Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.731
Filter
1.
Mol Biol Rep ; 51(1): 685, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796672

ABSTRACT

BACKGROUND: In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS: This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS: When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.


Subject(s)
DNA, Mitochondrial , Drosophila melanogaster , Mitochondria , Oxidative Stress , Animals , Oxidative Stress/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Carmine/metabolism , Carmine/adverse effects , Glutathione/metabolism , DNA Damage/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Food Coloring Agents/adverse effects , Food Coloring Agents/toxicity , Catalase/metabolism , Catalase/genetics
2.
Food Chem ; 450: 139320, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640530

ABSTRACT

4(5)-methylimidazole (4-MeI) is a potential carcinogen widely used in food colours. EU regulations specify a maximum allowable concentration of 200 ppm for 4-MeI in caramel colours. This study reports an electrochemical determination technique for 4-MeI in caramel colours for the first time. The effect of pH and interference from air were studied to optimize the detection conditions on a glassy carbon electrode in aqueous alkaline solutions using square wave voltammetry (SWV) technique. The concentration of 4-MeI was quantitatively measured down to 10 µM (∼0.8 ppm). Traditional methods such as HPLC, GC, spectrometry and immunoassays involve either expensive instrumentation and reagents or time consuming preparation and detection processes. This study demonstrates the possibility of rapid and simple electrochemical determination of (4-MeI) in food colours with minimum workup using a portable potentiostat.


Subject(s)
Electrochemical Techniques , Imidazoles , Imidazoles/chemistry , Imidazoles/analysis , Electrochemical Techniques/instrumentation , Food Coloring Agents/analysis , Food Coloring Agents/chemistry , Food Contamination/analysis , Hydrogen-Ion Concentration , Carbohydrates
3.
Food Chem ; 450: 139398, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38677180

ABSTRACT

It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.


Subject(s)
Food Coloring Agents , Wastewater , Adsorption , Food Coloring Agents/chemistry , Food Coloring Agents/isolation & purification , Wastewater/chemistry , Fungi/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
4.
Food Chem Toxicol ; 188: 114653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599274

ABSTRACT

Sunset Yellow (SY), an azo synthetic food dye, is widely used in the food industry. Although there are different opinions on its effect on people, its use is regulated in the European Union. If the Acceptable Daily Intake of 2.5 mg/kg/bw is exceeded, it may have pathological and biochemical effects on organs. There are not enough studies on the effects of SY on growth and development in mammals. This study was conducted to determine the effect of SY on the morphological parameters of mice at different ages (four, eight, and ten weeks old). The treatment and control groups were created with Swiss Albino mice (n: 6). SY was administered orally for 28 days (30 mg/kg/bw/week). On the last day of the study, the mice were weighed, and tail, temporal region, femur, and crown-rubmp-length values were measured using a digital caliper. A statistical difference in average body weight was observed in the SY groups (p < 0.05). SY administration during childhood caused retardation in growth and development parameters. Therefore, SY may cause weight gain and affect morphological parameters. Additional studies are required to investigate the effects of SY at different doses and durations.


Subject(s)
Azo Compounds , Animals , Mice , Male , Body Weight/drug effects , Food Coloring Agents
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124285, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38615416

ABSTRACT

Quinoline yellow (QY), as a food coloring agent, will consume a large number of detoxifying substances in the body after being ingested by the human body, interfering with the normal metabolic functions of the human body, and may cause allergies, diarrhea and other symptoms, as well as a certain degree of carcinogenicity, posing a great threat to human health. As a result, it is critical to develop a fast, sensitive, and effective approach to determining quinoline yellow in food. In this study, carbon dots (N-CQDs) with high fluorescence quantum yield were prepared and used to determine the QY content using the dual mode of internal filtering effect and fluorescence emission shift detection. Both methods showed good linearity in the range of QY concentration of 0.3-3.2 µM, and the detection limits were classified as 2.6 nM and 0.18 µM. In addition, in order to achieve visual detection of QY, fluorescent test strips were constructed using the carbon dots and non-fluorescent qualitative filter paper to make the detection of QY more convenient. This probe presents a novel way for detecting quinoline yellow in food analysis.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Quinolines , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Spectrometry, Fluorescence/methods , Quinolines/chemistry , Nitrogen/chemistry , Food Coloring Agents/analysis , Limit of Detection , Fluorescent Dyes/chemistry
6.
J Food Sci ; 89(5): 2761-2773, 2024 May.
Article in English | MEDLINE | ID: mdl-38551035

ABSTRACT

Betalain is a water-soluble pigment contained in Caryophyllales plants. It not only holds potential as a natural food colorant but also offers various health benefits, acting as an antioxidant. This study focused on analyzing the pH-dependent stability of encapsulated betalain pigments extracted from red beetroot (Beta vulgaris L.) using methods such as absorption spectroscopy, HPLC, and LC-MS. The major pigments identified were vulgaxanthin I, betanin, isobetanin, and neobetanin, alongside minor components, including three betaxanthin species and a degradation product known as betalamic acid. Spectrophotometric analyses revealed that above pH 8, the betalain peak at 435 nm decreased and red-shifted to a peak at 549 nm, a shift that could be reversed through neutral pH treatment. At pH 11, a new broad peak appeared at 410 nm and was identified as betalamic acid. To assess the pH-dependency of each betalain, the targeted betalains were separated and quantified through HPLC after incubation across a wide pH range of 2-11 and during storage. After 3 days of storage in highly alkaline conditions (pH 10-11), major betalains, with the exception of neobetanin, underwent significant degradation. Conversely, these pigments displayed relative stability in acidic conditions. In contrast, neobetanin showed vulnerability to acidic conditions but exhibited tolerance to alkaline pH levels of 10-11. The degradation product, betalamic acid, demonstrated a similar susceptibility to alkaline pH as betanins. In conclusion, the significant stability decrease under highly alkaline conditions results not only from the hydrolytic reaction of betalains but also from the degradation of betalamic acid itself. PRACTICAL APPLICATION: Encapsulation methods are used to enhance the stability of betalains against temperature variations; however, the effects of pH, especially when considering individual betalain species, are not well understood. Despite betalains exhibiting similar features and being suitable for a wide pH range from acid to alkaline conditions, they are significantly affected by alkaline pH levels exceeding 10, as well as by storage duration. This study demonstrated the application of encapsulation to pH-dependent stability, and the findings offer valuable insights and a fresh perspective on betalains as red biocolorants, extending their potential application to a wide range of pH-controlled food products.


Subject(s)
Beta vulgaris , Betalains , Plant Extracts , Beta vulgaris/chemistry , Betalains/chemistry , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Betacyanins/chemistry , Betaxanthins/chemistry , Plant Roots/chemistry , Food Coloring Agents/chemistry , Drug Stability , Antioxidants/chemistry
7.
Biosci Biotechnol Biochem ; 88(6): 639-647, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38544329

ABSTRACT

Efficient extraction of natural pigments is a key focus in enhancing the utilization of by-products for applications in the food industry. In this study, an enzymatic extraction method using Pectinex Ultra SP-L, Pectinex XXL, Novoshape, and Celluclast was used to investigate natural pigment production from the pomace of aronia, a commercially important plant. The method's performance was monitored using high-performance liquid chromatography with diode-array detection by measuring total and individual anthocyanin levels. Pectinex XXL (0.5%) yielded the highest total anthocyanin extraction (2082.41 ± 85.69 mg/100 g) in the single enzyme treatment, followed by Pectinex Ultra SP-L (0.05%), Celluclast (0.01%), and Novoshape (0.1%). Combining Pectinex XXL (0.25%) with Celluclast (0.01%) increased the extraction ratio of total anthocyanins (2 323.04 ± 61.32 mg/100 g) by ∼50.7% compared with that obtained using the solvent extraction method. This study demonstrated an effective enzymatic extraction method for application in the food industry.


Subject(s)
Anthocyanins , Chemistry Techniques, Analytical , Enzymes , Food Industry , Anthocyanins/analysis , Anthocyanins/isolation & purification , Chemistry Techniques, Analytical/methods , Enzymes/metabolism , Food Coloring Agents/isolation & purification , Food Industry/methods , Photinia/chemistry , Temperature , Time
8.
Food Chem ; 447: 138963, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492301

ABSTRACT

Intelligent packaging embedded with food freshness indicators can monitor food quality and be deployed for food safety and cutting food waste. The innovative nano-inks for dynamic shelf-life printing based on natural food colorant with application in real-time monitoring of shrimp freshness were prepared. Co-assembly of saffron petal anthocyanin (SPA) with hydrophobic curcumin (Cur) into chitin nano-scaffold (particle sizes around 26 ± 8 nm) could deliver hindering SPA leaching, confirmed by FT-IR, FE-SEM, AFM, and color stability test. The best response to pH-sensitivity was found in a ratio of (1:4) Cur/SPA (30% (v/w) in ChNFs that was correlated with the chemical and microbial changes of shrimp during shrimp freshness. However, smart screen-printed inks signified higher responsiveness to pH changes than FFI films. Therefore, smart-printed indicators introduced the excellent potential for a short response time, easy, cost-effective, eco-friendly, co-assembly, great color stabilities, and lifetime for nondestructively freshness monitoring foods and supplements.


Subject(s)
Biological Products , Crocus , Curcumin , Food Coloring Agents , Refuse Disposal , Animals , Ink , Spectroscopy, Fourier Transform Infrared , Seafood , Anthocyanins , Coloring Agents , Crustacea , Food Packaging , Hydrogen-Ion Concentration
9.
Mikrochim Acta ; 191(4): 222, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38546789

ABSTRACT

A lightweight, portable, low-cost, and accessible cotton swab was employed as surface enhanced Raman spectroscopy (SERS) matrix template. The silver nanoflowers were in situ grown on the surface of cotton swabs to form three-dimensional Ag nanoflower@cotton swabs (AgNF@CS) SERS substrate with high-density and multi-level hot spots. The SERS performance of AgNFs@CS substrates with various reaction time was systematically studied. The optimal AgNF-120@CS SERS substrate exhibits superior detection sensitivity of 10-10 M for methylene blue, good signal reproducibility, high enhancement factor of 1.4 × 107, and excellent storage stability (over 30 days). Moreover, the AgNF-120@CS SERS substrate also exhibits prominent detection sensitivity of 10-8 M for food colorant of carmine. Besides, the portable AgNF-120@CS SERS substrate is also capable of detecting food colorant residues on irregular food surfaces.


Subject(s)
Food Coloring Agents , Metal Nanoparticles , Carmine , Silver/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry
10.
J AOAC Int ; 107(3): 430-442, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457604

ABSTRACT

BACKGROUND: Ponceau 4R (E124) and carmoisine (CMS; E122) are frequently utilized azo synthetic dyes in the food industry owing to their aesthetically pleasing coloration and broad consumer acceptability. It is imperative to prioritize environmentally favorable technologies for quantifying these dyes, as excessive consumption of these poses significant health risks. OBJECTIVE: The primary objective of this research was to establish a reversed-phase (RP)-HPLC method that could simultaneously detect Ponceau 4R and CMS, implementing green analytical chemistry (GAC) and analytical quality by design (AQbD), using an ultrasound-assisted extraction (UAE) technique in commercial food samples. METHODS: An Agilent Eclipse Plus column (C18, 250 × 4.6 mm id, 5 µm) was utilized for effective separation with a mobile phase of ethanol-acetate buffer pH 5 (60:40, v/v), flow rate of 1 mL/min, and detection wavelength of 515 nm. Critical variables selected for method optimization were ethanol percentage and flow rate, determined using central composite design (CCD). In order to adhere to the 12 principles of green chemistry, hazardous solvents were substituted with ethanol, which is distinguished by its ease of use, effectiveness, and ecological sustainability. The greenness assessment was conducted utilizing the green analytical procedure index (GAPI), analytical eco-scale (AES), and analytical greenness metrics (AGREE). RESULTS: The respective retention times for Ponceau 4R and CMS were 2.276 and 3.450 min. The recovery rate of Ponceau 4R and CMS fluctuated between 70% and 102% and 80% and 102%, respectively, across various marketed food samples. The procedure passed validation in accordance with the International Conference on Harmonization Q14 guidelines. CONCLUSION: The devised method demonstrates that the validation parameters like linearity, precision, sensitivity, and reproducibility are within the specified limits of ICH guidelines. The greenness assesment tools GAPI, AES, and AGREE produced the most favorable results. HIGHLIGHTS: In future, environmentally sustainable, solvent-based, robust AQbD methodologies for assessing varieties of food colorants may be adopted and improved commercially.


Subject(s)
Azo Compounds , Food Coloring Agents , Green Chemistry Technology , Naphthalenesulfonates , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology/methods , Azo Compounds/analysis , Food Coloring Agents/analysis , Food Analysis/methods , Chromatography, Reverse-Phase/methods , Ultrasonic Waves , Ultrasonics
11.
Food Res Int ; 179: 113981, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342530

ABSTRACT

Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.


Subject(s)
Food Coloring Agents , Gardenia , Plant Extracts , Coloring Agents
12.
Anal Chim Acta ; 1287: 342047, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182363

ABSTRACT

Based on TiO2 nanorod arrays@PDA/Ag (TNRs@PDA/Ag), a better surface-enhanced Raman scattering (SERS) sensor with effective enrichment and enhancement was investigated for duplex SERS detection of illicit food dyes. Biomimetic PDA functions as binary mediators by utilizing the structural characteristics of polydopamine (PDA), which include the conjugated structure and abundant hydrophilic groups. One PDA functioned as an electron transfer mediator to enhance the efficiency of electron transfer, and the other as an enrichment mediator to effectively enrich rhodamine B (RhB) and crystal violet (CV) through hydrogen bonding, π-π stacking, and electrostatic interactions. Individual and duplex detection of illicit food dyes (RhB and CV) was performed using TNRs@PDA/Ag to estimate SERS applications. Their linear equations and limits of detection of 1 nM for RhB and 5 nM for CV were derived. Individual and duplex food colour detection was successfully accomplished even in genuine chili meal with good results. The bifunctional TNRs@PDA/Ag-based highly sensitive and duplex SERS dye detection will have enormous potential for food safety monitoring.


Subject(s)
Food Coloring Agents , Nanotubes , Coloring Agents , Biomimetics , Gentian Violet
13.
Toxicol In Vitro ; 96: 105772, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199585

ABSTRACT

Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded.


Subject(s)
Ferric Compounds , Food Coloring Agents , Humans , Food Coloring Agents/toxicity , Caco-2 Cells , Scattering, Small Angle , X-Ray Diffraction , Dust , Digestion
14.
Int J Biol Macromol ; 259(Pt 1): 129143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176484

ABSTRACT

In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.


Subject(s)
Food Coloring Agents , Indigo Carmine , Humans , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods , Fluorescence Resonance Energy Transfer , Circular Dichroism , Thermodynamics , Calorimetry , Protein Binding , Binding Sites
15.
Food Chem ; 442: 138404, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38237295

ABSTRACT

Aluminum is added to many food colors to change their solubility. This study compares the aluminum-containing food color carmine with its aluminum-free version carminic acid (both E 120), hypothesizing that the addition of aluminum does not only change the color's solubility, but also its effects on human cells. We could show that carmine, but not carminic acid, is taken up by gastrointestinal Caco-2 and umbilical vein endothelial cells (HUVEC). Clear differences between gene expression profiles of Caco-2 cells exposed to carmine, carminic acid or control were shown. KEGG analysis revealed that carmine-specific genes suppress oxidative phosphorylation, and showed that this suppression is associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. Furthermore, carmine, but not carminic acid, increased proliferation of Caco-2 cells. Our findings show that a food color containing aluminum induces different cellular effects compared to its aluminum-free form, which is currently not considered in EU legislation.


Subject(s)
Carmine , Food Coloring Agents , Humans , Carmine/analysis , Aluminum/toxicity , Caco-2 Cells , Endothelial Cells , Food Coloring Agents/analysis , Excipients
16.
Adv Colloid Interface Sci ; 323: 103052, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086153

ABSTRACT

As a current trend of fabricating healthier products, food manufacturing companies seek for natural-based food colorant aiming to replace the synthetic ones, which apart from meeting sensorial and organoleptic aspects, they can also act as health promoters offering additional added value. Carminic acid is a natural based food colorant typically found in several insect taxa. However, there are current approaches which pursue the production of this natural pigment via biotechnological synthesis. To date, this colorant has been intensively applied in the manufacture of several food items. Unfortunately, one of the main limitations deals with the establishment of the right protocol of extraction and purification of this component since there is no report analyzing the main extraction techniques for obtaining carminic acid. Therefore, this review, for the first time, comprehensively analyzes the ongoing strategies and protocols proposed by scientists towards either extraction or purification of carminic acid from its origin source, and from biotechnological systems. Emphasis has been focused on the main findings dealing with extraction techniques and the relevant insights in the field. A detailed discussion is provided on the advantages and drawbacks of the reported extraction and purification methods, main solvents used and their key interactions with target molecules.


Subject(s)
Carmine , Food Coloring Agents , Carmine/metabolism
17.
J Fluoresc ; 34(2): 599-608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37329379

ABSTRACT

An innovative simple, sensitive, and selective method has been developed and validated for quantification of hazardous Allura red (AR, E129) dye in beverages. Allura red (AR) is a synthetic dye that is commonly used in the food industry to give foods a bright and appealing color. The method is based on microwave-assistant nitrogen-doped carbon quantum dots (N@CQDs) from a very cheap source with a high quantum yield equal to (36.60%). The mechanism of the reaction is based on an ion-pair association complex between AR and nitrogen-doped carbon quantum dots (N@CQDs) at pH 3.2. The reaction between AR and N@CQDs led to a quenching effect of the fluorescence intensity of N@CQDs at 445 nm after excitation at 350 nm. Moreover, the quantum method's linearity covered the range between 0.07 and 10.0 µg mL- 1 with a regression coefficient is 0.9992. The presented work has been validated by ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize of the N@CQDs. The N@CQDs were successfully utilized in different applications (beverages) with high accuracy.


Subject(s)
Azo Compounds , Food Coloring Agents , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Limit of Detection , Beverages
18.
Nat Microbiol ; 8(12): 2290-2303, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030899

ABSTRACT

Synthetic food colourants are widely used in the food industry, but consumer concerns about safety and sustainability are driving a need for natural food-colour alternatives. Betanin, which is extracted from red beetroots, is a commonly used natural red food colour. However, the betanin content of beetroot is very low (~0.2% wet weight), which means that the extraction of betanin is incredibly wasteful in terms of land use, processing costs and vegetable waste. Here we developed a sustainability-driven biotechnological process for producing red beet betalains, namely, betanin and its isomer isobetanin, by engineering the oleaginous yeast Yarrowia lipolytica. Metabolic engineering and fermentation optimization enabled production of 1,271 ± 141 mg l-1 betanin and 55 ± 7 mg l-1 isobetanin in 51 h using glucose as carbon source in controlled fed-batch fermentations. According to a life cycle assessment, at industrial scale (550 t yr-1), our fermentation process would require significantly less land, energy and resources compared with the traditional extraction of betanin from beetroot crops. Finally, we apply techno-economic assessment to show that betanin production by fermentation could be economically feasible in the existing market conditions.


Subject(s)
Beta vulgaris , Food Coloring Agents , Yarrowia , Betacyanins/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Food Coloring Agents/metabolism
19.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834009

ABSTRACT

The growing popularity of the use of nutraceuticals in the prevention and alleviation of symptoms of many diseases in humans and dogs means that they are increasingly the subject of research. A representative of the nutraceutical that deserves special attention is turmeric. Turmeric belongs to the family Zingiberaceae and is grown extensively in Asia. It is a plant used as a spice and food coloring, and it is also used in traditional medicine. The biologically active factors that give turmeric its unusual properties and color are curcuminoids. It is a group of substances that includes curcumin, de-methoxycurcumin, and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. The most important pro-health effects observed after taking curcuminoids include anti-inflammatory, anticancer, and antioxidant effects. The aim of this study was to characterize turmeric and its main substance, curcumin, in terms of their properties, advantages, and disadvantages, based on literature data.


Subject(s)
Curcumin , Food Coloring Agents , Humans , Dogs , Animals , Curcumin/pharmacology , Curcuma , Diarylheptanoids , Anti-Inflammatory Agents , Plant Extracts/pharmacology
20.
Chem Commun (Camb) ; 59(84): 12653-12656, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37794815

ABSTRACT

Herein we report that a surfactant modified quantum dot-complex (S-QDC; with λem-515 nm) nanocomposite, as a donor fluorophore, exhibits enhanced Förster resonance energy transfer (FRET) efficiency to an acceptor organic dye (λem-576 nm) in comparison to only the QDC. The proposed S-QDC (consisting of a ZnS quantum dot, zinc quinolate inorganic complex and cetyltrimethylammonium bromide (CTAB) surfactant) provides the unique and selective ratiometric visual detection of organic dyes present as food colorants in commercial chili powder, tomato ketchup and mixed fruit jam. Notably, the S-QDC shows a limit of detection (LOD) as low as 2.2 nM in the linear range of 0.17-4.89 µM for food colorants. Furthermore, the present work will bring new possibilities to unravelling the chemistry among surfactants, inorganic complexes and quantum dots to make newer optical materials with futuristic scope of utilization ranging from optical sensors to light emitting devices.


Subject(s)
Food Coloring Agents , Quantum Dots , Quantum Dots/chemistry , Fluorescence Resonance Energy Transfer , Surface-Active Agents , Lipoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...