specificity they offer. In this context, one such esteemed phytoconstituent with inexplicable biological potential is psoralen, a furanocoumarin. Psoralen was the first constituent isolated from the plant Psoralea corylifolia, commonly known as Bauchi. Despite being a life-saver for psoriasis, vitiligo, and leukoderma, it also showed immense anticancer, anti-inflammatory, and anti-osteoporotic potential. This review brings attention to the possible application of psoralen as an attractive target for rational drug design and medicinal chemistry. It discusses the various methods for the total synthesis of psoralen, its extraction, the pharmacological spectrum of psoralen, and the derivatization done on psoralen.


Subject(s)
Fabaceae , Furocoumarins , Plants, Medicinal , Psoralea , Humans , Furocoumarins/pharmacology , Ficusin/pharmacology , Plant Extracts/pharmacology , Phytochemicals/pharmacology
7.
ChemMedChem ; 18(21): e202300348, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37704578

ABSTRACT

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been utilized for genome editing and anti-gene experiments for over thirty years. However, the research on Ps-TFOs employing artificial nucleotides is still limited, and their photo-crosslinking properties have not been thoroughly investigated in relation to biological activities. In this study, we extensively examined the photo-crosslinking properties of Ps-TFOs to provide fundamental insights for future Ps-TFO design. We developed novel Ps-TFOs containing 2'-O,4'-C-methylene-bridged nucleic acids (Ps-LNA-mixmer) and investigated their photo-crosslinking properties using stable cell lines that express firefly luciferase constitutively to evaluate the anti-gene activities of Ps-LNA-mixmer. As a result, Ps-LNA-mixmer successfully demonstrated suppression activity, and we presented the first-ever correlation between photo-crosslinking properties and their activities. Our findings also indicate that the photo-crosslinking process is insufficient under cell irradiation conditions (365 nm, 2 mW/cm2 , 60 min). Therefore, our results highlight the need to develop new psoralen derivatives that are more reactive under cell irradiation conditions.


Subject(s)
Nucleic Acids , Oligonucleotides , Oligonucleotides/pharmacology , Ficusin/pharmacology , DNA/metabolism , Cell Line
8.
Hum Cell ; 36(4): 1389-1402, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269415

ABSTRACT

Periodontitis is a chronic inflammatory disease that is the main cause of tooth loss in adults, and the key to periodontitis treatment is the repair and regenerate of periodontal bone tissue. Psoralen is the main component of the Psoralea corylifolia Linn, which shows antibacterial, anti-inflammatoryand osteogenic activities. It promotes the differentiation of periodontal ligament stem cells toward osteogenesis. Exosomes secreted by stem cells play important roles in information transmission during the osteogenic differentiation process. The aim of this paper was to investigate the role of psoralen in regulating osteogenic miRNA information in periodontal stem cells and in periodontal stem cells exosomes and the specific mechanism of its action. Experimental results show that exosomes of human periodontal ligament stem cell origin treated with psoralen (hPDLSCs + Pso-Exos) were not significantly different from untreated exosomes (hPDLSC-Exos) in terms of size and morphology. Thirty-five differentially expressed miRNAs were found to be upregulated and 58 differentially expressed miRNAs were found to be downregulated in the hPDLSCs + Pso-Exos compared to the hPDLSC-Exos (P < 0.05). hsa-miR-125b-5p was associated with osteogenic differentiation. Among them, hsa-miR-125b-5p was associated with osteogenic differentiation. After hsa-miR-125b-5p was inhibited, the osteogenesis level of hPDLSCs was enhanced. In summary, the osteogenic differentiation of hPDLSCs was promoted by psoralen through the downregulation of hsa-miR-125b-5p gene expression in hPDLSCs, and the expression of the hsa-miR-125b-5p gene was also downregulated in exosomes. This finding provides a new therapeutic idea for using psoralen to promote periodontal tissue regeneration.


Subject(s)
Exosomes , MicroRNAs , Adult , Humans , Osteogenesis/genetics , Exosomes/genetics , Ficusin/pharmacology , Ficusin/metabolism , Cells, Cultured , MicroRNAs/metabolism , Stem Cells/physiology , Cell Differentiation/genetics , Periodontal Ligament
9.
DNA Repair (Amst) ; 128: 103525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320956

ABSTRACT

Immunofluorescence imaging is a standard experimental tool for monitoring the response of cellular factors to DNA damage. Visualizing the recruitment of DNA Damage Response (DDR) components requires high affinity antibodies, which are generally available. In contrast, reagents for the display of the lesions that induce the response are far more limited. Consequently, DDR factor accumulation often serves as a surrogate for damage, without reporting the actual inducing structure. This limitation has practical implications given the importance of the response to DNA reactive drugs such as those used in cancer therapy. These include interstrand crosslink (ICL) forming compounds which are frequently employed clinically. Among them are the psoralens, natural products that form ICLs upon photoactivation and applied therapeutically since antiquity. However, despite multiple attempts, antibodies against psoralen ICLs have not been developed. To overcome this limitation, we developed a psoralen tagged with an antigen for which there are commercial antibodies. In this report we describe our application of the tagged psoralen in imaging experiments, and the unexpected discoveries they revealed.


Subject(s)
DNA Repair , Ficusin , Ficusin/pharmacology , Cross-Linking Reagents/pharmacology , DNA Damage , DNA
10.
IET Nanobiotechnol ; 17(4): 376-386, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37191270

ABSTRACT

The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on Staphylococcus aureus and Fusobacterium nucleatum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.


Subject(s)
Osteogenesis , Periodontitis , Rats , Animals , Ficusin/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
11.
J Bacteriol ; 205(6): e0012623, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37249472

ABSTRACT

DNA interstrand cross-links, such as those formed by psoralen-UVA irradiation, are highly toxic lesions in both humans and bacteria, with a single lesion being lethal in Escherichia coli. Despite the lack of effective repair, human cancers and bacteria can develop resistance to cross-linking treatments, although the mechanisms of resistance remain poorly defined. Here, we subjected E. coli to repeated psoralen-UVA exposure to isolate three independently derived strains that were >10,000-fold more resistant to this treatment than the parental strain. Analysis of these strains identified gain-of-function mutations in the transcriptional regulator AcrR and the alpha subunit of RNA polymerase that together could account for the resistance of these strains. Resistance conferred by the AcrR mutation is mediated at least in part through the regulation of the AcrAB-TolC efflux pump. Resistance via mutations in the alpha subunit of RNA polymerase occurs through a still-uncharacterized mechanism that has an additive effect with mutations in AcrR. Both acrR and rpoA mutations reduced cross-link formation in vivo. We discuss potential mechanisms in relation to the ability to repair and survive interstrand DNA cross-links. IMPORTANCE Psoralen DNA interstrand cross-links are highly toxic lesions with antimicrobial and anticancer properties. Despite the lack of effective mechanisms for repair, cells can become resistant to cross-linking agents through mechanisms that remain poorly defined. We derived resistant mutants and identified that two gain-of-function mutations in AcrR and the alpha subunit of RNA polymerase confer high levels of resistance to E. coli treated with psoralen-UVA. Resistance conferred by AcrR mutations occurs through regulation of the AcrAB-TolC efflux pump, has an additive effect with RNA polymerase mutations, acts by reducing the formation of cross-links in vivo, and reveals a novel mechanism by which these environmentally and clinically important agents are processed by the cell.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Anti-Bacterial Agents/radiation effects , DNA , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Ficusin/pharmacology , Mutation
12.
Small ; 19(21): e2207319, 2023 05.
Article in English | MEDLINE | ID: mdl-36869654

ABSTRACT

Overexpressed matrix metalloproteinases, hypoxia microenvironment, and metabolic abnormality are important pathological signs of rheumatoid arthritis (RA). Designing a delivery carrier according to the pathological characteristics of RA that can control drug release in response to disease severity may be a promising treatment strategy. Psoralen is the main active ingredient isolated from Psoralea corylifolia L. and possesses excellent anti-inflammatory activities as well as improving bone homeostasis. However, the specific underlying mechanisms, particularly the possible relationships between the anti-RA effects of psoralen and related metabolic network, remain largely unexplored. Furthermore, psoralen shows systemic side effects and has unsatisfactory solubility. Therefore, it is desirable to develop a novel delivery system to maximize psoralen's therapeutic effect. In this study, a self-assembled degradable hydrogel platform is developed that delivers psoralen and calcium peroxide to arthritic joints and controls the release of psoralen and oxygen according to inflammatory stimulation, to regulate homeostasis and the metabolic disorder of the anoxic arthritic microenvironment. Therefore, the hydrogel drug delivery system based on the responsiveness of the inflammatory microenvironment and regulation of metabolism provides a new therapeutic strategy for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Ficusin , Humans , Ficusin/pharmacology , Hydrogels , Plant Extracts , Bone and Bones
13.
J Ethnopharmacol ; 311: 116426, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36997132

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia L. seeds (P. corylifolia), popularly known as Buguzhi in traditional Chinese medicine, are often used to treat osteoporosis in China. Psoralen (Pso) is the key anti-osteoporosis constituent in P. corylifolia, however, its targets and mechanism of action are still unclear. AIM OF THE STUDY: The purpose of this study was to explore the interaction between Pso and 17-ß hydroxysteroid dehydrogenase type 2 (HSD17B2), an estrogen synthesis-related protein that inhibits the inactivation of estradiol (E2) to treat osteoporosis. MATERIALS AND METHODS: Tissue distribution of Pso was analyzed by in-gel imaging after oral administration of an alkynyl-modified Pso probe (aPso) in mice. The target of Pso in the liver was identified and analyzed using chemical proteomics. Co-localization and cellular thermal shift assays (CETSA) were used to verify the key action targets. To detect the key pharmacophore of Pso, the interaction of Pso and its structural analogs with HSD17B2 was investigated by CETSA, HSD17B2 activity assay, and in-gel imaging determination. Target competitive test, virtual docking, mutated HSD17B2 activity, and CETSA assay were used to identify the binding site of Pso with HSD17B2. A mouse model of osteoporosis was established by ovariectomies, and the efficacy of Pso in vivo was confirmed by micro-CT, H&E staining, HSD17B2 activity, and bone-related biochemical assays. RESULTS: Pso regulated estrogen metabolism by targeting HSD17B2 in the liver, with the α, ß-unsaturated ester in Pso being the key pharmacophore. Pso significantly suppressed HSD17B2 activity by irreversibly binding to Lys236 of HSD17B2 and preventing NAD+ from entering the binding pocket. In vivo studies in ovariectomized mice revealed that Pso could inhibit HSD17B2 activity, prevent the inactivation of E2, increase levels of endogenous estrogen, improve bone metabolism-related indices, and play a role in anti-osteoporosis. CONCLUSIONS: Pso covalently binds to Lys236 of HSD17B2 in hepatocytes to prevent the inactivation of E2, thereby aiding in the treatment of osteoporosis.


Subject(s)
Ficusin , Osteoporosis , Mice , Animals , Ficusin/pharmacology , Ficusin/therapeutic use , Estradiol/pharmacology , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Binding Sites , Estrogens/therapeutic use
14.
Sci Rep ; 13(1): 5174, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997601

ABSTRACT

Anti-neoplastic effect of DNA cross-linking agents such as cisplatin, mitomycin C, and psoralen is attributed to their ability to induce DNA interstrand cross-links (ICLs), which block replication, transcription, and linear repair pathways by preventing DNA strand separation and trigger apoptosis. It is generally agreed that the Fanconi anemia (FA) pathway orchestrates the removal of ICLs by the combined actions of various DNA repair pathways. Recently, attention has been focused on the ability of the NEIL3-initiated base excision repair pathway to resolve psoralen- and abasic site-induced ICLs in an FA-independent manner. Intriguingly, overexpression of NEIL3 is associated with chemo-resistance and poor prognosis in many solid tumors. Here, using loss- and gain-of-function approaches, we demonstrate that NEIL3 confers resistance to cisplatin and participates in the removal of cisplatin-DNA adducts. Proteomic studies reveal that the NEIL3 protein interacts with the 26S proteasome in a cisplatin-dependent manner. NEIL3 mediates proteasomal degradation of WRNIP1, a protein involved in the early step of ICL repair. We propose that NEIL3 participates in the repair of ICL-stalled replication fork by recruitment of the proteasome to ensure a timely transition from lesion recognition to repair via the degradation of early-step vanguard proteins.


Subject(s)
Cisplatin , Proteomics , Humans , Cisplatin/pharmacology , Cross-Linking Reagents , DNA , DNA Damage , DNA Repair , DNA Replication , Ficusin/pharmacology
15.
Environ Sci Pollut Res Int ; 30(2): 4372-4385, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35971049

ABSTRACT

The present study focuses on the effects of individual and combined stress of chromium (Cr) and ultraviolet-B (UV-B) radiation on Psoralea corylifolia L. The experiment comprised four sets: (i) control, (ii) eUV-B (elevated UV-B i.e., ambient + 7.2 kJ m-2 day-1 UV-B), (iii) Cr (chromium; 30 mg kg-1 soil), and (iv) Cr + eUV-B (chromium and elevated UV-B; Cr 30 mg kg-1 and ambient + 7.2 kJ m-2 day-1 UV-B). The eUV-B and Cr individually and in combination showed the variable responses on ultrastructure, physiology and biomass however, the impact was more prominent under individual Cr treatment followed by Cr + eUV-B and eUV-B. Higher bioconcentration factor and the lowered translocation factor consequently led to a higher reduction in the below ground biomass and the lesser reduction in above ground biomass under Cr + eUV-B treatment as compared to individual Cr treatment. In addition, higher induction in the enzymatic (glutathione reductase, ascorbate peroxidase, superoxide dismutase, and glutathione-S-transferase) and non-enzymatic antioxidants (glutathione reduced) were found to be responsible for efficient scavenging of hydrogen peroxide and superoxide radical leading to lowered MDA content under combined treatment as compared to Cr treatment. Deposition of Cr as electron dense granules in the cytoplasm, vacuoles, and cell wall under Cr and Cr + eUV-B is contemplated as one of the cellular mechanisms of P. corylifolia against the toxicity of Cr. Psoralen increased under all treatments with a maximum increase under Cr + eUV-B treatment. Taken together our results accentuated that P. corylifolia can be grown in an area contaminated with Cr and has a higher influx of UV-B for the attainment of psoralen considering its pharmaceutical perspectives.


Subject(s)
Plants, Medicinal , Psoralea , Psoralea/metabolism , Ficusin/pharmacology , Chromium/metabolism , Antioxidants/metabolism , Glutathione/metabolism , Oxidative Stress
16.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499568

ABSTRACT

Possible enhancements of DNA damage with light of different wavelengths and ionizing radiation (Rhenium-188-a high energy beta emitter (Re-188)) on plasmid DNA and FaDu cells via psoralen were investigated. The biophysical experimental setup could also be used to investigate additional DNA damage due to photodynamic effects, resulting from Cherenkov light. Conformational changes of plasmid DNA due to DNA damage were detected and quantified by gel electrophoresis and fluorescent staining. The clonogene survival of the FaDu cells was analyzed with colony formation assays. Dimethyl sulfoxide was chosen as a chemical modulator, and Re-188 was used to evaluate the radiotoxicity and light (UVC: λ = 254 nm and UVA: λ = 366 nm) to determine the phototoxicity. Psoralen did not show chemotoxic effects on the plasmid DNA or FaDu cells. After additional treatment with light (only 366 nm-not seen with 254 nm), a concentration-dependent increase in single strand breaks (SSBs) was visible, resulting in a decrease in the survival fraction due to the photochemical activation of psoralen. Whilst UVC light was phototoxic, UVA light did not conclude in DNA strand breaks. Re-188 showed typical radiotoxic effects with SSBs, double strand breaks, and an overall reduced cell survival for both the plasmid DNA and FaDu cells. While psoralen and UVA light showed an increased toxicity on plasmid DNA and human cancer cells, Re-188, in combination with psoralen, did not provoke additional DNA damage via Cherenkov light.


Subject(s)
Photochemotherapy , Rhenium , Humans , Photosensitizing Agents/pharmacology , Ficusin/pharmacology , Radioisotopes , DNA/chemistry , DNA Damage , Ultraviolet Rays
17.
Biomed Pharmacother ; 153: 113381, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076476

ABSTRACT

This study aims to explore the effect of Psoralen on myelosuppression, and investigating the mechanism involved in. The mesenchymal stem cells (MSCs) were treated with CTX to construct cell model of myelosuppression, and then with APP knockdown or overexpression transfection. Cell proliferation, cell apoptosis, bone growth factors, and hematopoietic growth factors were identified. The animal model of myelosuppression syndrome was established by intraperitoneal injection of cyclophosphamide (CTX) into C57BL/6 mice, and then with APP knockdown transfection. The effect of Psoralen on myelosuppression mice with APP knockdown was explored, including observin the number of hematopoietic stem cells and bone marrow MSCs, detecting the degree of osteoporosis and the number of osteoclasts. The expression of phosphorylation-amyloid precursor protein (p-APP), bone growth factors, and hematopoietic growth factors were also examined. We found that CTX treatment inhibited cell proliferation, induced cell apoptosis, promoted p-APP/APP, and inhibited the expression of aph-1 homolog A (APH-1α), presenilin enhancer-2 (PEN-2), the receptor of advanced glycation endproducts (RAGE). Psoralen pretreatment effectively promoted cell proliferation, suppressed cell apoptosis, inhibited p-APP/APP and stimulated the expression of APH-1α, PEN-2, RAGE compared with CTX treatment. After APP knockdown, cell proliferation was inhibited, and cell apoptosis was increased. The release of bone growth factors and hematopoietic growth factors was decreased. Psoralen pretreatment could reverse the effect of APP knockdown on MSCs and myelosuppression mice. In conclusion, Psoralen treatment inhibited cell apoptosis and regulated bone growth factors and hematopoietic growth factors in myelosuppression syndrome by suppressing the phosphorylation of APP.


Subject(s)
Amyloid beta-Protein Precursor , Bone Marrow Diseases , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Ficusin/pharmacology , Mice , Mice, Inbred C57BL , Phosphorylation
18.
Biomed Res Int ; 2022: 9504787, 2022.
Article in English | MEDLINE | ID: mdl-36060144

ABSTRACT

Purpose: Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result: Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 µg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 µg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 µg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 µM dose. Conclusion: The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.


Subject(s)
Fabaceae , Furocoumarins , Psoralea , Ficusin/pharmacology , Lipase/analysis , Lipids/analysis , Methylene Chloride , Obesity/drug therapy , Plant Extracts/chemistry , Psoralea/chemistry , Seeds/chemistry
19.
Aging (Albany NY) ; 14(16): 6716-6726, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36036756

ABSTRACT

Estrogen and its receptor play a positive role in the development of osteoarthritis (OA). Psoralen is a plant-derived estrogen analog. This study aimed to verify whether psoralen inhibits OA through an estrogen-like effect. First, human primary chondrocytes in the late stage of OA were extracted to complete collagen type II immunofluorescence staining and cell proliferation experiments. Subsequently, estrogen, psoralen and estrogen receptor antagonists were co-cultured with OA chondrocytes, and RT-PCR was performed to detect the gene expression. A rabbit OA model was subsequently made by anterior cruciate ligament transection (ACLT). They were set as Sham group, OA group and Psoralen group, respectively. The articular cartilage samples were taken after 5 weeks of treatment, and the effect was observed by gross observation, histological staining, micro-CT scanning of subchondral bone. The results of cellular experiments displayed that the cultured cells were positive for collagen II fluorescence staining and 12 µg/mL psoralen was selected as the optimal concentration. In addition, psoralen had effects similar to estrogen, promoting the expression of estrogen tar-get genes CTSD, PGR and TFF1 and decreasing the expression of the inflammation-related gene TNF- α, IL-1ß and IL-6. The effect of psoralen was blocked after the use of an estrogen receptor antagonist. Further animal experiments indicated that the psoralen group showed less destruction of cartilage tissue and decreased OASRI scores compared with the OA group. A subchondral bone CT scan demonstrated that psoralen significantly increased subchondral bone mineral density (BMD), trabecular thickness and trabecular number and decreased trabecular separation. In summary, psoralen inhibits the inflammatory production of chondrocytes, which is related to estrogen-like effect, and can be used to attenuate the progression of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Disease Models, Animal , Estrogens/metabolism , Ficusin/pharmacology , Ficusin/therapeutic use , Humans , Inflammation/metabolism , Osteoarthritis/metabolism , Rabbits
20.
Sci Rep ; 12(1): 13487, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931753

ABSTRACT

Psoralen derivatives are well known for their unique phototoxicity and also exhibits promising anti-breast cancer activity both in the presence and the absence of UVA irradiation. However, the structure-activity relationship on this scaffold remains lacking. Herein, a series of psoralen derivatives with various C-5 substituents were synthesized and evaluated for their in vitro dark and light-activated cytotoxicity against three breast cancer cell lines: MDA-MB-231, T47-D, and SK-BR-3. The type of substituents dramatically impacted the activity, with the 4-bromobenzyl amide derivative (3c) exhibiting the highest dark cytotoxicity against T47-D (IC50 = 10.14 µM), with the activity comparable to those of the reference drugs (doxorubicin, 1.46 µM; tamoxifen citrate, 20.86 µM; lapatinib 9.78 µM). On the other hand, the furanylamide 3g exhibits the highest phototoxicity against SK-BR-3 cells with the IC50 of 2.71 µM, which is almost tenfold increase compared to the parent compound, methoxsalen. Moreover, these derivatives showed exceptional selectivity towards HER2+ (SK-BR-3) over the HER2- (MDA-MB-231) breast cancer cell lines, which correlates well with the results from the molecular docking study, revealing that 3g formed favorable interactions within the active site of the HER2. Additionally, the cell morphology of SK-BR-3 cells suggested that the significant phototoxicity was related to induction of cell apoptosis. Most of the synthesized psoralen derivatives possess acceptable physicochemical properties and are suitable for being further developed as a novel anti-breast cancer agent in the future.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Ficusin/pharmacology , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...