Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.641
Filter
1.
Sci Total Environ ; 932: 173031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723961

ABSTRACT

The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , Particulate Matter , Plastics , Polymers , Microplastics/analysis , Polymers/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollutants/analysis , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Humans , Flame Retardants/analysis , Dust/analysis
2.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712863

ABSTRACT

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Subject(s)
Flame Retardants , Flame Retardants/analysis , Humans , Temperature , Environmental Exposure , Motor Vehicles
3.
Chemosphere ; 355: 141822, 2024 May.
Article in English | MEDLINE | ID: mdl-38561157

ABSTRACT

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Flame Retardants/analysis , Environmental Exposure/analysis , Phosphates/analysis , Water Quality , Organophosphates/analysis
4.
J Affect Disord ; 355: 385-391, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38574866

ABSTRACT

BACKGROUND: Organophosphorus flame retardants (OPFRs) can damage the brain and may cause abnormal behaviors. There was no population-based study to reveal the relationship between OPFRs and the occurrence of depression. This study utilized a publicly available database to investigate the correlation between OPFRs exposure and the risk of depression, and the mediation effect of inflammation on the correlation. METHODS: Data in this study was from the database of the National Health and Nutrition Examination Survey. Multifactorial logistic regression was used to estimate the relationship between OPFRs exposure and the risk of depression, and a mediation effect model was constructed to explore the impact of inflammation on the correlation. RESULTS: Data of 1273 participants was included in the study. It was found that individuals with high urinary concentration of bis-(2-chloroethyl) phosphate had an increased risk of developing depression (OR = 1.217, 95 % CI: 1.032-1.435). Combined exposure to OPFRs was significantly associated with the increased risk of depression than single OPFRs exposure. Subgroup analyses based on inflammatory levels in the body revealed that inflammation might exert the mediation effect on the association between OPFRs exposure and the risk of depression, with the contribution proportion of 8.23 %. LIMITATIONS: Cross-sectional data and rapid metabolism of OPFRs lead to uncertainty in revealing long-term exposure in the body. CONCLUSIONS: There was a correlation between OPFRs exposure and the risk of depression, which may be mediated by inflammation in the body to some extent.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Humans , Organophosphorus Compounds/analysis , Flame Retardants/adverse effects , Flame Retardants/analysis , Nutrition Surveys , Cross-Sectional Studies , Depression/epidemiology , Inflammation
5.
Sci Total Environ ; 927: 172187, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582107

ABSTRACT

Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.


Subject(s)
Environmental Exposure , Environmental Monitoring , Flame Retardants , Organophosphates , Plasticizers , Silicones , Flame Retardants/analysis , Plasticizers/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Organophosphates/urine , Belgium , Adult , Environmental Pollutants/urine , Male , Female
6.
Environ Pollut ; 349: 123877, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574945

ABSTRACT

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Flame Retardants , Silicones , Humans , Adult , Flame Retardants/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods , Male , Female , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Pesticides/analysis , Young Adult , Wrist , Phthalic Acids/analysis
7.
Int J Biol Macromol ; 268(Pt 1): 131612, 2024 May.
Article in English | MEDLINE | ID: mdl-38631572

ABSTRACT

Cotton fabric is extensively utilized due to its numerous applications, but the flammability associated with cotton fabric poses potential security risks to individuals. A halogen-free efficient flame retardant named poly [(tetramethylcyclosiloxyl spirocyclic pentaerythritol)-piperazin phosphate] (PCPNTSi) was developed to consolidate the fire retardance of cotton fabrics. After PCPNTSi treatment, the limiting oxygen index (LOI) of cotton fabric with 30 % weight gain (CP3) was raised to 32.8 %. In the vertical flammability test (VFT), CP3 has self-extinguished performance with a char length of 8.7 cm. The heat release rate (HRR) of cotton fabric with 20 % weight gain (CP2) is 78.8 % lower than that of pure cotton fabric (CP0). In addition, the total smoke release (TSP) of CP2 is 41.7 % lower than that of CP0, indicating PCPNTSi gives cotton fabric a good capability to inhibit smoke release. Finally, the possible flame retardant mechanism was discussed by the data of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric infrared spectroscopy (TG-IR). The results show that PCPNTSi is an intumescent flame retardant acting in both gas phase and solid phase.


Subject(s)
Cotton Fiber , Flame Retardants , Flame Retardants/analysis , Cotton Fiber/analysis , Nitrogen/chemistry , Textiles/analysis
8.
Chemosphere ; 358: 142095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663681

ABSTRACT

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
9.
Chemosphere ; 358: 142172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685322

ABSTRACT

In excess of 13,000 chemicals are added to plastics ('additives') to improve performance, durability, and production of plastic products. They are categorized into numerous chemical classes including flame retardants, light stabilizers, antioxidants, and plasticizers. While research on plastic additives in the marine environment has increased over the past decade, there is a lack of methodological standardization. To direct future measurement of plastic additives, we compiled a first-of-its-kind dataset of literature assessing plastic additives in marine environments, delineated by sample type (plastic debris, seawater, sediment, biota). Using this dataset, we performed a meta-analysis to summarize the state of the science. Currently, our dataset includes 217 publications published between 1978 and May 2023. The majority of publications analyzed plastic additives in biota collected from Europe and Asia. Analyses concentrated on plasticizers, brominated flame retardants, and bisphenols. Common sample preparation techniques included Solvent - Agitation extraction for plastic, sediment, and biota samples, and Solid Phase Extraction for seawater samples with dichloromethane and solvent mixtures including dichloromethane as the organic extraction solvent. Finally, most analyses were performed utilizing gas chromatography/mass spectrometry. There are a variety of data gaps illuminated by this meta-analysis, most notably the small number of compounds that have been targeted for detection compared to the large number of additives used in plastic production. The provided dataset facilitates future investigation of trends in plastic additive concentration data in the marine environment (allowing for comparison to toxicity thresholds) and acts as a starting point for optimizing and harmonizing plastic additive analytical methods.


Subject(s)
Environmental Monitoring , Flame Retardants , Plastics , Water Pollutants, Chemical , Plastics/analysis , Water Pollutants, Chemical/analysis , Flame Retardants/analysis , Environmental Monitoring/methods , Oceans and Seas , Seawater/chemistry , Plasticizers/analysis , Geologic Sediments/chemistry
10.
Chemosphere ; 356: 141946, 2024 May.
Article in English | MEDLINE | ID: mdl-38604518

ABSTRACT

End-of-life electric and electronic devices stand as one of the fastest growing wastes in the world and, therefore, a rapidly escalating global concern. A relevant fraction of these wastes corresponds to polymeric materials containing a plethora of chemical additives. Some of those additives fall within the category of hazardous organic compounds (HOCs). Despite the significant advances in the capabilities of analytical methods, the comprehensive characterization of WEEE plastic remains as a challenge. This research strives to identify the primary additives within WEEE polymers by implementing a non-target and suspect screening approach. Gas chromatography coupled to time-of-flight mass spectrometry (GC-QTOF-MS), using electron ionization (EI), was applied for the detection and identification of more than 300 substances in this matrix. A preliminary comparison was carried out with nominal resolution EI-MS spectra contained in the NIST17 library. BPA, flame retardants, UV-filters, PAHs, and preservatives were among the compounds detected. Fifty-one out of 300 compounds were confirmed by comparison with authentic standards. The study establishes a comprehensive database containing m/z ratios and accurate mass spectra of characteristic compounds, encompassing HOCs. Semi-quantification of the predominant additives was conducted across 48 WEEE samples collected from handling and dismantling facilities in Galicia. ABS plastic demonstrated the highest median concentrations, ranging from 0.154 to 4456 µg g-1, being brominated flame retardants and UV filters, the families presenting the highest concentrations. Internet router devices revealed the highest concentrations, containing a myriad of HOCs, such as tetrabromobisphenol A (TBBPA), tribromophenol (TBrP), triphenylphosphate (TPhP), tinuvin P and bisphenol A (BPA), most of which are restricted in Europe.


Subject(s)
Electronic Waste , Gas Chromatography-Mass Spectrometry , Plastics , Electronic Waste/analysis , Plastics/analysis , Plastics/chemistry , Flame Retardants/analysis , Hazardous Substances/analysis , Organic Chemicals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Phenols/analysis , Benzhydryl Compounds/analysis , Environmental Monitoring/methods , Polymers/chemistry , Polymers/analysis
11.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
12.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657129

ABSTRACT

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Subject(s)
Air Pollution, Indoor , Dust , Flame Retardants , Organophosphorus Compounds , Plasticizers , Flame Retardants/analysis , Plasticizers/analysis , Air Pollution, Indoor/analysis , Dust/analysis , China , Organophosphorus Compounds/analysis , Environmental Monitoring , Humans , Air Pollutants/analysis
13.
Environ Sci Technol ; 58(15): 6804-6813, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38512799

ABSTRACT

The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.


Subject(s)
Flame Retardants , Antarctic Regions , Flame Retardants/analysis , Food Chain , Ecosystem , Bioaccumulation , Arctic Regions , Environmental Monitoring , Lipids , Halogenated Diphenyl Ethers/analysis
14.
Sci Total Environ ; 926: 171912, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522545

ABSTRACT

The assessment of chemical pollution in free-ranging living mammals is viable using remote biopsies and portrays a comprehensive scenario of environmental health. The Southwestern Atlantic Ocean holds incredible biodiversity, but it is under the constant and invisible threat of persistent organic pollutants (POPs) of anthropogenic origin, such as pesticides, brominated flame retardants, and industrial-use compounds (e.g., PCBs). Thus, this study aimed to assess the bioaccumulation of POPs (PCBs, DDTs, HCB, mirex and PBDEs) and natural organobromine compounds (MeO-BDEs) using gas-chromatography coupled to mass spectrometry in biopsy samples of Atlantic spotted dolphins (Stenella frontalis, n = 20) that inhabit and forage both inside and in adjacent areas to degraded (Guanabara Bay) and conserved (Ilha Grande Bay) coastal bays in the Southeastern Brazil. Among the studied compounds, PCBs were predominant in the contamination profile with median concentration of 97.0 µg.g-1 lipid weight (lw), followed by the sum of the p,p' isomers of DDT, DDD, and DDE of 11.0 µg.g-1 lw, the brominated flame retardants PBDEs of 1.6 µg.g-1 lw, and the other organochlorine pesticides mirex of 0.78 µg.g-1 lw, and HCB of 0.049 µg.g-1 lw. The MeO-BDEs were detected with a median concentration of 22.8 µg.g-1 lw. 85 % of the Atlantic spotted dolphins analyzed in this study presented PCB concentration that exceeded even the less conservative threshold limits for adverse health effects (41 µg.g-1 lw). This study shows that despite the conservation status of preserved bays, cetacean species foraging in these locations are still under increased threat. Hence chemical pollution demands local and global efforts to be mitigated.


Subject(s)
Flame Retardants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Stenella , Water Pollutants, Chemical , Animals , Stenella/metabolism , Polychlorinated Biphenyls/analysis , Mirex , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Cetacea/metabolism , Environmental Monitoring , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 926: 172045, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554968

ABSTRACT

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Flame Retardants , Humans , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Vietnam , Electronic Waste/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Esters/analysis , China
16.
Environ Pollut ; 347: 123733, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458527

ABSTRACT

Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.


Subject(s)
Asthma , Flame Retardants , Humans , Flame Retardants/analysis , Organophosphorus Compounds/analysis , Organophosphates/analysis , Environmental Monitoring , Dust/analysis , Halogenated Diphenyl Ethers/analysis
17.
Environ Pollut ; 347: 123743, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462195

ABSTRACT

Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 µM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.


Subject(s)
Flame Retardants , Humans , Flame Retardants/analysis , Organophosphates/toxicity , Phosphates/analysis , Cell Differentiation , Esters , Environmental Monitoring
18.
Chemosphere ; 354: 141663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479684

ABSTRACT

Two fish species from the middle reaches of the Yangtze River, China, were sampled to investigate the occurrence, tissue distribution, age-dependent accumulation and ecological risk assessment of 24 organophosphorus flame retardants (OPFRs). Seventeen OPFRs were detected in tissue samples with a total concentration ranging from not detected (ND) to 1092 ng g-1 dw. Cl-OPFRs were predominant in all tissues (mean: 145 ng g-1 dw, median: 72.9 ng g-1 dw) and the concentrations of OPFRs in brain were the greatest (crucian carp: 525 ng g-1 dw, silver carp: 56.0 ng g-1 dw) compared with the other three organs (e.g., liver, muscle and gonad). Furthermore, the total concentrations of OPFRs in crucian carp tissues were significantly greater than those in silver carp (P < 0.01). Age-dependent accumulation of OPFRs was observed in the two fish species, but the accumulation profiles in the two fish species were different. Ecological risk assessment demonstrated that both fish species were at medium to high risk, and TDCIPP was a main contributor (>50%).


Subject(s)
Carps , Flame Retardants , Animals , Organophosphorus Compounds , Flame Retardants/analysis , Rivers , Tissue Distribution , Organophosphates , China , Risk Assessment
19.
Mar Pollut Bull ; 201: 116256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521000

ABSTRACT

We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑13tri-OPEs (12.0 ng/g dw) and ∑4di-OPEs (0.7 ng/g dw) were measured in intertidal sediments with predominance of fine particles, and under higher anthropogenic pressures, with a general lack of seasonality. Contrarily, Scrobicularia plana showed up to 4-fold higher ∑tri-OPE concentrations in summer (reaching 37.0 ng/g dw), and similar spatial distribution. Polyethylene predominated in both compartments. Tris(2-ethylhexyl) phosphate (TEHP), its degradation metabolite (BEHP) and tris-(2-chloro, 1-methylethyl) phosphate (TCIPP) were the most abundant OPEs in sediments, while TCIPP predominated in S. plana. The biota-sediment accumulation factors suggest bioaccumulation potential for chlorinated-OPEs, with higher exposure in summer. No significant correlations were generally found between OPEs and MPs in sediments suggesting a limited role of MPs as in-situ source of OPEs.


Subject(s)
Environmental Monitoring , Flame Retardants , Microplastics , Plastics , Estuaries , Flame Retardants/analysis , Plasticizers/analysis , Organophosphates/analysis , Phosphates , Esters/analysis , China
20.
Mar Pollut Bull ; 201: 116194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432180

ABSTRACT

Flame retardants (FRs) are released throughout the plastic life cycle, potentially impacting the environment, biodiversity, and human health. This study analyzed novel flame retardants (NFR) in marine plastic litter (MPL) from six coastal areas in central Chile in November 2017. Target chemicals (n = 19) were analyzed using ultrasonic extraction with hexane, gas chromatography, and mass spectrometry (GC-MS). From all nineteen NFRs analyzed, only ten (53 %) were routinely detected. BTBPE (1,2-bis(2,4,6-tribromophenoxy) ethane) showed the highest concentrations at the Bellavista site (618 to 424,000 pg g-1), and HBB (Hexabromobiphenyl), banned since 1970, was detected in Coliumo (2630 to 13,700 pg g-1). These results show emerging transport patterns and underscore the critical need for enhanced waste management practices for MPL in coastal regions to prevent adverse impacts on marine biodiversity.


Subject(s)
Flame Retardants , Humans , Gas Chromatography-Mass Spectrometry/methods , Flame Retardants/analysis , Chile , Halogenated Diphenyl Ethers/analysis , Mass Spectrometry , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...