Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 722
Filter
1.
Anal Chem ; 96(25): 10283-10293, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38864304

ABSTRACT

Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy. The mutant target (MT) was hybridized with a biotin-modified upstream probe and hairpin-type downstream probe (DP) to form a specific three-base overlapping structure. Then, FEN 1 was employed for three-base overlapping structure-specific recognition, namely, the precise SNP site identification and the 5' flap of DP dissociation. After dissociation, the hybridized probes were magnetically separated by a streptavidin-biotin complex. Especially, the ability to establish such a hairpin-type DP provided a powerful tool that could be used to hide the cut sequence (CS) and avoid false-positive signals. The cleaved CS initiated the CHA reaction and allowed superior fluorescence signal generation. Owing to the high specificity of FEN 1 for single base recognition, only the MT could be distinguished from the wild-type target and mismatched DNA. Owing to the dual signal amplification, as low as 0.36 fM MT and 1% mutation abundance from the mixtures could be detected, respectively. Furthermore, it could accurately identify SNPs from human cancer cells, as well as soybean leaf genome extracts. This strategy paves the way for the development of more precise and sensitive tools for diagnosing early onset diseases as well as molecular design breeding tools.


Subject(s)
Flap Endonucleases , Polymorphism, Single Nucleotide , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Hybridization
2.
Nucleic Acids Res ; 52(11): 6424-6440, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38801073

ABSTRACT

TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA, Single-Stranded , Intracellular Signaling Peptides and Proteins , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA/metabolism , DNA/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics
3.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738876

ABSTRACT

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Subject(s)
Chromatography, Affinity , Chromatography, Affinity/methods , Flap Endonucleases/chemistry , Flap Endonucleases/isolation & purification , Flap Endonucleases/metabolism , Chromatography, Liquid/methods , Histidine/chemistry , Escherichia coli/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
4.
Environ Toxicol ; 39(8): 4171-4183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38666519

ABSTRACT

This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.


Subject(s)
Apoptosis , Chitosan , DNA Damage , Flap Endonucleases , Gallic Acid , Nanoparticles , Triple Negative Breast Neoplasms , Gallic Acid/pharmacology , Gallic Acid/chemistry , Chitosan/chemistry , Humans , Flap Endonucleases/metabolism , DNA Damage/drug effects , Apoptosis/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Nanoparticles/toxicity , Cell Line, Tumor , Mice , Animals , Reactive Oxygen Species/metabolism , Female , NIH 3T3 Cells
5.
Mol Biol Rep ; 51(1): 553, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642158

ABSTRACT

BACKGROUND: The metastasis accounts for most deaths from breast cancer (BRCA). Understanding the molecular mechanisms of BRCA metastasis is urgently demanded. Flap Endonuclease 1 (FEN1), a pivotal factor in DNA metabolic pathways, contributes to tumor growth and drug resistance, however, little is known about the role of FEN1 in BRCA metastasis. METHODS AND RESULTS: In this study, FEN1 expression and its clinical correlation in BRCA were investigated using bioinformatics, showing being upregulated in BRCA samples and significant relationships with tumor stage, node metastasis, and prognosis. Immunohistochemistry (IHC) staining of local BRCA cohort indicated that the ratio of high FEN1 expression in metastatic BRCA tissues rose over that in non-metastatic tissues. The assays of loss-of-function and gain-of-function showed that FEN1 enhanced BRCA cell proliferation, migration, invasion, xenograft growth as well as lung metastasis. It was further found that FEN1 promoted the aggressive behaviors of BRCA cells via Signal Transducer and Activator of Transcription 3 (STAT3) activation. Specifically, the STAT3 inhibitor Stattic thwarted the FEN1-induced enhancement of migration and invasion, while the activator IL-6 rescued the decreased migration and invasion caused by FEN1 knockdown. Additionally, overexpression of FEN1 rescued the inhibitory effect of nuclear factor-κB (NF-κB) inhibitor BAY117082 on phosphorylated STAT3. Simultaneously, the knockdown of FEN1 attenuated the phosphorylation of STAT3 promoted by the NF-κB activator tumor necrosis factor α (TNF-α). CONCLUSIONS: These results indicate a novel mechanism that NF-κB-driven FEN1 contributes to promoting BRCA growth and metastasis by STAT3 activation.


Subject(s)
Breast Neoplasms , Flap Endonucleases , STAT3 Transcription Factor , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Animals , Mice
6.
Anal Chim Acta ; 1301: 342467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553124

ABSTRACT

Photoelectrochemistry represents a promising technique for bioanalysis, though its application for the detection of Flap endonuclease 1 (FEN1) has not been tapped. Herein, this work reports the exploration of creating oxygen vacancies (Ov) in situ onto the surface of Bi2O2S nanosheets via the attachment of dopamine (DA), which underlies a new anodic PEC sensing strategy for FEN1 detection in label-free, immobilization-free and high-throughput modes. In connection to the target-mediated rolling circle amplification (RCA) reaction for modulating the release of the DA aptamer to capture DA, the detection system showed good performance toward FEN1 analysis with a linear detection range of 0.001-10 U/mL and a detection limit of 1.4 × 10-4 U/mL (S/N = 3). This work features the bioreaction engineered surface vacancy effect of Bi2O2S nanosheets as a PEC sensing strategy, which allows a simple, easy to perform, sensitive and selective method for the detection of FEN1. This sensing strategy might have wide applications in versatile bioasssays, considering the diversity of a variety of biological reactions may produce the DA aptamer.


Subject(s)
Biosensing Techniques , Flap Endonucleases , Oxygen , Biosensing Techniques/methods , Limit of Detection , Electrochemical Techniques/methods
7.
Medicine (Baltimore) ; 103(13): e37517, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552056

ABSTRACT

The overexpression of Flap endonuclease 1 (FEN1) has been implicated in drug resistance and prognosis across various cancer types. However, the precise role of FEN1 in colon cancer remains to be fully elucidated. In this study, we employed comprehensive datasets from The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas to examine FEN1 expression and assess its correlation with clinical pathology and prognosis in colon cancer. We utilized the pRRophetic algorithm to evaluate drug sensitivity and performed differential expression analysis to identify genes associated with FEN1-mediated drug sensitivity. Gene set enrichment analysis was conducted to further investigate these genes. Additionally, single-cell sequencing analysis was employed to explore the relationship between FEN1 expression and functional states. Cox regression analysis was implemented to construct a prognostic model, and a nomogram for prognosis was developed. Our analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets revealed a significant upregulation of FEN1 in colon cancer. However, while FEN1 expression showed no notable correlation with prognosis, it displayed associations with metastasis. Single-cell sequencing analysis further confirmed a positive correlation between FEN1 expression and colon cancer metastasis. Furthermore, we detected marked discrepancies in drug responsiveness between the High_FEN1 and Low_FEN1 groups, identifying 342 differentially expressed genes. Enrichment analysis showed significant suppression in processes related to DNA replication, spliceosome, and cell cycle pathways in the Low_FEN1 group, while the calcium signaling pathway, cAMP signaling pathway, and other pathways were activated. Of the 197 genes differentially expressed and strongly linked to FEN1 expression, 39 were significantly implicated in colon cancer prognosis. Finally, we constructed a risk signature consisting of 5 genes, which, when combined with drug treatment and pathological staging, significantly improved the prediction of colon cancer prognosis. This study offers novel insights into the interplay among FEN1 expression levels, colon cancer metastatic potential, and sensitivity to therapeutic agents. Furthermore, we successfully developed a multi-gene prognostic risk signature derived from FEN1.


Subject(s)
Colonic Neoplasms , Flap Endonucleases , Humans , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Prognosis , Drug Resistance , Computational Biology
8.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396787

ABSTRACT

To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Flap Endonucleases , Female , Humans , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Repair , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Prognosis
9.
Chem Commun (Camb) ; 60(22): 3075-3078, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38404229

ABSTRACT

We construct a simple fluorescent biosensor for single-molecule counting of flap endonuclease 1 (FEN1) based on ligase detection reaction (LDR) amplification-activated CRISPR-Cas12a. This biosensor exhibits excellent selectivity and high sensitivity with a detection limit (LOD) of 1.31 × 10-8 U. Moreover, it can be employed to screen the FEN1 inhibitors and quantitatively measure the FEN1 activity in human cells and breast cancer tissues, holding great promise in clinical diagnosis and drug discovery.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Flap Endonucleases , CRISPR-Cas Systems/genetics , Coloring Agents , Drug Discovery
10.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360994

ABSTRACT

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , DNA Repair , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/therapeutic use , Exodeoxyribonucleases/genetics , DNA Repair Enzymes/genetics
11.
Anal Chem ; 96(2): 756-765, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38170958

ABSTRACT

In situ monitoring of the actions of correlated enzymes in living cells is crucial for expanding our understanding of disease progression and evaluating drug efficacy. However, due to the diverse functions of different enzymes, currently available methods for comprehensive analysis of these events are limited. Here, we present an in situ track-generated DNA walker for AND-gate logic imaging of telomerase (TE) and flap endonuclease 1 (FEN1) activities in live cells. TE is in charge of generating the tracks for the walking strands by extending the TE primer on a gold nanoparticle, while FEN1 is responsible for recognizing the overlapping structure formed by the walking strands and the tracks and then cleaving the fluorescent reporter to produce signals. By utilizing the DNA walker, we successfully determined the expression levels and activities of TE and FEN1 in various cancer cell lines, offering promising prospects for screening inhibitors and investigating the biomolecular mechanisms of diseases.


Subject(s)
Metal Nanoparticles , Telomerase , Flap Endonucleases/genetics , Telomerase/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry
12.
Dig Liver Dis ; 56(4): 695-704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37648642

ABSTRACT

PURPOSE: Cholangiocarcinoma (CHOL) comprises a cluster of highly heterogeneous malignant biliary tumors. Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. This study aimed to explore the biological functions and mechanisms of FEN1 in CHOL. METHODS: FEN1 expression was analyzed in tissues of patients with CHOL and FEN1 mutations. We observe the influence of FEN1 on cellular proliferation, migration, and invasion, as well as on DNA damage repair and glycolysis. Western blotting was performed to determine the regulatory mechanism of FEN1 in CHOL progression. RESULTS: FEN1 was highly expressed in the cancer tissues of CHOL patients. The high mutation rate of FEN1 in CHOL tissues was mainly due to the amplified repeats. FEN1 promotes the proliferation, migration, and invasion of HUCCT1 and QBC939 cells. In addition, FEN1 induced DNA damage repair and aerobic glycolysis in CHOL cells. FEN1 also promoted xenograft tumor growth in vivo. Moreover, we showed that FEN1 mediated the epithelial-mesenchymal transition (EMT) of CHOL. FEN1-mediated EMT was found to be transduced by the Wnt/ß-catenin signaling pathway. CONCLUSION: FEN1 was significantly overexpressed in CHOL tissues, and FEN1 regulates the progression of CHOL through the Wnt/ß-catenin signaling pathway.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Wnt Signaling Pathway/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Cell Line, Tumor , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , beta Catenin/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement
13.
Anal Chim Acta ; 1282: 341928, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37923413

ABSTRACT

BACKGROUND: Detection of tumor biomarkers in body fluids is a significant advancement in cancer treatment because it allows diagnosis without invasive tissue biopsies. Nucleases have long been regarded as a potential class of biomarkers that can indicate the occurrence and progression of cancers. Among these, flap endonuclease 1 (FEN1) plays an important role in DNA replication and repair, and also overexpressed in abnormally proliferating cells such as cancer cells. FEN1 is thus considered to be a potential biomarker as well as a target for cancer therapy. RESULTS: We developed a novel method for detecting FEN1 based on its specific endonuclease activity which incises bifurcated nucleic acids (flaps), in combination with in vitro transcription. Developed method uses a simple DNA structure (substrate DNA) carrying a short 5'-flap sequence, and a single-stranded sensor DNA encoding the Broccoli light-up aptamer. When the assay mixture was supplied with a FEN1-containing sample, the flap sequence encoding the sense sequence of T7 promoter was cleaved and released from the substrate DNA. Because the sensor DNA was designed to carry the Broccoli RNA aptamer under the antisense sequence of T7 promoter, hybridization of the excised flap onto the sensor DNA initiated the transcription of the Broccoli RNA aptamer, enabling determination of the FEN1 titer based on the fluorescence of transcribed Broccoli aptamer. By using a combination of FEN1-mediated generation of a short oligonucleotide and subsequent oligonucleotide-dependent in vitro transcription, this method could detect FEN1 in biological samples within 1 h. SIGNIFICANCE AND NOVELTY: Developed method enables the detection of FEN1 by a simple one-pot reaction. It can detect sub-nanomolar concentrations of FEN1 within an hour, and has the potential to be used for cancer diagnosis, prognosis, and drug screening. It also enables easy identification of compounds that inhibit FEN1 activity and is thus a versatile platform for screening anti-cancer drugs. We anticipate that the basic principles of this assay can be applied to detect other biomolecules, such as nucleic acids.


Subject(s)
Aptamers, Nucleotide , Nucleic Acids , Biomarkers, Tumor/genetics , Flap Endonucleases/genetics , DNA, Single-Stranded
14.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628896

ABSTRACT

After cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria. This category of nuclease is required for so-called "long-patch" (multinucleotide) base excision DNA repair (BER), which is necessary to process certain oxidative lesions, prompting the question of how differentiation affects the availability and use of these enzymes in mitochondria. In this study, we demonstrate that Fen1 and DNA2 are indeed strongly downregulated after differentiation of neuronal precursors (Cath.a-differentiated cells) or mouse myotubes, while the expression levels of MGME1 and ExoG showed minimal changes. The total flap excision activity in mitochondrial extracts of these cells was moderately decreased upon differentiation, with MGME1 as the predominant flap endonuclease and ExoG playing a lesser role. Unexpectedly, both differentiated cell types appeared to accumulate less oxidative or alkylation damage in mtDNA than did their proliferating progenitors. Finally, the overall rate of mtDNA repair was not significantly different between proliferating and differentiated cells. Taken together, these results indicate that neuronal cells maintain mtDNA repair upon differentiation, evidently relying on mitochondria-specific enzymes for long-patch BER.


Subject(s)
DNA, Mitochondrial , Flap Endonucleases , Animals , Mice , Flap Endonucleases/genetics , Cell Differentiation , DNA, Mitochondrial/genetics , Muscle Fibers, Skeletal , DNA Repair , Endonucleases
15.
Immunology ; 170(3): 388-400, 2023 11.
Article in English | MEDLINE | ID: mdl-37501391

ABSTRACT

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Subject(s)
Neoplasms , Humans , Signal Transduction , DNA , T-Lymphocytes/metabolism , Nucleotidyltransferases/genetics , Chemokines , Flap Endonucleases/genetics , Flap Endonucleases/metabolism
16.
Med Oncol ; 40(8): 242, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452976

ABSTRACT

Prostate cancer (PCa) refers to epithelial malignancies occurring in prostate and is the most commonly diagnosed cancer among men. Flap structure-specific endonuclease 1 (FEN1) is one of the major base excise repair enzymes and is abnormally expressed in a variety of cancers, which contributes to cancer progression. Targeting FEN1 serves as a potent strategy for cancer therapy. However, how FEN1 acts on PCa cell proliferation and its role in chemotherapeutic response remain largely unknown. In this study, we show that knockdown of FEN1 by CRISPR/Cas9 system impedes the proliferation and migration of PCa cells. FEN1 Inhibitor SC13 induced DNA damage accumulation and further resulted in apoptosis of PCa cells. Furthermore, genetic knockdown of FEN1 or inhibition of FEN1 by SC13 promoted DNA damage and enhanced docetaxel (DTX)-induced chemotherapeutic response in PCa cells. Collectively, these findings demonstrate the importance of FEN1 in PCa cell proliferation and implicate FEN1 as a promising target for monotherapy or combination therapeutic strategy in PCa treatment.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prostate , Cell Line, Tumor , DNA Damage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Flap Endonucleases/genetics
17.
Cancer Med ; 12(14): 15317-15336, 2023 07.
Article in English | MEDLINE | ID: mdl-37326412

ABSTRACT

PURPOSE: Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS: Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS: Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION: Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , MAP Kinase Signaling System , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Cell Proliferation , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Docetaxel/pharmacology , RNA, Small Interfering/metabolism , ets-Domain Protein Elk-1/genetics , ets-Domain Protein Elk-1/metabolism
18.
Biosens Bioelectron ; 237: 115456, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37354713

ABSTRACT

Recombinase polymerase amplification (RPA) running at 37-42 °C is fast, efficient and less-implemented; however, the existing technologies of nucleic acid testing based on RPA have some limitations in specificity of single-base recognition and multiplexing capability. Herein, we report a highly specific and multiplex RPA-based nucleic acid detection platform by combining flap endonuclease 1 (FEN1)-catalysed invasive reactions with RPA, termed as FEN1-aided RPA (FARPA). The optimal conditions enable RPA and FEN1-based fluorescence detection to occur automatically and sequentially within a 25-min turnaround time and FARPA exhibits sensitivity to 5 target molecules. Due to the ability of invasive reactions in discriminating single-base variation, this one-pot FARPA is much more specific than the Exo probe-based or CRISPR-based RPA methods. Using a universal primer pair derived from tags in reverse transcription primers, multiplex FARPA was successfully demonstrated by the 3-plex assay for the detection of SARS-CoV-2 pathogen (the ORF1ab, the N gene, and the human RNase P gene as the internal control), the 2-plex assay for the discrimination of SARS-CoV-2 wild-type from variants (Alpha, Beta, Epsilon, Delta, or Omicrons), and the 4-plex assay for the screening of arboviruses (zika virus, tick-borne encephalitis virus, yellow fever virus, and chikungunya virus). We have validated multiplex FARPA with 103 nasopharyngeal swabs for SARS-CoV-2 detection. The results showed a 100% agreement with RT-qPCR assays. Moreover, a hand-held FARPA analyser was constructed for the visualized FARPA due to the switch-like endpoint read-out. This FARPA is very suitable for pathogen screening and discrimination of viral variants, greatly facilitating point-of-care diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Zika Virus Infection , Zika Virus , Humans , Recombinases/genetics , Sensitivity and Specificity , Flap Endonucleases/genetics , SARS-CoV-2/genetics , Hydrolases , Nucleic Acid Amplification Techniques/methods , Zika Virus/genetics
19.
Anal Chim Acta ; 1263: 341275, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37225333

ABSTRACT

As an important 5'-nuclease in DNA replication and damage repair, Flap endonuclease 1 (FEN1) has been considered as a potential tumor biomarker due to its overexpression in different human cancer cells. Here, we developed a convenient fluorescent method based on dual enzymatic repairing exponential amplification accompanied by multi-terminal signal output to realize the rapid and sensitive detection of FEN1. In the presence of FEN1, the double-branched substrate could be cleaved to produce 5' flap single strand DNA (ssDNA) which subsequently was used as a primer to initiate the dual exponential amplification (EXPAR) to generate abundant ssDNAs (X' and Y'), then the ssDNAs can respectively hybridize with the 3' and 5' ends of the signal probe to form partially complementary double strands (dsDNAs). Subsequently, the signal probe on the dsDNAs could be digested under the assistance of Bst. polymerase and T7 exonuclease, as well as releasing the fluorescence signals. The method displayed high sensitivity with the detection limit of 9.7 × 10-3 U mL-1 (1.94 × 10-4 U) and also exhibited good selectivity towards FEN1 under the challenge from complicated samples including extracts of normal and cancer cells. Furthermore, it was successfully applied to screen FEN1 inhibitors, holding great promise in the screening of potential drugs targeting FEN1. This sensitive, selective and convenient method could be used for FEN1 assay without the complicated nanomaterial synthesis/modification, showing great potential in FEN1- related prediction and diagnosis.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Flap Endonucleases , Neoplasms/diagnosis , DNA Replication , Biological Assay , DNA, Single-Stranded
20.
Anal Chem ; 95(22): 8621-8631, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37218062

ABSTRACT

In situ observation of changes in the activity of marker proteins in living cells is crucial for both biomarker-based disease diagnosis and drug screening. Flap endonuclease 1 (FEN1) has been recognized as a broad-spectrum cancer biomarker and therapeutic target. However, simple and reliable methods for in situ studying the FEN1 activity changes in living cells are limited. Here, we introduce a nano firework as a fluorescent sensor to sense and report FEN1 activity changes in living cells through FEN1 recognizing the substrates on the surface of the nano firework to release and restore the fluorescence of the prequenched fluorophores. We verified the high selectivity, anti-interference ability, stability, and quantitative performance of the nano firework in tubes and living cells, respectively. A series of controlled experiments have demonstrated that the nano firework could accurately report changes in FEN1 activity in different cells, enabling "sensors in, results out" in the manner of simple addition to the cell culture medium. Using an in silico molecular docking study and experiments, we also explored the ability of the nano firework for rapid screening of FEN1 inhibitors and found two new candidate compounds myricetrin and neoisoliquritin, which could be used as FEN1 inhibitors for further research. These performances of the nano firework suggest that it can be used in high-throughput screening applications, providing a promising tool for biomarker-based new drug discovery.


Subject(s)
Flap Endonucleases , High-Throughput Screening Assays , Flap Endonucleases/genetics , Molecular Docking Simulation , Biomarkers, Tumor , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...