Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.388
Filter
1.
BMC Genomics ; 25(1): 451, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714919

ABSTRACT

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Subject(s)
Fishes , Ovary , Proteomics , Animals , Fishes/metabolism , Female , Proteomics/methods , Ovary/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome/metabolism , Proteome/analysis , Fish Proteins/metabolism , Ovum/metabolism , Egg Proteins/metabolism , Egg Proteins/analysis
2.
Food Res Int ; 187: 114357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763641

ABSTRACT

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Subject(s)
Aldehydes , Linoleic Acid , Oxidation-Reduction , Tandem Mass Spectrometry , Aldehydes/metabolism , Animals , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Chromatography, Liquid/methods , Fish Proteins/metabolism , Muscle Proteins/metabolism , Fishes , Hydrophobic and Hydrophilic Interactions , Lipoxygenase/metabolism , Liquid Chromatography-Mass Spectrometry
3.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732232

ABSTRACT

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Subject(s)
Aeromonas hydrophila , Bass , Cell Adhesion Molecules , Lectins, C-Type , Receptors, Cell Surface , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Aeromonas hydrophila/immunology , Bass/immunology , Bass/metabolism , Bass/microbiology , Bass/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Immunity, Innate , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology
4.
BMC Genomics ; 25(1): 500, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773374

ABSTRACT

BACKGROUND: The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS: In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS: In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.


Subject(s)
Metals , Animals , Male , Female , Metals/metabolism , Eels/metabolism , Eels/genetics , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Smegmamorpha/metabolism , Smegmamorpha/genetics , Hermaphroditic Organisms/metabolism , Hermaphroditic Organisms/genetics , Gene Expression Profiling , Testis/metabolism
5.
Front Immunol ; 15: 1352469, 2024.
Article in English | MEDLINE | ID: mdl-38711504

ABSTRACT

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Subject(s)
Disease Resistance , Fish Diseases , Fish Proteins , Flatfishes , Microbiota , Skin , Vibrio Infections , Vibrio , Animals , Skin/immunology , Skin/microbiology , Skin/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Disease Resistance/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , Microbiota/immunology , Vibrio/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Proteome , Proteomics/methods
6.
Front Immunol ; 15: 1374368, 2024.
Article in English | MEDLINE | ID: mdl-38715616

ABSTRACT

NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.


Subject(s)
Fish Proteins , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Signal Transduction , Animals , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Perches/genetics , Perches/immunology , Perches/metabolism , Interferons/metabolism , Interferons/genetics , Promoter Regions, Genetic , Transcription, Genetic , Immunity, Innate/genetics , Protein Binding
7.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702622

ABSTRACT

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Subject(s)
Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732017

ABSTRACT

Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.


Subject(s)
Fish Proteins , Fishes , Immunity, Innate , Lectins , Animals , Lectins/chemistry , Lectins/metabolism , Lectins/immunology , Lectins/genetics , Fishes/immunology , Fishes/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Fish Proteins/immunology , Fish Proteins/metabolism , Molecular Docking Simulation , Amino Acid Sequence , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732090

ABSTRACT

Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.


Subject(s)
Muscle Development , Animals , Muscle Development/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Gene Expression Regulation, Developmental , Fish Proteins/genetics , Fish Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cell Cycle/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
10.
Article in English | MEDLINE | ID: mdl-38663833

ABSTRACT

Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone ß (tshß), tshß-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.


Subject(s)
Air Sacs , Iopanoic Acid , Oryzias , Swimming , Thyroid Hormones , Animals , Oryzias/physiology , Air Sacs/drug effects , Air Sacs/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/blood , Iopanoic Acid/toxicity , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Thyroxine/blood , Triiodothyronine/blood , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism
11.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R461-R471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557151

ABSTRACT

Nutrient absorption is essential for animal survival and development. Our previous study on zebrafish reported that nutrient absorption in lysosome-rich enterocytes (LREs) is promoted by the voltage-sensing phosphatase (VSP), which regulates phosphoinositide (PIP) homeostasis via electrical signaling in biological membranes. However, it remains unknown whether this VSP function is shared by different absorptive tissues in other species. Here, we focused on the function of VSP in a viviparous teleost Xenotoca eiseni, whose intraovarian embryos absorb nutrients from the maternal ovarian fluid through a specialized hindgut-derived pseudoplacental structure called trophotaenia. Xenotoca eiseni VSP (Xe-VSP) is expressed in trophotaenia epithelium, an absorptive tissue functionally similar to zebrafish LREs. Notably, the apical distribution of Xe-VSP in trophotaenia epithelial cells closely resembles zebrafish VSP (Dr-VSP) distribution in zebrafish LREs, suggesting a shared role for VSP in absorptive tissues between the two species. Electrophysiological analysis using a heterologous expression system revealed that Xe-VSP preserves functional voltage sensors and phosphatase activity with the leftward shifted voltage sensitivity compared with zebrafish VSP (Dr-VSP). We also identified a single amino acid variation in the S4 helix of Xe-VSP as one of the factors contributing to the leftward shifted voltage sensitivity. This study highlights the biological variation and significance of VSP in various animal species, as well as hinting at the potential role of VSP in nutrient absorption in X. eiseni trophotaenia.NEW & NOTEWORTHY We investigate the voltage-sensing phosphatase (VSP) in Xenotoca eiseni, a viviparous fish whose intraovarian embryos utilize trophotaenia for nutrient absorption. Although X. eiseni VSP (Xe-VSP) shares key features with known VSPs, its distinct voltage sensitivity arises from species-specific amino acid variation. Xe-VSP in trophotaenia epithelium suggests its involvement in nutrient absorption, similar to VSP in zebrafish enterocytes and potentially in species with similar absorptive cells. Our findings highlight the potential role of VSP across species.


Subject(s)
Phosphoric Monoester Hydrolases , Viviparity, Nonmammalian , Animals , Female , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Enterocytes/metabolism , Enterocytes/enzymology , Electric Fish/physiology , Electric Fish/metabolism , Zebrafish , Membrane Potentials
12.
Mol Immunol ; 170: 26-34, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603988

ABSTRACT

Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.


Subject(s)
Flounder , Immunity, Innate , Neutrophils , Peroxidase , Animals , Flounder/immunology , Peroxidase/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Immunity, Innate/immunology , Gills/immunology , Head Kidney/immunology , Fish Proteins/metabolism , Fish Proteins/immunology , Fish Proteins/genetics , Flow Cytometry , Spleen/immunology
13.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629918

ABSTRACT

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Subject(s)
Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism , Peptidoglycan/immunology , Fish Proteins/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Carps/immunology , Mice , Protein Binding , Signal Transduction/immunology , Humans , Amino Acid Motifs , Zebrafish/immunology
14.
Biochemistry ; 63(10): 1257-1269, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38683758

ABSTRACT

Interactions between SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four analogs thereof with model bacterial membranes were studied using Fourier-transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. MD trajectory analyses showed that the N-terminal segment of the peptide analogs has many contacts with the polar heads of membrane phospholipids, while the central α helix interacts strongly with the hydrophobic core of the membranes. The peptides also had a marked influence on the wave numbers associated with the phase transition of phospholipids organized as liposomes in both the interface and aliphatic chain regions of the infrared spectra, supporting the interactions observed in the MD trajectories. In addition, interesting links were found between peptide interactions with the aliphatic chains of membrane phospholipids, as determined by FTIR and from the MD trajectories, and the membrane permeabilization capacity of these peptide analogs, as previously demonstrated. To summarize, the combined experimental and computational efforts have provided insights into crucial aspects of the interactions between the investigated peptides and bacterial membranes. This work thus makes an original contribution to our understanding of the molecular interactions underlying the antimicrobial activity of these GAPDH-related antimicrobial peptides from Scombridae.


Subject(s)
Molecular Dynamics Simulation , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Fish Proteins/pharmacology , Spectroscopy, Fourier Transform Infrared , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Amino Acid Sequence
15.
Fish Shellfish Immunol ; 149: 109550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593891

ABSTRACT

Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Myeloid Differentiation Factor 88 , NF-kappa B , Perciformes , Signal Transduction , Vibrio Infections , Vibrio , Animals , Perciformes/immunology , Perciformes/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/immunology , NF-kappa B/genetics , Vibrio/physiology , Immunity, Innate/genetics , Fish Diseases/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Gene Expression Regulation/immunology , Lipopolysaccharides/pharmacology
16.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636738

ABSTRACT

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Subject(s)
Anguilla , Fish Proteins , GATA1 Transcription Factor , NF-kappa B , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Anguilla/genetics , Anguilla/immunology , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Signal Transduction
17.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642725

ABSTRACT

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Subject(s)
Fish Diseases , Fish Proteins , Protein Serine-Threonine Kinases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Immunity, Innate/genetics , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/immunology , Carps/immunology , Carps/genetics , Herpesviridae/physiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Zebrafish Proteins
18.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670412

ABSTRACT

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Subject(s)
Fish Proteins , Interferon Type I , Oncorhynchus mykiss , Poly I-C , Signal Transduction , TNF Receptor-Associated Factor 3 , Animals , Oncorhynchus mykiss/immunology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Signal Transduction/immunology , Poly I-C/pharmacology , Immunity, Innate , Gene Expression Regulation/immunology , Ubiquitination , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/immunology
19.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672450

ABSTRACT

Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.


Subject(s)
Feeding Behavior , Fishes , Motilin , Animals , Brain/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Fishes/genetics , Fishes/physiology , Motilin/genetics , Motilin/metabolism , Motilin/pharmacology , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
20.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570120

ABSTRACT

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Subject(s)
Bass , DNA Virus Infections , Fatty Acid Elongases , Fish Diseases , Fish Proteins , Lipid Metabolism , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , Bass/immunology , Bass/genetics , Fatty Acid Elongases/genetics , Nodaviridae/physiology , Gene Expression Regulation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Birnaviridae Infections/veterinary , Birnaviridae Infections/immunology , Birnaviridae Infections/virology , Gene Expression Profiling/veterinary , Iridoviridae/physiology , Iridovirus/physiology , Phylogeny , Sequence Alignment/veterinary , Amino Acid Sequence , Metabolic Reprogramming
SELECTION OF CITATIONS
SEARCH DETAIL
...