Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892123

ABSTRACT

DNA methylation is an important way to regulate gene expression in eukaryotes. In order to reveal the role of DNA methylation in the regulation of germ cell-specific piwi gene expression during spermatogenesis of Japanese flounder (Paralichthys olivaceus), the expression profiles of piwil1 (piwi-like 1) and piwil2 (piwi-like 2) genes in the gonads of female, male, and sex-reversed pseudo-male P. olivaceus were analyzed, and the dynamic of DNA methylation was investigated. As a result, piwil1 and piwil2 genes were highly expressed in the testis of both male and pseudo-male P. olivaceus, with significant variation among male individuals. The DNA methylation levels in the promoter regions of both piwil1 and piwil2 were negatively correlated with their expression levels, which may contribute to the transcriptional regulation of piwi genes during spermatogenesis. There was also sperm quality variation among male P. olivaceus, and the sperm curvilinear velocity was positively correlated with the expression of both piwil1 and piwil2 genes. These results indicated that the DNA methylation in piwil1 and piwil2 promoter regions may affect the initiation of piwi gene transcription, thereby regulating gene expression and further affecting the spermatogenesis process and gamete quality in P. olivaceus.


Subject(s)
Argonaute Proteins , DNA Methylation , Flounder , Spermatogenesis , Spermatozoa , Animals , Male , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Flounder/genetics , Flounder/metabolism , Spermatozoa/metabolism , Spermatogenesis/genetics , Female , Promoter Regions, Genetic , Testis/metabolism , Gene Expression Regulation , Fish Proteins/genetics , Fish Proteins/metabolism
2.
Environ Res ; 257: 119278, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38821459

ABSTRACT

This study estimated the accumulation potential of tritium, a major radionuclide released from the Fukushima Daiichi Nuclear Power Station (FDNPS), into the olive flounder as organically bound tritium (OBT) using a computer simulation model. In this estimation, two transfer pathways into the OBT were assumed: formation from tritiated water (HTO) in the tricarboxylic acid (TCA) cycle, and ingestion of OBT through the food chain (from phytoplankton, small fish, to the flounder). The food chain structure was reconstructed based on fish growth model. The OBT concentration in the flounder was estimated on three scenarios: Tritium was supplied to the flounder as only HTO in seawater (Scenario 1), as HTO in seawater and OBT formed from HTO in the small fish (Scenario 2), and as HTO in seawater and OBT accumulated in the small fish through the formation and ingestion of OBT in phytoplankton (Scenario 3). The estimated OBT concentrations in the flounder were in the following order: Scenario 3 > 2 > 1. The ratio of the estimated concentration in Scenario 1 to that in Scenario 3 reached a certain value (66 % after a year from the start of HTO exposure), indicating that the tritium transfer from the seawater into the flounder more significantly contributed to this concentration than ingestions of the small fish and the phytoplankton. Additionally, the difference between the estimations of Scenarios 1 and 2 is significantly larger than that between Scenarios 2 and 3. This suggests that phytoplankton contributed weakly to the OBT concentration in the flounder compared to the small fish.


Subject(s)
Flounder , Food Chain , Fukushima Nuclear Accident , Seawater , Tritium , Water Pollutants, Radioactive , Animals , Tritium/analysis , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Flounder/metabolism , Japan , Radiation Monitoring/methods , Phytoplankton , Computer Simulation
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731887

ABSTRACT

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Subject(s)
Ferroptosis , Kidney , Animals , Ferroptosis/drug effects , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Aging/drug effects , Flounder/metabolism , Oxidative Stress/drug effects , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Cell Line , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology
4.
Mar Biotechnol (NY) ; 26(3): 599-608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683458

ABSTRACT

Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor ß (TGF-ß) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have more diverse roles in this group than in mammals. In this study, we assessed the genome-wide transcriptional expression pattern associated with the CRISPR/Cas9-mutated MSTN gene in the olive flounder (Paralichthys olivaceus) in association with changes in cell proliferation and transportation processes. There were no differences in the hepatosomatic index, and the growth of male and female fish increased in the F1 progeny of the MSTN mutants. Furthermore, the histopathological analysis showed that myostatin editing resulted in a 41.24% increase in back muscle growth and 46.92% increase in belly muscle growth in male flounder compared with normal flounder, and a 16.01% increase in back muscle growth and 14.26% increase in belly muscle growth in female flounder compared with normal flounder. This study demonstrates that editing of the myostatin gene enhances muscle growth in olive flounder, with a notably more pronounced effect observed in males. Consequently, myostatin-edited male flounder could represent a valuable asset for the flounder aquaculture industry.


Subject(s)
Flounder , Muscle, Skeletal , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Male , Female , Flounder/genetics , Flounder/growth & development , Flounder/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscle Development/genetics , Gene Editing , Fish Proteins/genetics , Fish Proteins/metabolism , CRISPR-Cas Systems , Mutation
5.
Gen Comp Endocrinol ; 352: 114500, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38508470

ABSTRACT

Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.


Subject(s)
Flounder , Animals , Flounder/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Transcriptome
6.
Fish Shellfish Immunol ; 148: 109492, 2024 May.
Article in English | MEDLINE | ID: mdl-38467321

ABSTRACT

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1ß) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.


Subject(s)
Annexin A2 , Flatfishes , Flounder , Animals , Annexin A2/genetics , Annexin A2/metabolism , Flounder/metabolism , Fish Proteins/chemistry
7.
Mar Pollut Bull ; 201: 116178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401391

ABSTRACT

On September 26th 2019, a major fire occurred in the Lubrizol factory located near the Seine estuary, in Rouen-France. Juvenile flounders were captured in the Canche estuary (a reference system) and caged one month in the Canche and in the Seine downstream the accident site. No significant increases of PAHs, PCBs and PFAS was detected in Seine vs Canche sediments after the accident, but a significant increase of dioxins and furans was observed in water and sewage sludge in the Rouen wastewater treatment plant. The proteomics approach highlighted a dysregulation of proteins associated with cholesterol synthesis and lipid metabolism, in fish caged in the Seine. The overall results suggested that the fire produced air borne dioxins and furans that got deposited on soil and subsequently entered in the Seine estuarine waters via runoff; thus contaminating fish preys and caged flounders in the Seine estuary.


Subject(s)
Dioxins , Flounder , Water Pollutants, Chemical , Animals , Water Quality , Environmental Monitoring/methods , Flounder/metabolism , Accidents, Occupational , Proteomics , France , Furans/metabolism , Water Pollutants, Chemical/analysis
8.
Environ Sci Process Impacts ; 26(2): 233-246, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38284178

ABSTRACT

Methylmercury (MeHg) continues to pose a significant global health risk to wildlife and humans through fish consumption. Despite numerous advancements in understanding the mercury (Hg) cycle, questions remain about MeHg sources that accumulate in fish, particularly across transitional coastal areas, where harvest is prominent and Hg sources are numerous. Here we used a unique combination of Hg and nutrient isotopes, and otolith chemistry to trace the biogeochemical history of Hg and identify Hg sources that accumulated in an economically important fish species across Mobile Bay, Alabama (USA). Fish tissue Hg in our samples primarily originated from wet deposition within the watershed, and partly reflected legacy industrial Hg. Results also suggest that little Hg was lost through photochemical processes (<10% of fish tissue Hg underwent photochemical processes). Of the small amount that did occur, photodegradation of the organic form, MeHg, was not the dominant process. Biotic transformation processes were estimated to have been a primary driver of Hg fractionation (∼93%), with isotope results indicating methylation as the primary biotic fractionation process prior to Hg entering the foodweb. On a finer scale, individual lifetime estuarine habitat use influenced Hg sources that accumulated in fish and fish Hg concentrations, with runoff from terrestrial Hg sources having a larger influence on fish in freshwater regions of the estuary compared to estuarine regions. Overall, results suggest increases in Hg inputs to the Mobile Bay watershed from wet deposition, turnover of legacy sources, and runoff are likely to translate into increased uptake into the foodweb.


Subject(s)
Flounder , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Flounder/metabolism , Otolithic Membrane/chemistry , Otolithic Membrane/metabolism , Salinity , Environmental Monitoring , Food Chain , Water Pollutants, Chemical/analysis , Fishes/metabolism , Isotopes/metabolism , Mercury Isotopes
9.
Aquat Toxicol ; 266: 106783, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064891

ABSTRACT

Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.


Subject(s)
Flounder , Water Pollutants, Chemical , Animals , Cathepsins/genetics , Cathepsins/metabolism , Flounder/genetics , Flounder/metabolism , Phylogeny , Cloning, Molecular , Water Pollutants, Chemical/toxicity , Stress, Physiological/genetics
10.
J Fish Biol ; 104(1): 34-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697670

ABSTRACT

Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.


Subject(s)
Flatfishes , Flounder , Animals , Flatfishes/metabolism , Proteins/metabolism , Glucose/metabolism , Liver/metabolism , Glycogen/metabolism , Flounder/metabolism , Triglycerides
11.
Article in English | MEDLINE | ID: mdl-37981006

ABSTRACT

We investigated the involvement of agouti-signaling proteins (ASIPs) in morphological pigmentation and physiological color change in flatfishes. We isolated ASIP1 and 2 mRNAs from the skin of starry flounder (Platichthys stellatus), and compared their amino acid (aa) structures to those of other animals. Then, we examined the mRNA expression levels of two ASIPs (Sf-ASIPs) in the pigmented ocular body and in the unpigmented blind body, as well as in the ordinary skin and in albino skin, in flatfishes. To investigate the role of Sf-ASIPs in physiological color change (color camouflage), we compared the expression of the two genes in two background colors (dark-green and white). Sf-ASIP1 cDNA had a 375-bp open reading frame (ORF) that encoded a protein consisting of 125 aa residues, and Sf-ASIP2 cDNA had a 402-bp ORF that encoded a protein consisting of 132 aa residues. RT-PCR revealed that the strongest Sf-ASIP1 and Sf-ASIP2 expression levels were observed in the eye and blind-skin, respectively. In Sf-ASIP1, the gene expression did not differ between the ocular-side skin and blind-side skin, nor between ordinary skin and abnormal skin of the fish. However, in Sf-ASIP2, the expression level was significantly higher in blind-side skin, compared to ocular-side skin, suggesting that the ASIP2 gene is related to the countershading body pigment pattern of the fish. In addition, the Sf-ASIP2 gene expression level was lower in the pigmented spot regions than in the unpigmented spot regions of the malpigmented pseudo-albino skins on the ocular side, implying that ASIP2 is responsible for the ocular-side pseudo-albino. Additionally, ASIP2 gene expression in the blind-side skin of ordinary fish was enhanced by a white tank, implying that a bright background color could inhibit hypermelanosis in the blind-side skin of cultured flounder by increasing the activity of the Sf-ASIP2 gene. However, we did not find any relationship of ASIPs with camouflage color changes. In conclusion, the ASIP2 gene is related to the morphological pigmentation (countershading and malpigmentation) of the skin in starry flounder, but not with physiological color changes (color camouflage) in the ocular-side skin.


Subject(s)
Dasyproctidae , Flatfishes , Flounder , Animals , Flounder/metabolism , DNA, Complementary/metabolism , Pigmentation/genetics , Flatfishes/genetics
12.
Gen Comp Endocrinol ; 345: 114392, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37858870

ABSTRACT

Investigations concerning the LPXRFa system are rarely conducted in flatfish species. Here, we first identified and characterized lpxrfa and its cognate receptor lpxrfa-r genes in the Japanese flounder (Paralichthys olivaceus). The coding DNA sequence of lpxrfa was 579 bp in length, wich encoded a 192-aa preprohormone that can produce three mature LPXRFa peptides. The open reading frame (ORF) of lpxrfa-r was 1446 bp in size, and encoded a 481-aa LPXRFa-R protein that encompassed seven hydrophobic transmembrane domains. Subsequently, tissue distribution expression profiles of lpxrfa and lpxrfa-r transcripts were assayed by quantitative real-time PCR. The results indicated that expressions of lpxrfa transcripts were detected at the highest levels in the brain of both females and males, however, lpxrfa-r transcripts were remarkablely expressed in the brain tissue of female fish and in the testis tissue of male fish. Furthermore, transcript levels of lpxrfa and lpxrfa-r genes were investigated during early ontogenetic development, with the maximum expression levels at 30 days post-hatching. Overall, these data contribute to providing preliminary proof for the existence and structure of the LPXRFa system in Japanese flounder, and the study is just the foundation for researching physiological function of LPXRFa system in this species.


Subject(s)
Flounder , Peptides , Animals , Female , Male , Amino Acid Sequence , Base Sequence , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/genetics , Flounder/metabolism , Peptides/metabolism , Phylogeny
13.
Gen Comp Endocrinol ; 347: 114425, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38101488

ABSTRACT

The Pacific halibut (Hippoglossus stenolepis) is a large migratory demersal flatfish species that occupies a top trophic role in the North Pacific Ocean and Bering Sea ecosystems, where it also supports various fisheries. As a first attempt to characterize the endocrine mechanisms driving sexual maturation in this important species, we collected pituitary, ovarian and blood samples from Pacific halibut females captured in the wild that were classified histologically into various female developmental stages. We conducted gene expression analyses of gonadotropin beta subunits in the pituitary and observed that mRNA expression levels of fshb gradually increased throughout vitellogenesis, remained elevated until before ovulation and declined after spawning. In contrast, the mRNA expression levels of lhb markedly increased during oocyte maturation and remained elevated until after spawning. Ovarian mRNA expression levels of the gonadotropin receptor genes fshr and lhr peaked during oocyte maturation and before spawning, respectively, immediately following the developmental stage at which pituitary fshb and lhb mRNA expression first reached maximum levels. The ovarian gene expression patterns of steroidogenic enzyme genes cyp19a1 and hsd20b2 paralleled those of fshr and lhr, respectively. Testosterone and 17ß-estradiol (E2) plasma levels increased concomitantly with fshr and cyp19a1 mRNA expression levels, and vitellogenin plasma levels increased throughout vitellogenesis and reached maximum levels prior to spawning. These results are consistent with the notion that in female Pacific halibut, as in other teleosts, vitellogenesis and oocyte maturation and ovulation are likely under the control of pituitary gonadotropic hormones Fsh and Lh, respectively.


Subject(s)
Flounder , Animals , Female , Flounder/genetics , Flounder/metabolism , Ecosystem , Gonadotropins, Pituitary/metabolism , Gonadotropins/genetics , Gonadotropins/metabolism , RNA, Messenger/genetics
14.
Zool Res ; 45(1): 25-35, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38114430

ABSTRACT

Long non-coding RNAs (lncRNAs) function as key modulators in mammalian immunity, particularly due to their involvement in lncRNA-mediated competitive endogenous RNA (ceRNA) crosstalk. Despite their recognized significance in mammals, research on lncRNAs in lower vertebrates remains limited. In the present study, we characterized the first immune-related lncRNA (pol-lnc78) in the teleost Japanese flounder ( Paralichthys olivaceus). Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein (SARM), the fifth discovered member of the Toll/interleukin 1 (IL-1) receptor (TIR) adaptor family. This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor (TLR) signaling pathway. Specifically, SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1ß and tumor necrosis factor-α (TNF-α). Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3' untranslated region (UTR), thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination. Furthermore, pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression. During infection, the negative regulators pol-lnc78 and SARM were significantly down-regulated, while pol-miR-n199-3p was significantly up-regulated, thus favoring host antibacterial defense. These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.


Subject(s)
Flounder , MicroRNAs , RNA, Long Noncoding , Animals , Cytokines/metabolism , Down-Regulation , Flounder/genetics , Flounder/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics
15.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140973, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37956730

ABSTRACT

Antifreeze proteins (AFPs) bind to ice in solutions, resulting in non-colligative freezing point depression; however, their effects on ice nucleation are not well understood. The predominant plasma AFP of winter flounder (Pseudopleuronectes americanus) is AFP6, which is an amphiphilic alpha helix. In this study, AFP6 and modified constructs were produced as fusion proteins in Escherichia coli, subjected to proteolysis when required and purified prior to use. AFP6 and its recombinant fusion precursor generated similar thermal hysteresis and bipyramidal ice crystals, whereas an inactive mutant AFP6 produced hexagonal crystals and no hysteresis. Circular dichroism spectra of the wild-type and mutant AFP6 were consistent with an alpha helix. The effects of these proteins on ice nucleation were investigated alongside non-AFP proteins using a standard droplet freezing assay. In the presence of nucleating AgI, modest reductions in the nucleation temperature occurred with the addition of mutant AFP6, and several non-AFPs, suggesting non-specific inhibition of AgI-induced ice nucleation. In these experiments, both AFP6 and its recombinant precursor resulted in lower nucleation temperatures, consistent with an additional inhibitory effect. Conversely, in the absence of AgI, AFP6 induced ice nucleation, with no other proteins showing this effect. Nucleation by AFP6 was dose-dependent, reaching a maximum at 1.5 mM protein. Nucleation by AFP6 also required an ice-binding site, as the inactive mutant had no effect. Furthermore, the absence of nucleation by the recombinant precursor protein suggested that the fusion moiety was interfering with the formation of a surface capable of nucleating ice.


Subject(s)
Flounder , Ice , Animals , Flounder/genetics , Flounder/metabolism , Antifreeze Proteins/genetics , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Freezing , Temperature
16.
Aquat Toxicol ; 264: 106704, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813047

ABSTRACT

Cadmium (Cd2+) and nitrate (NO3-) are important environmental pollutants in the offshore marine ecological environment. However, limited research has explored their combined effects, particularly regarding their impact on the microbiota and intestinal health of marine fish. In this study, juvenile Japanese flounders (P. olivaceus) were immersed in seawater samples with different combinations of Cd2+ (0, 0.2, and 2 mg/L) and NO3- (0 and 80 mg/L NO3N) for 30 days to explore their toxic impacts on intestinal morphology, tight junction (TJ) barrier, immune response, and microbiota. Our results showed that Cd2+ or NO3- exposure alone led to histopathological damage of the gut, while their co-exposure aggravated intestinal damage. Moreover, co-exposure substantially decreased TJ-related gene expression, including occludin, claudin-10, and ZO-2, suggesting increased TJ permeability in the gut. Regarding the immune response, we observed upregulated expression of immune-related markers such as HSP40, IL-1ß, TNF-α, and MT, suggesting the onset of intestinal inflammation. Furthermore, Cd2+ and NO3- exposure led to changes in intestinal microflora, characterized by decreased the abundance of Sediminibacterium and NS3a_marine_group while increasing the prevalence of pathogens or opportunistic pathogens such as Ralstonia, Proteus, and Staphylococcus. This alteration in microbiota composition increased network complexity and α-diversity, ultimately causing dysbiosis in the fish gut. Additionally, combined exposure resulted in metabolic disorders that affected the predicted functions of the intestinal microbiota. Overall, our study demonstrates that Cd2+-NO3- co-exposure amplifies the deleterious effects compared to single exposure. These findings enhance our understanding of the ecological risks posed by Cd2+-NO3- co-exposure in marine ecosystems.


Subject(s)
Flounder , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Flounder/metabolism , Cadmium/toxicity , Nitrates/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Immunity
17.
Fish Shellfish Immunol ; 142: 109144, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37805114

ABSTRACT

Chinese tongue sole (Cynoglossus semilaevis) is an economically important marine fish in China. However, vibriosis has caused huge mortality and economic losses in its culturing industry. To reveal the effect of DNA methylation on the resistance to vibriosis in tongue sole, we conducted RNA sequencing and whole genome bisulfite sequencing (WGBS), and compared the gene expressions and DNA methylation patterns between the resistant and susceptible families. We identified a total of 741 significantly differentially expressed genes (DEGs) in kidney and 17460 differentially methylated genes (DMGs), which were both enriched in immune-related pathways, such as "cAMP signaling pathway" and "NOD-like receptor signaling pathway". Through the correlation analysis of DEGs and DMGs, we identified two important immune pathways, including "complement and coagulation cascades", and "cytokine-cytokine receptor interaction", which played important roles in regulating the inflammation level and immune homeostasis. For example, the expression of proinflammatory cytokine il17c was down-regulated under the regulation of DNA methylation; in addition, the expression of protease-activated receptor 3 (par3) was up-regulated, which could induce the up-expressionof il8. These results demonstrated that the regulation of DNA methylation on the genes involved in immune responses might contribute to the resistance to vibriosis in tongue sole, and provided a basis for the control of diseases in fish aquaculture.


Subject(s)
Flatfishes , Flounder , Vibrio Infections , Humans , Animals , DNA Methylation , Flounder/metabolism , Cytokines/genetics
18.
Article in English | MEDLINE | ID: mdl-37541323

ABSTRACT

In fish, the skin is directly exposed to multiple environmental stressors and provides the first line of defense against harmful external factors. It turned out that cortisol and melatonin (Mel) are involved in fish cutaneous stress response system (CSRS) similar to mammalian. This study investigates the mode of action of CSRS in two teleost species of different biology and skin characteristics, the three-spined stickleback and the European flounder, after exposure to oxidative stress induced by a potassium dichromate solution. The cutaneous stress response system presents different ways of action in two studied species: Mel concentration increases in the skin of both species, but cortisol concentration increases in the skin only in sticklebacks. Data suggest that stickleback skin cells can produce cortisol. However, cortisol is not involved in the response to oxidative stress in flounders. In stickleback skin, two genes encoding AANAT and ASMT/HIOMT (enzymes involved in Mel synthesis), aanat1a and asmt2, are expressed, but in flounder skin, only one, asmtl. Because gene expression does not change in stickleback skin after exposure to stress, the source of increased Mel is probably outside the skin. A lack of expression of the gene encoding AANAT in flounder skin strongly suggests that Mel is transported to the skin by the bloodstream from other sites of synthesis. Pigment dispersion in the skin after exposure to oxidative stress is found only in sticklebacks.


Subject(s)
Flounder , Melatonin , Smegmamorpha , Animals , Flounder/metabolism , Hydrocortisone , Smegmamorpha/genetics , Fishes/metabolism , Oxidative Stress , Arylalkylamine N-Acetyltransferase/genetics , Mammals/metabolism
19.
Toxins (Basel) ; 15(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37368698

ABSTRACT

Zearalenone (ZEA) is a mycotoxin, commonly found in agricultural products, linked to adverse health impacts in humans and livestock. However, less is known regarding effects on fish as both ecological receptors and economically relevant "receptors" through contamination of aquaculture feeds. In the present study, a metabolomics approach utilizing high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was applied to intact embryos of zebrafish (Danio rerio), and two marine fish species, olive flounder (Paralichthys olivaceus) and yellowtail snapper (Ocyurus chrysurus), to investigate the biochemical pathways altered by ZEA exposure. Following the assessment of embryotoxicity, metabolic profiling of embryos exposed to sub-lethal concentrations showed significant overlap between the three species and, specifically, identified metabolites linked to hepatocytes, oxidative stress, membrane disruption, mitochondrial dysfunction, and impaired energy metabolism. These findings were further supported by analyses of tissue-specific production of reactive oxygen species (ROS) and lipidomics profiling and enabled an integrated model of ZEA toxicity in the early life stages of marine and freshwater fish species. The metabolic pathways and targets identified may, furthermore, serve as potential biomarkers for monitoring ZEA exposure and effects in fish in relation to ecotoxicology and aquaculture.


Subject(s)
Flounder , Zearalenone , Animals , Humans , Zearalenone/toxicity , Zebrafish , Flounder/metabolism , Magnetic Resonance Spectroscopy , Oxidative Stress
20.
Fish Shellfish Immunol ; 135: 108651, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863497

ABSTRACT

Focal adhesion (FA) plays a key role in cell adhesion, migration and antibacterial immune, but it remained unclear in fish. In this study, half-smooth tongue sole Cynoglossus semilaevis were infected with Vibrio vulnificus, and then immune-related protein in the skin, especially for FA signaling pathway were screened and identified by iTRAQ analysis. Results showed that the differentially expressed proteins (DEPs) in skin immune response (eg., ITGA6, FN, COCH, AMBP, COL6A1, COL6A3, COL6A6, LAMB1, LAMC1, FLMNA) were firstly found in FA signaling pathway. Furthermore, the validation analysis of FA-related genes were basically consistent with the iTRAQ data at 36 hpi (r = 0.678, p < 0.01), and their spatio-temporal expressions were confirmed by qPCR analysis. The molecular characterization of vinculin of C. semilaevis was described. This study will provide a new perspective for understanding the molecular mechanism of FA signaling pathway in the skin immune response in marine fish.


Subject(s)
Fish Diseases , Flatfishes , Flounder , Vibrio Infections , Vibrio , Animals , Vibrio/physiology , Cell Adhesion , Focal Adhesions/metabolism , Flounder/metabolism , Immunity , Fish Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...