Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Mol Biol Rep ; 51(1): 923, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164448

ABSTRACT

BACKGROUND: Flaxseed has been widely used in animal diets to increase the omega-3 polyunsaturated fatty acid content in animal products and promote overall animal health, but little known about its effects on the productive performance and the mictobita of gut of laying duck. METHODS AND RESULTS: Jinding duck, a Chinese indigenous breed, was used in the study. The corn-soybean basal diet supplemented with 0, 2%, 3% 4% and 5% flaxseed were provided to Control, 2% Fla, 3% Fla, 4% Fla and 5% Fla groups for 53 days, respectively. Compared with Control group, groups fed with flaxseed diets showed higher egg production, egg mass, ovary weight and more preovulatory follicles. The Docosahexaenoic Acid content of egg was extremely significantly elevated by flaxseed diets (P < 0.01), and the albumen height and haugh unit were elevated, especially in 4% Fla and/or 5% Fla group (P < 0.05). Groups 4% Fla and 5% Fla had highest ileal villus height, jejunal and ileal crypt depth. Moreover, Flaxseed diets significantly increased the levels of IgG and IgM in all Fla groups (P < 0.01), while increased IgA levels except for in 3% Fla group (P < 0.05). The results of 16s rDNA sequencing showed that flaxseed diet altered the microbial composition of gut and reduced the diversity and evenness of gut microbial communities except for 5% Fla. The correlation analysis identified Blautia, Butyricicoccus and Subdoligranulum positively associated with egg production. Genera Fourinierella, Fusobacterium and Intestinimonas positively associated with ovary weight, haught unit and album height. And Mucispirillum positively associated with haugh unit and album height. CONCLUSION: This study has suggested that flaxseed play a positive role in productive performance, the overall or intestinal health of laying ducks.


Subject(s)
Animal Feed , Ducks , Flax , Gastrointestinal Microbiome , Animals , Female , Diet , Dietary Supplements , RNA, Ribosomal, 16S/genetics
2.
Sci Rep ; 14(1): 17907, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095443

ABSTRACT

Linseed, also known as flax is an important oilseed crop with many potential uses in paint, textile, food and pharmaceutical industries. Susceptibility to bud fly (Dasyneura lini Barnes) infestation is a serious biotic concern leading to severe yield penalty in linseed. Protease inhibitors (PIs) are potential candidates that activate during the insect-pest attack and modulate the resistance. In the present study, we explored the PI candidates in the linseed genome and a total of 100 LuPI genes were identified and grouped into five distinct subgroups. The analysis of cis-acting elements revealed that almost all LuPI promoters contain several regulatory elementary related to growth and development, hormonal regulation and stress responses. Across the subfamilies of PIs, the specific domains are consistently found conserved in all protein sequences. The tissue-specific in-silico expression pattern via RNA-seq revealed that all the genes were regulated during different stress. The expression through qRT-PCR of 15 genes revealed the significant up-regulation of LuPI-24, LuPI-40, LuPI-49, LuPI-53, and LuPI-63 upon bud fly infestation in resistant genotype EC0099001 and resistant check variety Neela. This study establishes a foundation resource for comprehending the structural, functional, and evolutionary dimensions of protease inhibitors in linseed.


Subject(s)
Diptera , Flax , Gene Expression Regulation, Plant , Protease Inhibitors , Flax/genetics , Flax/metabolism , Animals , Diptera/genetics , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Protein Interaction Maps , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Multigene Family , Phylogeny
3.
J Agric Food Chem ; 72(33): 18742-18752, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39132846

ABSTRACT

Sprouting of stored oilseeds due to improper storage can lead to quality defects of cold-pressed oils obtained from them. This study aimed to evaluate the effect of seed sprouting on volatile organic compounds (VOCs), aroma-active compounds, and the content of nonvolatile metabolites in cold-pressed false flax oil obtained from sprouted seeds. In this study, 88 unique VOCs were detected in sprouted oils, whereas only 42 were found in the control oils. The control oils were characterized by a higher abundance of alcohols, while all other groups of compounds were associated with sprouted seeds. The formation of many VOCs was reflected in changes in the nonvolatile precursors. Fifteen aroma-active compounds were identified in sprouted oil, with five compounds playing a significant role (FD ≥ 128) in aroma formation. The presented approach allowed identification of differences caused by seed sprouting, resulting in oils with a much stronger aroma and a richer profile of VOCs due to intensive metabolic changes. The origin of many VOCs can be explained by alterations in the content of nonvolatile metabolites.


Subject(s)
Metabolomics , Odorants , Seeds , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Plant Oils/metabolism , Plant Oils/chemistry , Flax/metabolism , Flax/chemistry , Flax/growth & development , Food Handling
4.
Int J Biol Macromol ; 275(Pt 2): 133562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955299

ABSTRACT

Polymeric materials such as fabric and foam have high flammability which limits their application in the field of fire protection. To this end, an organic-inorganic polymer colloid constructed from carboxymethyl chitosan and ammonium polyphosphate was used to improve the flame retardancy of flax fabric (FF) and rigid polyurethane foam (RPUF) based on a "one for two" strategy. The modification processes of FF and RPUF relied on pad-dry-cure method and UV-curing technology, respectively, and the modified FF and RPUF were severally designated as CMC/APP-FF and RFR-RPUF. Flame retardancy studies showed that CMC/APP-FF and RFR-RPUF exhibited limiting oxygen index values as high as 39.4 % and 42.6 %, respectively, and both achieved self-extinguishing behavior when external ignition source was removed. Thermogravimetric analysis and cone calorimetry test confirmed that CMC/APP-FF and RFR-RPUF had good charring ability and demonstrated reduced peak heat release rate values of 90.1 % and 10.8 %, respectively, distinct from before they were modified. In addition, condensed phase analysis showed that after burning, CMC/APP-FF became an integration char structure, whereas RFR-RPUF turned into a sandwiched char structure. In summary, the "one for two" strategy reported in this work provides a new insight into the economical fabrication of flame-retardant polymeric materials.


Subject(s)
Colloids , Flame Retardants , Flax , Polyurethanes , Polyurethanes/chemistry , Flax/chemistry , Colloids/chemistry , Chitosan/chemistry , Chitosan/analogs & derivatives , Textiles , Polymers/chemistry , Polyphosphates/chemistry
5.
Complement Ther Med ; 84: 103066, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992480

ABSTRACT

OBJECTIVE: Flaxseed (Linum usitatissimum) supplementation has shown promise as an anti-obesity agent in various clinical trials, although results have been inconsistent. To provide a more accurate assessment of the impact of flaxseed supplementation on anthropometric indices, a systematic review and meta-analysis was performed. METHODS: We searched several international databases until August 2023, including Scopus, PubMed, Web of Science, Embase, and Cochrane Library. Weighted mean differences (WMDs) were analyzed using a random-effects model. RESULTS: Sixty-four trials comprising 72 treatment arms were included. All studies reported the intervention types (Lignans, Whole flaxseed, and Flaxseed oil) and dosage. However, three studies did testing for purity, and 40 studies reported potency. Also, the risk of contamination with heavy metals was not mentioned in studies. Another limitation was the lack of blind evaluation in the studies. According to three trials included in the systematic review, flaxseed did not affect anthropometric indices. Our meta-analysis revealed significant reductions in body weight (WMD = -0.63 kg; 95 % CI: -1.00, -0.27, P < 0.001; I2 = 76.7 %, P < 0.001), body mass index (BMI) (WMD: -0.24 kg/m2, 95 % CI: -0.36, -0.11, P < 0.001; I2 = 78.5 %, P < 0.001) and waist circumference (WC) (WMD: -1.43 cm, 95 % CI: -2.06, -0.80, P < 0.001; I2 = 81.1 %, P < 0.001) following flaxseed supplementation. Subgroup analyses indicated that interventions lasting 10-20 weeks, and studies involving subjects with higher BMI (>30 kg/m2) showed more significant anti-obesity effects. Based on the GRADE evaluation, body weight, BMI, and WC results were considered as moderate-certainty evidence. CONCLUSION: Our systematic review and meta-analysis suggests that supplementation with flaxseed (Linum usitatissimum) leads to meaningful improvements in body weight, BMI, and WC. Therefore, flaxseed can be considered as an adjunctive therapeutic approach in improving obesity.


Subject(s)
Dietary Supplements , Flax , Randomized Controlled Trials as Topic , Humans , Obesity/drug therapy , Anthropometry , Body Mass Index , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology
6.
IET Nanobiotechnol ; 2024: 6693566, 2024.
Article in English | MEDLINE | ID: mdl-39050969

ABSTRACT

Herein, chitosan nanoparticle (CHIT) was used as a safe and biocompatible matrix to carry flaxseed (Linum usitatissimum L.) extract (FSE). The number of main features and bio-interface properties of CHIT-FSE were determined by SEM, DLS, FTIR, XRD, TGA, and zeta potential analyses and compared to those of chitosan lacking FSE. A GC-MS analysis was also conducted to reveal the bioactive compounds of FSE. The active anchoring of the FSE phytomolecules over chitosan nanoparticles with enhanced thermal and structural stability was correspondingly verified. Subsequently, the influence of CHIT-FSE, CHIT-TPP, and FSE supplementation was assessed on hormonal and biochemical markers of polycystic ovary syndrome (PCOS) in female rats and compared with untreated and healthy control groups. After 16 days of treatment, CHIT-FSE represented the best performance for controlling the serum levels of the studied biochemical (lipid profile and blood glucose level) and hormonal (insulin, testosterone, luteinizing, and follicle-stimulating hormone) parameters. Considering the negligible therapeutic activity of CHIT-TPP, the enhanced activity of CHIT-FSE compared to only FSE was expounded based on the potent action of chitosan nanoparticles in enhanced stabilization, bioavailability, transport, and permeability of the therapeutically important phytomolecules. As per the results of this investigation, supporting medically important biomolecules over chitosan can enhance their therapeutic effectiveness in controlling PCOS.


Subject(s)
Chitosan , Flax , Plant Extracts , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/drug therapy , Chitosan/chemistry , Chitosan/pharmacology , Female , Animals , Rats , Flax/chemistry , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Nanoparticles/chemistry , Rats, Wistar
7.
Biofouling ; 40(7): 415-430, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38984682

ABSTRACT

Artificial reefs represent useful tools to revitalize coastal and ocean ecosystems. Their formulation determines the biofilm formation which is the prerequisite for the colonization process by marine micro- and macroorganisms. In comparison with concrete, biobased polymers offer improved characteristics, including architecture, formulation, rugosity and recycling. This article aims to explore a new scale of artificial reef made of biocomposites reinforced with a high flax fibre (Linum utilatissimum) content (30%). Cellular adhesion and resulting biofilm formation were assessed using two marine microorganisms: Pseudoalteromonas sp. 3J6 and Cylindrotheca closterium. The influence of flax fibre leachates and plastic monomers on the growth of those marine microorganisms were also evaluated. Results indicated that the introduction of flax fibres inside the polymer matrix modified its physicochemical properties thus modulating adhesion and biofilm formation depending on the microorganism. This study gives insights for further developments of novel functionalized artificial reefs made of biocomposites.


Subject(s)
Biofilms , Flax , Pseudoalteromonas , Biofilms/growth & development , Flax/microbiology , Flax/chemistry , Pseudoalteromonas/physiology , Bacterial Adhesion
8.
Front Biosci (Elite Ed) ; 16(2): 11, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38939910

ABSTRACT

BACKGROUND: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. METHODS: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. RESULTS: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. CONCLUSIONS: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.


Subject(s)
Flax , Lactobacillus delbrueckii , Plant Mucilage , Flax/chemistry , Lactobacillus delbrueckii/metabolism , Plant Mucilage/chemistry , Lactobacillus plantarum/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Cultured Milk Products/microbiology , Cultured Milk Products/analysis , Animals , Milk/chemistry , Fermentation
9.
Food Res Int ; 190: 114629, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945621

ABSTRACT

This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to ß-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.


Subject(s)
Alkalies , Antioxidants , Digestion , Flax , Peptides , Plant Proteins , Flax/chemistry , Peptides/metabolism , Peptides/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Plant Proteins/metabolism , Alkalies/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Seeds/chemistry , Food Handling/methods , Ultrasonic Waves
10.
Biomed Mater ; 19(5)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38917835

ABSTRACT

Mucilage is a natural source of polysaccharides that has recently attracted attention for use in biomaterial production. It attracts attention with its easy and fast extraction, biocompatibility, high water retention capacity, and biodegradability. Although there are studies on the characterization of mucilage obtained from different plant sources, the interaction of this polymer with other polymers and its potential to form new biomaterials have not yet been sufficiently investigated. Based on this, in this study, the potential of mucilage extracted from flaxseed for the production of cryogels for tissue engineering applications was demonstrated. Firstly, yield, basic physicochemical properties, morphology, and surface charge-dependent isoelectric point determination studies were carried out for the characterization of the extracted mucilage. The successful preparation of mucilage was evaluated for the construction of cryo-scaffolds and 3D, spongy, and porous structures were obtained in the presence of chitosan and polyvinyl alcohol polymers. A heterogeneous morphology with interconnected macro and micro porosity in the range of approximately 85-115 m pore diameter was exhibited. Due to the high hydrophilic structure of the mucilage, which is attached to the structure with weak hydrogen bonds, the contact angle values of the scaffolds were obtained below 80° and they showed the ability to absorb 1000 times their dry weight in approximately 30 min. As a preliminary optimization study for the evaluation of mucilage in cryogel formation, this work introduced a new construct to be developed as wound dressing scaffold for deep and chronic wounds.


Subject(s)
Biocompatible Materials , Flax , Plant Mucilage , Seeds , Tissue Engineering , Tissue Scaffolds , Flax/chemistry , Tissue Scaffolds/chemistry , Porosity , Seeds/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Plant Mucilage/chemistry , Cryogels/chemistry , Chitosan/chemistry , Materials Testing , Polysaccharides/chemistry , Polyvinyl Alcohol/chemistry , Polymers/chemistry
11.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823903

ABSTRACT

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Subject(s)
Food Preservation , Meat Products , Plant Mucilage , Seeds , Seeds/chemistry , Meat Products/analysis , Plant Mucilage/chemistry , Food Preservation/methods , Flax/chemistry , Biopolymers/chemistry , Polysaccharides/chemistry , Animals , Psyllium/chemistry , Food Handling/methods
12.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848847

ABSTRACT

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Subject(s)
Bacteria , Flax , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flax/microbiology , Lignin/metabolism , Lignin/chemistry , Hydrolysis , Spectroscopy, Fourier Transform Infrared , Phylogeny , RNA, Ribosomal, 16S/genetics , Pectins/metabolism , Cellulose/metabolism
13.
Food Chem ; 457: 140134, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901335

ABSTRACT

This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 µm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.


Subject(s)
Flax , Rapeseed Oil , beta-Glucans , Rapeseed Oil/chemistry , beta-Glucans/chemistry , Flax/chemistry , Humans , Taste , Arecaceae/chemistry , Viscosity
14.
Food Chem ; 457: 140077, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38905833

ABSTRACT

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.


Subject(s)
Butylene Glycols , Enterococcus faecium , Fermentation , Flax , Glucosides , Lignans , Lignans/metabolism , Lignans/chemistry , Flax/chemistry , Flax/metabolism , Flax/microbiology , Butylene Glycols/metabolism , Glucosides/metabolism , Glucosides/chemistry , Enterococcus faecium/metabolism , Soy Foods/analysis , Soy Foods/microbiology , Biotransformation , Microbiota , Humans , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism
15.
Food Chem ; 456: 139970, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38850606

ABSTRACT

The study aimed to investigate the influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions (HIPPE) at different levels (0%, 10%, 20%, 30%, 40%, and 50%) on the rheological and physicochemical properties of myofibrillar protein (MPs) gels. The study indicated that with increasing HIPPE levels, there was a significant increase in whiteness while a decrease in water-holding capacity. The gels with 10% HIPPE levels had higher ionic bonds, while those with 40% and 50% HIPPE levels showed higher hydrogen bonds. By increasing HIPPE levels in the formation of MP gels, the T2 relaxation time was found to decrease. Additionally, in all MP gels, G' values were significantly higher than G" values over time. Adding lower contents of HIPPE levels resulted in a more compact microstructure. These findings indicate that flaxseed-derived diglyceride-based HIPPEs could be utilized as fat substitutes in meat products to enhance their nutritional quality.


Subject(s)
Emulsions , Flax , Gels , Animals , Emulsions/chemistry , Flax/chemistry , Gels/chemistry , Meat Products/analysis , Muscle Proteins/chemistry , Myofibrils/chemistry , Rheology
16.
BMC Biotechnol ; 24(1): 31, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750440

ABSTRACT

Pasta assortments fortified with high quality foods are a modern nutritional trends. This study, explored the effects of fortification with linseed flour (LF) and linseed oil (LO) on durum wheat pasta characteristics. Wheat flour semolina was replaced with 5%, 10% and 15% of LF or 1%, 2.5% and 5% of LO. Control pasta CP (without LF or LO addition), LF-enriched pasta LFP 5%, LFP 10% and LFP 15% and LO-enriched pasta LOP 1%, LOP 2.5% and LOP 5% was compared for the proteins, fat and phenolic contents and fatty acids (FA) profile. Impact on lipid oxidation and sensory evaluation were also determined. Fortification of pasta with LF improved significantly (p < 0.05) the contents of protein, fat and phenolic compared to CP whereas the enrichment of pasta with LO resulted in a significant increase (p < 0.05) in the content of fat and a significant decrease in protein and phenolic contents. All the formulations decreased the saturated FA percent and increased the polyunsaturated FA percent with enhancement of omega-3 FA content. Antioxidant activity measured by FRAP and DPPH assays was improved after the fortification. For lipid oxidation, the replacement of semolina by LF or LO promoted an increase (p < 0.05) on TBARS values in level-dependent manner. Regarding sensory evaluation, the two types of fortification did not affect the taste; flavor and aroma of cooked pasta, but LOP 5% showed the highest score of the overall acceptability. The results recommended the possibility of producing pasta supplemented with LF or LO (even at a level of 15% and 5% respectively) as a functional food.


Subject(s)
Flax , Flour , Food, Fortified , Linseed Oil , Sensation , Food, Fortified/analysis , Food, Fortified/standards , Linseed Oil/chemistry , Flour/analysis , Flour/standards , Humans , Male , Female , Adult , Middle Aged , Antioxidants/analysis , Phenols/analysis , Fatty Acids/analysis , Oxidation-Reduction
17.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728027

ABSTRACT

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Subject(s)
Gas Chromatography-Mass Spectrometry , Lipidomics , Gas Chromatography-Mass Spectrometry/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Flax/chemistry , Vegetables/chemistry , Mass Spectrometry/methods , Triglycerides/analysis , Triglycerides/chemistry
18.
Sci Rep ; 14(1): 10133, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698104

ABSTRACT

This study investigated the effect of the inclusion of extruded linseed and hazelnut skin on fatty acid (FA) metabolism in finishing lambs. Forty lambs were divided into 4 groups and fed for 60 d with: a conventional cereal-based diet, or the same diet with 8% of extruded linseed, or 15% of hazelnut skin, or 4% of linseed plus 7.5% of hazelnut skin as partial replacement of maize. Dietary treatments did not affect growth performances, carcass traits, and ruminal fermentation. The combined effect of linseed and hazelnut skin enriched the intramuscular fat with health promoting FA. Particularly, increases in α-linolenic acid (3.75-fold), and very long-chain n-3 poly-unsaturated FA (+ 40%) were attributed to the supplementation with linseed, rich in α-linolenic acid. In addition, increases in rumenic (+ 33%), and vaccenic (+ 59%) acids were attributed to hazelnut skin tannins modulating ruminal biohydrogenation and accumulating intermediate metabolites. The simultaneous inclusion of linseed and hazelnut skin can be a profitable strategy for enriching the intramuscular fat of lambs with health promoting FA, without adverse effects on ruminal fermentation and animal performance.


Subject(s)
Animal Feed , Corylus , Fatty Acids , Flax , Animals , Sheep , Animal Feed/analysis , Fatty Acids/metabolism , Diet/veterinary , alpha-Linolenic Acid/metabolism , alpha-Linolenic Acid/administration & dosage , Rumen/metabolism , Dietary Supplements , Fermentation
19.
BMC Plant Biol ; 24(1): 412, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760706

ABSTRACT

Under greenhouse conditions, the resistance of 18 different genotypes of flax to powdery mildew was evaluated. To investigate genetic diversity and identify the molecular and biochemical markers linked to powdery mildew resistance in the tested genotypes, two molecular marker systems-start codon targeted (SCoT) and inter-simple sequence repeat (ISSR)-as well as a biochemical marker (protein profiles, antioxidant enzyme activity, and secondary metabolites) were used. Based on the results, the genotypes were classified into four categories: highly susceptible, susceptible, moderately susceptible, and moderately resistant. The genotypes differed significantly in powdery mildew severity: Polk had a severity of 92.03% and Leona had a severity of 18.10%. Compared to the other genotypes, the moderately resistant genotypes had higher levels of flavonoids, antioxidant enzymes, phenolics, and straw yield; nevertheless, their hydrogen peroxide and malondialdehyde levels were lower. Protein profiles revealed 93.75% polymorphism, although the ISSR marker displayed more polymorphism (78.4%) than the SCoT marker (59.7%). Specific molecular and biochemical markers associated with powdery mildew resistance were identified. The 18 genotypes of flax were divided into two major clusters by the dendrogram based on the combined data of molecular markers. The first main cluster included Leona (genotype number 7), considered moderate resistance to powdery mildew and a separate phenetic line. The second main cluster included the other 17 genotypes, which are grouped together in a sub-cluster. This means that, besides SCoT, ISSR markers can be a useful supplementary technique for molecular flax characterization and for identifying genetic associations between flax genotypes under powdery mildew infection.


Subject(s)
Disease Resistance , Flax , Genetic Variation , Genotype , Plant Diseases , Flax/genetics , Flax/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genetic Markers , Ascomycota/physiology , Biomarkers/metabolism
20.
Eur J Pharm Sci ; 199: 106802, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763449

ABSTRACT

The prevalence of xerostomia, the sensation of dry mouth, is estimated at 20 % in the general population and up to 50 % in older adults. Saliva plays different roles during bolus formation: lubrication, mixing, coating, hydration, dissolution, and comminution of food particles. This study proposes and tests artificial saliva formulations mimicking human saliva rheological and sensory perceptions. Shear and extensional rheology were assessed to select the type of formulation closest to saliva rheological characteristics. After evaluating three alternative sources, an extract simulating saliva rheology was produced from flax seeds. Friction coefficient and rheological properties, such as flow curves, relaxation times, and Trouton ratios, were compared favorably with human saliva. The sensory evaluation demonstrated that flaxseed extracts induce perceived mouth hydration, slipperiness, and adhesion exceeding that of human saliva. The flaxseed extract proposed in this can i) be used to study in vitro food oral processing and ii) pave the way to novel natural salivary substitutes to alleviate the symptoms of xerostomia.


Subject(s)
Flax , Rheology , Saliva, Artificial , Saliva , Humans , Saliva/chemistry , Saliva/metabolism , Flax/chemistry , Saliva, Artificial/chemistry , Plant Extracts/chemistry , Female , Adult , Male , Xerostomia , Seeds/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL