Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.860
Filter
1.
Behav Brain Res ; 472: 115151, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39019091

ABSTRACT

Caffeine exerts a biphasic effect on zebrafish behavior. High doses of caffeine have been associated with increased stress and anxiety, whereas low doses have been found to enhance performance on tasks requiring focus and attention. However, the sex-specific nature of these biphasic effects on behavior and physiology remains unclear. This study assessed the behavioral responses and hormone levels in male and female zebrafish after acute exposure to caffeine ranging from 0.3 to 600 mg/L. The results showed no significant difference in caffeine intake between males and females after acute exposure at each concentration. Caffeine-induced behavioral and physiological responses indicated a threshold dosage existed between 30 and 300 mg/L. Female fish displayed increased anxiety-like behavioral phenotypes, i.e., latency to upper and freezing, whereas males exhibited more erratic movement following acute exposure to a high-dose treatment. In addition, females exhibited a significant increase in whole-body cortisol levels, while males experienced a testosterone elevation at 300 mg/L of caffeine acute exposure. There was a significant decrease in the duration of erratic movements in males treated with the androgen receptor antagonist flutamide compared to the control group. The transcriptome analysis uncovered 511 and 592 up-regulated and 761 and 922 down-regulated differential expression genes in males and females, respectively, compared to the control. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis revealed that caffeine has the potential to impact various pathways in zebrafish, including phototransduction and steroid hormone biosynthesis. Our findings demonstrate that testosterone and cortisol play a combined role in regulating stress responses in both behavior and physiology. Furthermore, our study highlights the significance of encompassing both male and female zebrafish as a model system.


Subject(s)
Anxiety , Behavior, Animal , Caffeine , Hydrocortisone , Sex Characteristics , Testosterone , Zebrafish , Animals , Caffeine/pharmacology , Caffeine/administration & dosage , Female , Male , Anxiety/chemically induced , Anxiety/metabolism , Hydrocortisone/metabolism , Hydrocortisone/blood , Testosterone/metabolism , Testosterone/blood , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Flutamide/pharmacology , Sex Factors , Dose-Response Relationship, Drug
2.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38833564

ABSTRACT

In brief: Atrazine, like oestrogen, disorganises laminin formation and reduces the number of germ cells and Sertoli cells in the developing testes of the tammar wallaby. This study suggests that interfering with the balance of androgen and oestrogen affects the integrity of laminin structure and testis differentiation. Abstract: The herbicide atrazine was banned in Europe in 2003 due to its endocrine disrupting activity but remains widely used. The integrity of the laminin structure in fetal testis cords requires oestrogen signalling but overexposure to xenoestrogens in the adult can cause testicular dysgenesis. However, whether xenoestrogens affect laminin formation in developing testes has not been investigated. Here we examined the effects of atrazine in the marsupial tammar wallaby during early development and compare it with the effects of the anti-androgen flutamide, oestrogen, and the oestrogen degrader fulvestrant. The tammar, like all marsupials, gives birth to altricial young, allowing direct treatment of the developing young during the male programming window (day 20-40 post partum (pp)). Male pouch young were treated orally with atrazine (5 mg/kg), flutamide (10 mg/kg), 17ß-oestradiol (2.5 mg/kg) and fulvestrant (1 mg/kg) daily from day 20 to 40 pp. Distribution of laminin, vimentin, SOX9 and DDX4, cell proliferation and mRNA expression of SRY, SOX9, AMH, and SF1 were examined in testes at day 50 post partum after the treatment. Direct exposure to atrazine, flutamide, 17ß-oestradiol, and fulvestrant all disorganised laminin but had no effect on vimentin distribution in testes. Atrazine reduced the number of germ cells and Sertoli cells when examined at day 40-50 pp and day 20 to 40 pp, respectively. Both flutamide and fulvestrant reduced the number of germ cells and Sertoli cells. Atrazine also downregulated SRY expression and impaired SOX9 nuclear translocation. Our results demonstrate that atrazine can compromise normal testicular differentiation during the critical male programming window.


Subject(s)
Atrazine , Cell Differentiation , Herbicides , Laminin , Testis , Male , Animals , Testis/drug effects , Testis/metabolism , Testis/cytology , Atrazine/pharmacology , Laminin/metabolism , Cell Differentiation/drug effects , Herbicides/pharmacology , Macropodidae/metabolism , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/cytology , Estrogens/pharmacology , Estrogens/metabolism , Endocrine Disruptors/pharmacology , Cell Count , Androgen Antagonists/pharmacology , Flutamide/pharmacology
3.
Acta Radiol ; 65(8): 940-949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38751050

ABSTRACT

BACKGROUND: Advances in molecular imaging strategies have had an effect on precise diagnosis and treatment. Research has been intensified to develop more effective and versatile radiopharmaceuticals to uplift diagnostic efficiency and, consequently, the treatment. PURPOSE: To label the flutamide (FLUT) coupled with diethylenetriamine pentaacetate (DTPA) with technetium-99 m (99mTc) and to evaluate its binding efficiency with rhabdomyosarcoma (RMS) cancer cells. MATERIAL AND METHODS: Radiolabeling of FLUT with 185 MBq freshly eluted 99mTcO4-1 was carried out via DTPA bifunctional chelating agent using stannous chloride reducing agent at pH 5. The labeled compound was assessed for its purity using chromatography analysis, stability in saline and blood serum, AND charge using paper electrophoresis. Normal biodistribution was studied using a mouse model, while binding affinity with RMS cancer cells was studied using an internalization assay. The in vivo accumulation of RMS cancer cells in a rabbit model was monitored using a SPECT gamma camera. RESULTS: Radiolabeling reaction displayed a pharmaceutical yield of 97% and a stability assay showed >95% intact radiopharmaceutical up to 6 h in saline and blood serum. In vitro internalization studies showed the potential of [99mTc]DTPA-FLUT to enter into cancer cells. This biodistribution study showed rapid blood clearance and minimum uptake by body organs, and scintigraphy displayed the [99mTc]DTPA-FLUT uptake by lesion, induced by RMS cancer cell lines in rabbit. CONCLUSION: Stable, newly developed [99mTc]DTPA-FLUT seeks its way to internalize into RMS cancer cells, indicating it could be a potential candidate for the diagnosis of RMS cancer.


Subject(s)
Flutamide , Radiopharmaceuticals , Technetium Tc 99m Pentetate , Animals , Mice , Rabbits , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Technetium Tc 99m Pentetate/pharmacokinetics , Flutamide/pharmacokinetics , Rhabdomyosarcoma/diagnostic imaging , Disease Models, Animal , Cell Line, Tumor , Tomography, Emission-Computed, Single-Photon/methods
4.
Ultrason Sonochem ; 105: 106858, 2024 May.
Article in English | MEDLINE | ID: mdl-38564910

ABSTRACT

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Subject(s)
Antineoplastic Agents , Electrodes , Graphite , Nitrogen Compounds , Sulfides , Ultrasonic Waves , Zinc Compounds , Zinc Compounds/chemistry , Sulfides/chemistry , Antineoplastic Agents/chemistry , Graphite/chemistry , Flutamide/analysis , Flutamide/chemistry , Electrochemical Techniques/methods , Chemistry Techniques, Synthetic , Electrochemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Nanostructures/chemistry
5.
Toxicon ; 243: 107722, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38653393

ABSTRACT

Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.


Subject(s)
Chemical and Drug Induced Liver Injury , Flutamide , Liver , Rats, Wistar , Animals , Flutamide/pharmacology , Rats , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Male , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Androgen Antagonists/pharmacology
6.
Adv Sci (Weinh) ; 11(19): e2309261, 2024 May.
Article in English | MEDLINE | ID: mdl-38481034

ABSTRACT

Androgen receptor (AR) antagonists are widely used for the treatment of prostate cancer (PCa), but their therapeutic efficacy is usually compromised by the rapid emergence of drug resistance. However, the lack of the detailed interaction between AR and its antagonists poses a major obstacle to the design of novel AR antagonists. Here, funnel metadynamics is employed to elucidate the inherent regulation mechanisms of three AR antagonists (hydroxyflutamide, enzalutamide, and darolutamide) on AR. For the first time it is observed that the binding of antagonists significantly disturbed the C-terminus of AR helix-11, thereby disrupting the specific internal hydrophobic contacts of AR-LBD and correspondingly the communication between AR ligand binding pocket (AR-LBP), activation function 2 (AF2), and binding function 3 (BF3). The subsequent bioassays verified the necessity of the hydrophobic contacts for AR function. Furthermore, it is found that darolutamide, a newly approved AR antagonist capable of fighting almost all reported drug resistant AR mutants, can induce antagonistic binding structure. Subsequently, docking-based virtual screening toward the dominant binding conformation of AR for darolutamide is conducted, and three novel AR antagonists with favorable binding affinity and strong capability to combat drug resistance are identified by in vitro bioassays. This work provides a novel rational strategy for the development of anti-resistant AR antagonists.


Subject(s)
Androgen Receptor Antagonists , Benzamides , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Humans , Benzamides/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Male , Receptors, Androgen/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Nitriles/pharmacology , Molecular Dynamics Simulation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrazoles/chemistry , Molecular Docking Simulation/methods , Amides/pharmacology , Amides/chemistry , Flutamide/analogs & derivatives
7.
Jpn J Clin Oncol ; 54(5): 584-591, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38305451

ABSTRACT

BACKGROUND: Alternative anti-androgen therapy has been widely used as a first-line treatment for castration-resistant prostate cancer, and it may affect treatment outcome of subsequent agents targeting the androgen receptor axis. We conducted the prospective observational DELC (Determination of Enzalutamide Long-term safety and efficacy for Castration-resistant prostate cancer patients after combined anti-androgen blockade followed by alternative anti-androgen therapy) study to evaluate the efficacy of enzalutamide in patients with castration-resistant prostate cancer who underwent prior combined androgen blockade with bicalutamide and then alternative anti-androgen therapy with flutamide. METHODS: The DELC study enrolled 163 Japanese patients with castration-resistant prostate cancer who underwent alternative anti-androgen therapy with flutamide following failure of initial combined androgen blockade with bicalutamide in multiple institutions between January 2016 and March 2019. Primary endpoint was overall survival. Administration of enzalutamide was started at 160 mg orally once daily in all patients. RESULTS: The rate of decline of prostate-specific antigen by 50% or more was 72.2%, and median overall survival was 42.05 months. Multivariate analysis revealed that higher pretreatment serum levels of prostate-specific antigen (≥11.3 ng/mL; P = 0.004), neuron-specific enolase (P = 0.014) and interleukin-6 (≥2.15 pg/mL; P = 0.004) were independent risk factors for overall survival. Fatigue (30.0%), constipation (19.6%) and appetite loss (17.8%) were the most common clinically relevant adverse events. The enzalutamide dose was not reduced in any patient under the age of 70, but adherence was decreased in those over 70. CONCLUSIONS: In the DELC study, the safety of enzalutamide was comparable to that in previous reports. Serum levels of neuron-specific enolase and interleukin-6 were suggested as prognostic factors for castration-resistant prostate cancer with potential clinical utility.


Subject(s)
Androgen Antagonists , Benzamides , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/adverse effects , Phenylthiohydantoin/therapeutic use , Nitriles/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/blood , Aged , Prospective Studies , Androgen Antagonists/administration & dosage , Androgen Antagonists/adverse effects , Aged, 80 and over , Middle Aged , Tosyl Compounds/administration & dosage , Tosyl Compounds/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Flutamide/administration & dosage , Treatment Outcome , Anilides/administration & dosage , Anilides/adverse effects , Prostate-Specific Antigen/blood
8.
CNS Neurosci Ther ; 30(2): e14574, 2024 02.
Article in English | MEDLINE | ID: mdl-38421088

ABSTRACT

RATIONALE: Numerous epidemiological studies have reported a link between low testosterone levels and an increased risk of cerebrovascular disease in men. However, there is ongoing controversy surrounding testosterone replacement therapy due to potential side effects. PBMT has been demonstrated to improve cerebrovascular function and promote testosterone synthesis in peripheral tissues. Despite this, the molecular mechanisms that could connect PBMT with testosterone and vascular function in the brain of photothrombosis (PT)-induced stroke rats remain largely unknown. METHODS: We measured behavioral performance, cerebral blood flow (CBF), vascular permeability, and the expression of vascular-associated and apoptotic proteins in PT-induced stroke rats treated with flutamide and seven consecutive days of PBM treatment (350 mW, 808 nM, 2 min/day). To gain further insights into the mechanism of PBM on testosterone synthesis, we used testosterone synthesis inhibitors to study their effects on bEND.3 cells. RESULTS: We showed that PT stroke caused a decrease in cerebrovascular testosterone concentration, which was significantly increased by 7-day PBMT (808 nm, 350 mW/cm2 , 42 J/cm2 ). Furthermore, PBMT significantly increased cerebral blood flow (CBF) and the expression of vascular-associated proteins, while inhibiting vascular permeability and reducing endothelial cell apoptosis. This ultimately mitigated behavioral deficits in PT stroke rats. Notably, treatment with the androgen receptor antagonist flutamide reversed the beneficial effects of PBMT. Cellular experiments confirmed that PBMT inhibited cell apoptosis and increased vascular-associated protein expression in brain endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD). However, these effects were inhibited by flutamide. Moreover, mechanistic studies revealed that PBMT-induced testosterone synthesis in bEnd.3 cells was partly mediated by 17ß-hydroxysteroid dehydrogenase 5 (17ß-HSD5). CONCLUSIONS: Our study provides evidence that PBMT attenuates cerebrovascular injury and behavioral deficits associated with testosterone/AR following ischemic stroke. Our findings suggest that PBMT may be a promising alternative approach for managing cerebrovascular diseases.


Subject(s)
Low-Level Light Therapy , Stroke , Humans , Male , Rats , Mice , Animals , Testosterone/metabolism , Androgens/metabolism , Receptors, Androgen/metabolism , Endothelial Cells/metabolism , Flutamide/pharmacology , Flutamide/therapeutic use , Flutamide/metabolism , Stroke/therapy
9.
Article in Chinese | MEDLINE | ID: mdl-38418180

ABSTRACT

Objective: To explore the optimal ratio of dihydrotestosterone and hydroxyflutamide (hereinafter referred to as DH), construct a dual release system of androgen and its antagonist, and analyze the application effect of this system in the repair of full-thickness burn wounds in mice. Methods: This study was an experimental study. The HaCaT cells were divided into blank group (without drug culture), low baseline group, medium baseline group, and high baseline group according to the random number table (the same grouping method below), and the last three groups of cells were cultured by adding three different ratios of DH. Under a medium ratio, the mass of dihydrotestosterone in the three baseline groups from low to high was 1.4, 2.8, and 4.0 µg, respectively, and the mass of hydroxyflutamide was 1.2, 1.6, and 2.0 µg, respectively. On this basis, under a small ratio, the mass of dihydrotestosterone was reduced by half and the mass of hydroxyflutamide was increased by half; under a large ratio, the mass of dihydrotestosterone was increased by half and the mass of hydroxyflutamide was reduced by half. After culture of 2 days, the cell proliferation level was detected by cell counting kit 8 (n=4). Sixteen 6-8-week-old male BALB/c mice were used to establish a full-thickness burn wound on the back and divided into blank group, small ratio group, medium ratio group, and large ratio group, with 4 mice in each group. On post injury day (PID) 7, normal saline containing different ratios of DH was locally dropped to the wounds of mice in the last three groups of mice (the total mass of DH in the three ratio groups from small to large was 127.5, 165.0, and 202.5 µg, respectively, and the mass ratios of dihydrotestosterone to hydroxyflutamide (hereinafter referred to as drug mass ratio) were 8∶9, 8∶3, and 8∶1, respectively), afterwards, the administration was repeated every 48 hours until PID 27; normal saline was dropped to the wound of mice in blank group at the aforementioned time points. The wound healing status on PID 0 (immediately), 7, 14, 21, and 28 was observed, and the wound healing rates on PID 7, 14, 21, and 28 were calculated (n=4). On PID 28, the wound tissue was taken, which was stained with hematoxylin and eosin for observing re-epithelialization and with Masson for observing collagen fibers, and the proportion of collagen fibers was analyzed (n=3). Twenty 6-8-week-old male BALB/c mice were used to establish a full-thickness burn wound on the back and divided into ordinary scaffold group, small proportion scaffold group, medium proportion scaffold group, and large proportion scaffold group (with 5 mice in each group). On PID 7, the wound was continuously dressed with a polycaprolactone scaffold without drug and a polycaprolactone scaffold containing DH with a drug mass ratio of 1∶3, 1∶1, or 3∶1 (i.e. the dual release system of androgen and its antagonist, with total mass of DH being about 1.7 mg) prepared by using electrospinning technology until the end of the experiment. Histopathological analyses of tissue (n=3) at the same time points as those in the previous animal experiment were performed. On PID 7 and 14, the wound exudates were collected and the relative abundance of bacterial communities was analyzed using 16S ribosomal RNA high-throughput sequencing (n=3). Results: After culture of 2 days, under a small ratio, the proliferation levels of HaCaT cells in low baseline group and high baseline group were significantly higher than the level in blank group (P<0.05). As the time after injury prolonged, the wounds of all four groups of mice continued to shrink. On PID 14, the wound healing rate of mice in large ratio group was 72.5% (61.7%, 75.1%), which was close to 53.3% (49.5%, 64.4%) in blank group (P>0.05); the wound healing rates of mice in small and medium ratio groups were 74.2% (71.0%, 84.2%) and 70.4% (65.1%, 74.4%), respectively, which were significantly higher than the rate in blank group (with both Z values being -2.31, P<0.05). On PID 21, the wound healing rate of mice in small ratio group was significantly higher than that in blank group (Z=-2.31, P<0.05). On PID 28, the wounds of mice in the three ratio groups were completely re-epithelialized and the epidermis was thicker than that in blank group; compared with that in blank group, the collagen fiber content in the wound tissue of mice in the three ratio groups was higher and arranged more orderly, and the proportions of collagen fibers in the wound tissue of mice in small and large ratio groups were significantly increased (P<0.05). On PID 28, the wounds of mice in ordinary scaffold group were partially epithelialized, while the wounds of mice in the three proportion scaffold groups were almost completely epithelialized. Among them, the wounds of mice in small proportion scaffold group had the thickest epidermis. The proportion of collagen fibers in the wound tissue of mice in small proportion scaffold group was significantly increased compared with that in ordinary scaffold group (P<0.05). On PID 7, the bacterial communities with high relative abundance in the wound exudation of mice in the four groups included bacteria of Corynebacterium, Staphylococcus, and Rhodococcus. On PID 14, the bacterial communities with high relative abundance in the wound exudation of mice in the four groups included bacteria of Stenotrophomonas, Rhodococcus, and Staphylococcus, and the number of bacterial species in the wound exudation of mice in the three proportion scaffold groups was more than that in ordinary scaffold group. Conclusions: When the drug mass ratio is relatively small, DH has the effect of promoting the proliferation of HaCaT cells. The ratio of 8∶9 is the optimal mass ratio of dihydrotestosterone to hydroxyflutamide, and DH with this mass ratio can promote re-epithelialization and collagen deposition of full-thickness burn wounds in mice, and promote wound healing. The constructed dual release system of androgen and its antagonist with DH in a 1∶3 drug mass ratio contributes to the re-epithelialization and collagen deposition of the full-thickness burn wounds in mice, and can improve the diversity of wound microbiota.


Subject(s)
Burns , Flutamide/analogs & derivatives , Soft Tissue Injuries , Mice , Male , Animals , Wound Healing , Androgens/pharmacology , Dihydrotestosterone/pharmacology , Saline Solution , Collagen , Burns/drug therapy
10.
Reprod Toxicol ; 125: 108557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360075

ABSTRACT

Tetra-amido macrocyclic ligands (TAMLs) are catalysts designed to mimic endogenous peroxidases that can degrade pollutants. Before TAMLs gain widespread use, it is first important to determine if they have endocrine disrupting properties. In this study, we evaluated the effects of the iron TAML, NT7, on hormone-sensitive outcomes in mice exposed during pregnancy and lactation, and on their litters prior to weaning. We administered NT7 at one of three doses to mice via drinking water prior to and then throughout pregnancy and lactation. Two hormonally active pharmaceuticals, ethinyl estradiol (EE2) and flutamide (FLUT), a known estrogen receptor agonist and androgen receptor antagonist, respectively, were also included. In the females, we measured pre- and post-parturition weight, length of pregnancy, organ weights at necropsy, and morphology of the mammary gland at the end of the lactational period. We also quantified maternal behaviors at three stages of lactation. For the offspring, we measured litter size, litter weights, and the achievement of other developmental milestones. We observed only one statistically significant effect of NT7, a decrease in the percentage of pups with ear opening at postnatal day 5. This contrasts with the numerous effects of EE2 on both the mother and the litter, as well as several modest effects of FLUT. The approach taken in this study could provide guidance for future studies that aim to evaluate novel compounds for endocrine disrupting properties.


Subject(s)
Estrogens , Lactation , Pregnancy , Female , Animals , Mice , Estrogens/pharmacology , Flutamide , Litter Size , Ethinyl Estradiol/toxicity
11.
Sensors (Basel) ; 24(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339702

ABSTRACT

In this study, a novel electrochemical sensor was created by fabricating a screen-printed carbon electrode with diamond nanoparticles (DNPs/SPCE). The successful development of the sensor enabled the specific detection of the anti-cancer drug flutamide (FLT). The DNPs/SPCE demonstrated excellent conductivity, remarkable electrocatalytic activity, and swift electron transfer, all of which contribute to the advantageous monitoring of FLT. These qualities are critical for monitoring FLT levels in environmental samples. Various structural and morphological characterization techniques were employed to validate the formation of the DNPs. Remarkably, the electrochemical sensor demonstrated a wide linear response range (0.025 to 606.65 µM). Additionally, it showed a low limit of detection (0.023 µM) and high sensitivity (0.403 µA µM-1 cm-2). Furthermore, the practicability of DNPs/SPCE can be successfully employed in FLT monitoring in water bodies (pond water and river water samples) with satisfactory recoveries.


Subject(s)
Antineoplastic Agents , Nanoparticles , Flutamide/chemistry , Nanoparticles/chemistry , Carbon/chemistry , Water , Electrochemical Techniques/methods , Electrodes
12.
Food Chem Toxicol ; 184: 114432, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176580

ABSTRACT

BACKGROUND: Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE: The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS: Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS: Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.


Subject(s)
Endocrine Disruptors , Perciformes , Pesticides , Male , Animals , Rats , Humans , Zebrafish , Flutamide , Dienestrol , Feminization , Sexual Development , Endocrine Disruptors/toxicity
13.
Expert Opin Drug Saf ; 23(3): 305-311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37795911

ABSTRACT

BACKGROUND: Flutamide and bicalutamide are indicated for the management of prostate metastatic carcinoma. The current study evaluated the adverse drug reactions related to flutamide and bicalutamide in a real-world setting. METHODS: To quantify the signals of flutamide and bicalutamide associated adverse events (AEs), we used the US Food and Drug Administration Adverse Event Reporting System (FAERS) for this pharmacovigilance study using established pharmacovigilance methods. RESULTS: A total of 2711 AEs of flutamide were investigated as the primary suspected; 522 AEs were related to prostate cancer. A total of 4459 AEs were investigated as the primary suspected for bicalutamide; 2251 AEs were related to prostate cancer. The analysis demonstrated 29 signals for flutamide and 84 for bicalutamide. Liver function test was the most common AEs for flutamide, and malignant neoplasm progression was the most common for bicalutamide. The signal strength of Dementia Alzheimer's type was 26.53 (17.89-39.35) and 26.33 (607.34), which had the highest strength for flutamide. Anti-androgen withdrawal syndrome exhibited the strongest signal for bicalutamide. Generating awareness of rare AEs that were not listed on the label is critical. CONCLUSIONS: The analysis of the AE signals may provide support for prescribing flutamide and bicalutamide.


Subject(s)
Anilides , Drug-Related Side Effects and Adverse Reactions , Nitriles , Prostatic Neoplasms , Tosyl Compounds , Male , United States , Humans , Flutamide/adverse effects , Pharmacovigilance , United States Food and Drug Administration , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology
14.
Endocrine ; 83(1): 242-250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922092

ABSTRACT

PURPOSE: Polycystic ovarian syndrome (PCOS) is an endocrine-metabolic condition affecting 5-10% of reproductive-aged women and characterized by hyperandrogenism, insulin resistance (IR), and hyperinsulinemia. CFTR is known to be regulated by steroid hormones, and our previous study has demonstrated an essential role of CFTR in ß-cell function. This study aims to investigate the contribution of androgen and CFTR to hypersecretion of insulin in PCOS and the underlying mechanism. METHODS: We established a rat PCOS model by subcutaneously implanting silicon tubing containing Dihydrotestosterone (DHT). Glucose tolerance test with insulin levels was performed at 9 weeks after implantation. A rat ß-cell line RINm5F, a mouse ß-cell line ß-TC-6, and mouse islets were treated with DHT, and with or without the androgen antagonist flutamide for CFTR and insulin secretion-related functional assays or mRNA/protein expression measurement. The effect of CFTR inhibitors on DHT-promoted membrane depolarization, glucose-stimulated intracellular Ca2+ oscillation and insulin secretion were examined by membrane potential imaging, calcium imaging and ELISA, respectively. RESULTS: The DHT-induced PCOS model showed increased body weight, impaired glucose tolerance, and higher blood glucose and insulin levels after glucose stimulation. CFTR was upregulated in islets of PCOS model and DHT-treated cells, which was reversed by flutamide. The androgen receptor (AR) could bind to the CFTR promoter region, which was enhanced by DHT. Furthermore, DHT-induced membrane depolarization, enhanced glucose-stimulated Ca2+ oscillations and insulin secretion, which could be abolished by CFTR inhibitors. CONCLUSIONS: Excessive androgen enhances glucose-stimulating insulin secretion through upregulation of CFTR, which may contribute to hyperinsulinemia in PCOS.


Subject(s)
Hyperinsulinism , Insulin Resistance , Polycystic Ovary Syndrome , Mice , Female , Rats , Humans , Animals , Adult , Polycystic Ovary Syndrome/metabolism , Androgens/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Flutamide/pharmacology , Up-Regulation , Insulin Resistance/physiology , Insulin , Dihydrotestosterone/pharmacology , Glucose/pharmacology
15.
Reprod Toxicol ; 123: 108517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040386

ABSTRACT

Estrogenic chemicals are common pollutants in wastewater and current effluent treatment processes are not typically effective in removing these compounds. Tetra-amido macrocyclic ligands (TAMLs) are catalysts that mimic endogenous peroxidases that may provide a solution to remove environmental pollutants including low concentrations of estrogenic compounds. Yet relatively little is known about the toxicity of TAMLs, and few studies have evaluated whether they may have endocrine disrupting properties. We administered one of three doses of a TAML, NT7, to mice via drinking water throughout pregnancy and lactation. Two pharmacologically active compounds, ethinyl estradiol (EE2) and flutamide were also included to give comparator data for estrogen receptor agonist and androgen receptor antagonist activities. Male pups were evaluated for several outcomes at weaning, puberty, and early adulthood. We found that EE2 exposures during gestation and the perinatal period induced numerous effects that were observed across the three ages including changes to spleen and testis weight and drastic effects on the morphology of the mammary gland. Flutamide had fewer effects but altered anogenital distance at weaning as well as spleen, liver, and kidney weight. In contrast, relatively few effects of NT7 were observed, but included alterations to spleen weight and modest changes to adult testis weight and morphology of the mammary gland at weaning. Collectively, these results provide some of the first evidence suggesting that NT7 may alter some hormone-sensitive outcomes, but that the effects were distinct from either EE2 or flutamide. Additional studies are needed to characterize the biological activity of this and other TAML catalysts.


Subject(s)
Flutamide , Sexual Maturation , Pregnancy , Female , Mice , Animals , Male , Flutamide/toxicity , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Lactation
16.
Trials ; 24(1): 809, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104131

ABSTRACT

BACKGROUND: Prostate cancer remains the most prevalent malignancy and the second-leading cause of cancer-related death in men in the USA. Radiation therapy, typically with androgen suppression, remains a mainstay in the treatment of intermediate- and high-risk, potentially lethal prostate cancers. However, local recurrence and treatment failure remain common. Basic and translational research has determined the potential for using androgen receptor (AR) ligands (e.g., dihydrotestosterone and flutamide) in the context of androgen-deprived prostate cancer to induce AR- and TOP2B-mediated DNA double-strand breaks (DSBs) and thereby synergistically enhance the effect of radiation therapy (RT). The primary aim of this study is to carry out pharmacodynamic translation of these findings to humans. METHODS: Patients with newly diagnosed, biopsy-confirmed localized prostatic adenocarcinoma will be recruited. Flutamide, an oral non-steroidal androgen receptor ligand, will be administered orally 6-12 h prior to prostate biopsy (performed under anesthesia prior to brachytherapy seed implantation). Key study parameters will include the assessment of DNA double-strand breaks by γH2A.x foci and AR localization to the nucleus. The initial 6 patients will be treated in a single-arm run-in phase to assess futility by establishing whether at least 2 subjects from this group develop γH2A.x foci in prostate cancer cells. If this criterion is met, the study will advance to a two-arm, randomized controlled phase in which 24 participants will be randomized 2:1 to either flutamide intervention or placebo standard-of-care (with all patients receiving definitive brachytherapy). The key pharmacodynamic endpoint will be to assess whether the extent of γH2A.x foci (proportion of cancer cells positive and number of foci per cancer cell) is greater in patients receiving flutamide versus placebo. Secondary outcomes of this study include an optional, exploratory analysis that will (a) describe cancer-specific methylation patterns of cell-free DNA in plasma and urine and (b) assess the utility of serum and urine samples as a DNA-based biomarker for tracking therapeutic response. DISCUSSION: This study will confirm in humans the pharmacodynamic effect of AR ligands to induce transient double-strand breaks when administered in the context of androgen deprivation as a novel therapy for prostate cancer. The findings of this study will permit the development of a larger trial evaluating flutamide pulsed-dose sequencing in association with fractionated external beam RT (+/- brachytherapy). The study is ongoing, and preliminary data collection and recruitment are underway; analysis has yet to be performed. TRIAL REGISTRATION: ClinicalTrials.gov NCT03507608. Prospectively registered on 25 April 2018.


Subject(s)
Flutamide , Prostatic Neoplasms , Male , Humans , Flutamide/therapeutic use , Androgens , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Androgen Antagonists/therapeutic use , Receptors, Androgen , Ligands , Prospective Studies , Treatment Outcome , DNA , Randomized Controlled Trials as Topic
17.
Sci Rep ; 13(1): 18940, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919464

ABSTRACT

Ganoderma lucidum polysaccharide is the most widely used complementary therapy in cancer. The present study aims to investigate the possible interaction between Ganoderma lucidum polysaccharide and Docetaxel (a chemotherapy drug) and the first-line medication for prostate cancer treatment (Flutamide) and sensitizing the cells to these treatments. The cytotoxic effects of Ganoderma lucidum polysaccharide in combination with Docetaxel and Flutamide on prostate cancer cells were investigated by the MTT test, Hoechst staining, and flow cytometry. In addition, the expression of genes related to apoptosis, angiogenesis, Epithelial-Mesenchymal Transition pathway (EMT), and prostate cancer biomarkers by Real-Time PCR was investigated. The results demonstrated that IC50 values for Ganoderma lucidum polysaccharide (30 µM and 20 µM), Docetaxel (10 µM and 5 µM), and Flutamide (20 µM and 12 µM) with MTT were confirmed by flow cytometry in a dose and time-dependent manner. Regarding the high efficacy of Ganoderma lucidum polysaccharide in combination with Flutamide and Docetaxel, 10 µM and 5 µM Flutamide were used instead of 20 µM and 12 µM and 5 µM and 2 µM Docetaxel was used instead of 10 µM and 5 µM in PC3 and LNCap, respectively. Moreover, for the first time, it was shown that Ganoderma lucidum polysaccharide alone and in combination with Docetaxel and Flutamide significantly augmented apoptosis, reduced cell migration and colonization, and downregulated expression of KLK2 and EMT pathway genes in both PC3 and LNCap cell line (P < 0.01). Ganoderma lucidum polysaccharide synergistically increased the effect of Docetaxel and Flutamide and increased the sensitivity of the prostate cancer cell lines to these drugs. Therefore, it may provide a new therapeutic strategy against prostate cancer.


Subject(s)
Prostatic Neoplasms , Reishi , Male , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Prostate/metabolism , Flutamide/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
18.
BMC Cancer ; 23(1): 1102, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957639

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS: The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS: The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION: PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Prognosis , Flutamide , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , RNA , Biomarkers , Gene Expression Regulation, Neoplastic , Protocadherins , Pancreatic Neoplasms
19.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958610

ABSTRACT

In this study, we examined the metabolic adaptations of a chemoresistant prostate cancer cell line in comparison to a sensitive cell line. We utilized prostate cancer LNCaP cells and subjected them to a stepwise increase in the antiandrogen 2-hydroxy-flutamide (FLU) concentration to generate a FLU-resistant cell line (LN-FLU). These LN-FLU cells displayed characteristics of cancer stem cells, exhibited drug resistance, and showed a significantly reduced expression of Cyclin D1, along with the overexpression of p16, pointing to a proliferation arrest. In comparing the cancer stem-like LN-FLU cells to the LNCaP cells, we observed a decrease in the expression of CTP-choline cytidylyl transferase α (CCTα), as well as a decline in choline kinase, suggesting altogether a downregulation of the phosphatidylcholine biosynthetic pathway. In addition, we found decreased levels of the protein methyl transferase PRMT2 and the upregulation of the histone deacetylase Sirtuin1 (Sirt1). Analysis of the human prostate cancer samples revealed similar results in a population with high expressions of the stem cell markers Oct4 and ABCB1A1. Our findings suggest that the adaptation of prostate cancer cells to antiandrogens could induce reprogramming into stem cells that survive in a low phosphocholine metabolism and cell cycle arrest and display drug resistance.


Subject(s)
Flutamide , Prostatic Neoplasms , Male , Humans , Flutamide/pharmacology , Down-Regulation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgen Antagonists/pharmacology , Cell Line, Tumor , Transferases/metabolism
20.
PeerJ ; 11: e16249, 2023.
Article in English | MEDLINE | ID: mdl-37901474

ABSTRACT

Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p'-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p'-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.


Subject(s)
Androgen Antagonists , Flutamide , Animals , Humans , Male , Female , Androgen Antagonists/adverse effects , Flutamide/pharmacology , Cyproterone Acetate/adverse effects , Chickens , Dichlorodiphenyl Dichloroethylene/pharmacology , Sex Differentiation , Poultry , Androgens/adverse effects , Embryonic Development
SELECTION OF CITATIONS
SEARCH DETAIL