Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Int J Food Microbiol ; 423: 110825, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39059139

ABSTRACT

The present work aimed to assess the effects of chitosan coating comprising Citrus limon essential oil (CLEO) as an antimicrobial and antioxidant on the quality and the shelf-life of beef meat during storage in cold temperatures. The microbial, chemical, and sensory characteristics of beef meat were repeatedly evaluated. The outcomes showed that CLEO had a substantial preservative effect on refrigerated beef meat by reducing total volatile basic nitrogen compounds (TVB-N), inhibiting the replication of microorganisms (p < 0.05), and decreasing oxidation (p < 0.05) during storage. The incorporation of CLEO into chitosan coating significantly reduced (p < 0.05), TBARS, especially for the Nano-CS- ClEO 2 % and 4 % groups, with values at the end of storage of approximately 0.68 and 1.01 mg MDA/kg respectively. Moreover, the meat treatments with essential oils led to lower carbonyl content production in compared to other groups that treated without essential oils. Coated beef meat had the highest inhibitory effects against microbial growth. The counts of Enterobacteriaceae, lactic acid bacteria (LAB), psychrophilic, and mesophilic bacteria were significantly lower (p < 0.05) in the Nano-CS- ClEO 2 % (1.1, 4.2, 6.2, and 6.32 Log CFU/g, respectively) at day 16. The sensory evaluation indicated that this coating with chitosan nanoemulsions in combination with ClEOs could significantly preserve sensory characteristics of beef meat during storage. Moreover, concerning sensory features, the control samples gained the maximum score. Additionally, the group that contains chitosan in combination with 4 % ClEO nanoliposomes had the highest inhibition of microbial growth, reduced sensory changes, and extending the shelf life of beef meat (p < 0.05). In conclusion, nanoemulsions containing Citrus limon essential oil had a significant preservation effect on beef meat during refrigerated storage by preventing the microorganism's proliferation and decreasing the oxidation of fat and protein (p < 0.05). Therefore, they are suggested to extend the durability of fresh meat products during refrigerated storage.


Subject(s)
Chitosan , Citrus , Cold Temperature , Food Preservation , Food Preservatives , Food Storage , Oils, Volatile , Red Meat , Chitosan/pharmacology , Chitosan/chemistry , Oils, Volatile/pharmacology , Citrus/chemistry , Animals , Cattle , Food Preservation/methods , Red Meat/microbiology , Red Meat/analysis , Food Preservatives/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Food Microbiology
2.
J Agric Food Chem ; 72(32): 18027-18044, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39078084

ABSTRACT

Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 µL/mL (0.37 mg/mL) and 10 µL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) µg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.


Subject(s)
Botrytis , Colletotrichum , Food Preservation , Fragaria , Fragaria/chemistry , Fragaria/microbiology , Botrytis/drug effects , Botrytis/growth & development , Colletotrichum/drug effects , Food Preservation/methods , Apoptosis/drug effects , Plant Diseases/microbiology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fruit/chemistry , Fruit/microbiology , Thymol/pharmacology , Thymol/chemistry , Surface Properties , Chitosan/chemistry , Chitosan/pharmacology
3.
Food Res Int ; 190: 114548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945593

ABSTRACT

Synthetic preservatives are widely used in the food industry to control spoilage and growth of pathogenic microorganisms, inhibit lipid oxidation processes and extend the shelf life of food. However, synthetic preservatives have some side effects that can lead to poisoning, cancer and other degenerative diseases. With the improvement of living standards, people are developing safer natural preservatives to replace synthetic preservatives, including plant derived preservatives (polyphenols, essential oils, flavonoids), animal derived preservatives (lysozyme, antimicrobial peptide, chitosan) and microorganism derived preservatives (nisin, natamycin, ε-polylysine, phage). These natural preservatives exert antibacterial effects by disrupting microbial cell wall/membrane structures, interfering with DNA/RNA replication and transcription, and affecting protein synthesis and metabolism. This review summarizes the natural bioactive compounds (polyphenols, flavonoids and terpenoids, etc.) in these preservatives, their antioxidant and antibacterial activities, and safety evaluation in various products.


Subject(s)
Antioxidants , Food Preservatives , Food Preservatives/pharmacology , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Animals , Food Safety , Humans , Flavonoids/pharmacology , Polyphenols/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Terpenes/pharmacology
4.
Food Chem ; 455: 139905, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833870

ABSTRACT

Pomegranate are often treated with preservatives during storage. This study investigated the effects of storage and food processing on the residual behavior of the five commonly used preservatives (prochloraz, thiophanate-methyl, pyrimethanil, imazalil, and difenoconazole) and their metabolites in pomegranate and its products. The LOQs for all target compounds were 0.001 mg kg-1. The residue levels of five preservatives in the calyx was highest, followed by the peel, stalk, septum, umbilicus, and seed. For the migration ability, the five preservatives from pomegranate peel to seed was negatively correlated with their octanol/water partition coefficients. The processing factors of each procedures of juice, wine, vinegar, and pectin processing were <1. Nevertheless, the PF values in drying peel during the overall process ranged from 1.26 to 4.09. Hence, it is worth noting that consumption of pomegranate essential oil and drying peel may pose a potential risk to the health of consumers.


Subject(s)
Food Preservatives , Food Storage , Fruit , Pomegranate , Pomegranate/chemistry , Pomegranate/metabolism , Food Preservatives/chemistry , Food Preservatives/analysis , Food Preservatives/metabolism , Fruit/chemistry , Fruit/metabolism , Food Handling
5.
Food Chem ; 455: 139874, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838624

ABSTRACT

Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.


Subject(s)
Candida albicans , Food Preservatives , Rhizopus , Animals , Candida albicans/drug effects , Rhizopus/drug effects , Rhizopus/growth & development , Food Preservatives/pharmacology , Food Preservatives/chemistry , Tilapia/microbiology , Tilapia/growth & development , Fish Proteins/pharmacology , Fish Proteins/chemistry , Food Preservation/methods , Food Contamination/prevention & control , Food Contamination/analysis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
6.
Compr Rev Food Sci Food Saf ; 23(4): e13394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925624

ABSTRACT

Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.


Subject(s)
Lipopeptides , Lipopeptides/chemistry , Lipopeptides/biosynthesis , Antioxidants/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Food Additives/chemistry , Food Preservatives/chemistry , Structure-Activity Relationship , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
7.
Food Chem ; 456: 140037, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870801

ABSTRACT

Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.


Subject(s)
Aspergillus flavus , Betaine , Thymol , Thymol/chemistry , Thymol/pharmacology , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Aspergillus flavus/chemistry , Betaine/chemistry , Betaine/pharmacology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Delayed-Action Preparations/chemistry , Arachis/chemistry , Arachis/microbiology , Crystallization , Aflatoxins/chemistry , Aflatoxin B1/chemistry
8.
Int J Food Microbiol ; 422: 110802, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38943772

ABSTRACT

In feed, propionic acid is the weak organic acid of choice to prevent growth of spoilage fungi. For safe and easy industrial handling this antifungal agent is applied in the presence of neutralizing ammonium, which however has the disadvantage to negatively affect the efficacy of fungus-inhibiting properties of the formulation. In the present study we investigated the impact of medium chain fatty acids (MCFA) on the antifungal efficacy of an ammonium propionate formulation on dormant- and germinating conidia as well as germ tubes and hyphae of Aspergillus chevalieri, a xerophilic fungus predominant on moulded feed. Dormant conidia were not affected by 32 mM of ammonium propionate after a 28 h-treatment in demi water. Similar results were obtained with solely 0.52 mM MCFA. However, the combination of both components nearly eradicated formation of colonies from these conidia and was accompanied by distortion of the cellular structure as was visible with light- and transmission electron microscopy. Germination of conidia, characterised by swelling and germ tube formation, was significantly decreased in the presence of 16 mM ammonium propionate and 0.26 mM MCFA, while the latter component itself did not significantly decrease germination. We conclude that a combination of ammonium propionate and MCFA had a synergistic antifungal effect on dormant and germinating conidia. When the combination of ammonium propionate and MCFA was tested on hyphae for 30 min, we observed that cell death was significantly increased in comparison to components alone. Treatment of the hyphae with 16 mM of ammonium propionate caused aberrant mitochondria, as evidenced by irregularly shaped and enlarged mitochondria that contained electron-dense inclusions as observed by transmission electron microscopy. When the combination of ammonium propionate and MCFA was applied against the hyphae, more severe cell damage was observed, with signs of autophagy. Summarised, our results demonstrate synergistic antifungal effects of ammonium propionate and medium chain fatty acids on fungal survival structures, during their germination and after a short (sudden) treatment of growing cells. This is of potential importance for several areas of feed and food storage and shelf-life.


Subject(s)
Antifungal Agents , Aspergillus , Drug Synergism , Fatty Acids , Hyphae , Propionates , Spores, Fungal , Propionates/pharmacology , Antifungal Agents/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Hyphae/ultrastructure , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Aspergillus/drug effects , Aspergillus/growth & development , Fatty Acids/pharmacology , Animal Feed/microbiology , Food Preservatives/pharmacology , Food Microbiology
9.
Food Chem ; 457: 140167, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38909451

ABSTRACT

Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.


Subject(s)
Emulsions , Food Preservation , Fruit , Glycolipids , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Fruit/chemistry , Emulsions/chemistry , Emulsions/pharmacology , Food Preservation/methods , Glycolipids/chemistry , Glycolipids/pharmacology , Blueberry Plants/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Food Preservatives/pharmacology , Food Preservatives/chemistry , Particle Size
10.
Food Chem ; 457: 140141, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917564

ABSTRACT

Glycinin basic peptide (GBP) is the basic polypeptide of soybean glycinin that is isolated using cheap and readily available raw materials (soybean meals). GBP can bear high-temperature processing and has good functional properties, such as emulsification and adhesion properties et al. GBP exhibits broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria as well as fungi. Beyond that, GBP shows enormous application potential to improve the quality and extend the shelf life of food products. This review will systematically provide information on the purification, physicochemical and functional properties of GBP. Moreover, the antimicrobial activities and multi-target antimicrobial mechanism of GBP as well as the applications of GBP in different food products are also reviewed and discussed in detail. This review aims to offer valuable insights for the applications of GBP in the food industry as a promising natural food additive and preservative.


Subject(s)
Food Additives , Food Preservatives , Globulins , Glycine max , Soybean Proteins , Soybean Proteins/chemistry , Soybean Proteins/pharmacology , Globulins/chemistry , Globulins/pharmacology , Glycine max/chemistry , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Additives/pharmacology , Food Additives/chemistry , Fungi/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Food Preservation/methods , Bacteria/drug effects
11.
Int J Food Microbiol ; 419: 110751, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38781648

ABSTRACT

Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.


Subject(s)
Cheese , Whey Proteins , Cheese/microbiology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Food Preservation/methods , Food Packaging/methods , Nisin/pharmacology , Nisin/chemistry , Food Microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Edible Films , Food Preservatives/pharmacology , Food Preservatives/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Milk Proteins/pharmacology , Milk Proteins/chemistry
12.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791548

ABSTRACT

Post-fermentation wastes are rich sources of various biologically active compounds with antimicrobial activity, whose potential is not being fully exploited. One of the possible applications of post-fermentation waste may be its use as a natural preservative that effectively combats pathogens found in formulations. The study aims included the following: (1) compare the antimicrobial and antioxidant activity of fermented vegetable extracts (FVEs), (2) examine the inhibition of cosmetic-borne pathogens by FVEs, and (3) estimate the preservative effectiveness of FVEs in o/w emulsions. It was found that fermented white cabbage, cucumber, celery, and the mixture of fermented white cabbage, cucumber, and celery (1:1:1) showed antibacterial and antifungal activity against all the tested reference microbial strains. The addition of fermented cucumber, celery, and the mixture of fermented white cabbage, cucumber, and celery (1:1:1) to the o/w emulsion fulfilled criterion A of the preservative effectiveness test for S. aureus, E. coli, and A. brasiliensis, but did not fulfill the criterion for P. aeruginosa and C. albicans. The tested FVEs have comparable activity to inhibit pathogens in o/w emulsion as sodium benzoate. The results of our study prove that FVEs can be valuable raw materials supporting the preservative system, which, in turn, can significantly reduce the concentration of preservatives used in o/w emulsion.


Subject(s)
Emulsions , Fermentation , Vegetables , Vegetables/chemistry , Vegetables/microbiology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
13.
Sci Rep ; 14(1): 10307, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705878

ABSTRACT

This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.


Subject(s)
Food Preservation , Food Preservatives , Pomegranate , Powders , Food Preservatives/pharmacology , Food Preservatives/chemistry , Pomegranate/chemistry , Food Preservation/methods , Penicillium/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Aspergillus/drug effects , Aspergillus/growth & development , Fruit/chemistry , Food Storage/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry
14.
Food Chem Toxicol ; 189: 114715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729342

ABSTRACT

As a commonly used food preservative, glycerol monocaprylate (GMC) has limited information and lacked a comprehensive risk assessment. In this study, we conducted in vitro genotoxicity tests, a 90-day subchronic toxicity study, and dietary exposure assessment in China. Rats (n = 10/sex/group) were orally administered GMC at doses of 1.02, 2.04, and 4.08 g/kg BW/day along with a water and corn oil for 90 days, including satellite groups (n = 5/sex/group) in the control groups and 4.08 g/kg BW dose group for observation after 90 days. Body weight, food consumption, hematology, serum biochemistry, urinalysis, endocrine hormone level and other metrics were examined. GMC did not exhibit genotoxicity based on the genotoxicity tests results, and an acceptable daily intake (ADI) of 40.8 mg/kg BW/day was established based on the 90-day subchronic toxicity study. Estimated daily intake of GMC for general population and consumer population in China were 0.99 mg/kg BW/day and 3.19 mg/kg BW/day respectively, which were significantly lower than the ADI. Our findings suggest that GMC does not pose a known health risk to Chinese consumers at the current usage level.


Subject(s)
Glycerol , Rats, Sprague-Dawley , Animals , Male , Glycerol/toxicity , Female , Rats , Toxicity Tests, Subchronic , Mutagenicity Tests , Food Preservatives/toxicity , Dietary Exposure , Body Weight/drug effects , China
15.
Food Chem ; 453: 139583, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38772305

ABSTRACT

Food preservatives are crucial in fruit production, but fungal resistance is a challenge. The main objective was to compare the sensitivity of Neosartorya spp. isolates to preservatives used in food security applications and to assess the role of metabolic properties in shaping Neosartorya spp. resistance. Sodium metabisulfite, potassium sorbate, sodium bisulfite and sorbic acid showed inhibitory effects, with sodium metabisulfite the most effective. Tested metabolic profiles included fungal growth intensity and utilization of amines and amides, amino acids, polymers, carbohydrates and carboxylic acids. Significant decreases in the utilization of all tested organic compound guilds were observed after fungal exposure to food preservatives compared to the control. Although the current investigation was limited in the number of predominately carbohydrate substrates and the breadth of metabolic responses, extensive sensitivity panels are logical step in establishing a course of action against spoilage agents in food production being important approach for innovative food chemistry.


Subject(s)
Food Contamination , Food Preservatives , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Contamination/analysis , Neosartorya/metabolism , Neosartorya/chemistry , Neosartorya/growth & development , Metabolome
16.
Food Chem ; 453: 139669, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781900

ABSTRACT

Green mold is a common postharvest disease infected by Penicillium digitatum that causes citrus fruit decay, and severely affects fruit storage quality. This work aimed to investigate the antifungal activity of Sanxiapeptin against P. digitatum, and elucidate the possible mechanisms involved. Sanxiapeptin was capable of inhibiting spore germination, germ tube length and mycelial growth. The SYTOX green staining assay revealed that Sanxiapeptin targeted the fungal membrane, and changed the membrane permeability, leading to the leakage of cell constituents. Meanwhile, Sanxiapeptin could influence the cell wall permeability and integrity by increasing the activities of chitinase and glucanase, resulting in abnormal chitin consumption and the decrease of glucan. Intriguingly, Sanxiapeptin could effectively control postharvest decay in citrus fruits, and activate the host resistance responses by regulating the phenylpropanoid pathway. In conclusion, Sanxiapeptin exhibits multiphasic antifungal mechanisms of action to control green mold in citrus fruits, shows great potential as novel food preservatives.


Subject(s)
Citrus , Food Preservatives , Fruit , Penicillium , Plant Diseases , Citrus/microbiology , Citrus/chemistry , Penicillium/growth & development , Penicillium/drug effects , Plant Diseases/microbiology , Fruit/microbiology , Fruit/chemistry , Fruit/growth & development , Fruit/drug effects , Food Preservatives/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Food Preservation/methods , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
17.
Food Chem ; 451: 139440, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692245

ABSTRACT

The preservation of fresh-cut fruits and vegetables has attracted attention to the shelf-life reduction caused by high humidity. Herein, alginate/copper ions cross-linking, in-situ growth and self-assembly techniques of metal-organic frameworks (MOFs) were utilized to prepare a moisture responsive hydrogel bead (HKUST-1@ALG). As the multistage porous structure formation, tea tree essential oil (TTO) load capacity in hydrogel bead (TTO-HKUST-1@ALG) was increased from 6.1% to 21.6%. TTO-HKUST-1@ALG had excellent moisture response performance, and the release rates of TTO increased from 33.89% to 70.98% with moisture increasing from 45% to 95%. Besides, TTO-HKUST-1@ALG exhibited excellent antimicrobial, antioxidant capacity, and biocompatibility. During storage, TTO-HKUST-1@ALG effectively improved the cell membrane integrity by maintaining the balance of reactive oxygen species metabolism. The degradation of cell wall structure and tissue softening were delayed by inhibiting the cell wall-degrading enzymes activity. Briefly, TTO-HKUST-1@ALG improved the storage quality and extended shelf-life of fresh-cut pineapple, which was a promising preservative.


Subject(s)
Ananas , Food Preservation , Hydrogels , Metal-Organic Frameworks , Oils, Volatile , Ananas/chemistry , Oils, Volatile/chemistry , Hydrogels/chemistry , Metal-Organic Frameworks/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Fruit/chemistry , Antioxidants/chemistry , Food Preservatives/pharmacology , Food Preservatives/chemistry
18.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734600

ABSTRACT

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Subject(s)
Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
19.
Food Microbiol ; 121: 104517, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637079

ABSTRACT

Food preservatives are crucial in controlling microbial growth in processed foods to maintain food safety. Bacterial biofilms pose a threat in the food chain by facilitating persistence on a range of surfaces and food products. Cells in a biofilm are often highly tolerant of antimicrobials and can evolve in response to antimicrobial exposure. Little is known about the efficacy of preservatives against biofilms and their potential impact on the evolution of antimicrobial resistance. In this study we investigated how Salmonella enterica serovar Typhimurium responded to subinhibitory concentrations of four food preservatives (sodium chloride, potassium chloride, sodium nitrite or sodium lactate) when grown planktonically and in biofilms. We found that each preservative exerted a unique selective pressure on S. Typhimurium populations. There was a trade-off between biofilm formation and growth in the presence of three of the four preservatives, where prolonged preservative exposure resulted in reduced biofilm biomass and matrix production over time. All three preservatives selected for mutations in global stress response regulators rpoS and crp. There was no evidence for any selection of cross-resistance to antibiotics after preservative exposure. In conclusion, we showed that preservatives affect biofilm formation and bacterial growth in a compound specific manner. We showed trade-offs between biofilm formation and preservative tolerance, but no antibiotic cross-tolerance. This indicates that bacterial adaptation to continuous preservative exposure, is unlikely to affect food safety or contribute to antibiotic resistance.


Subject(s)
Anti-Infective Agents , Salmonella typhimurium , Food Preservatives/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Bacteria
20.
Food Chem ; 450: 139345, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640524

ABSTRACT

The protective mode of PostbioYDFF-3 (referred to as postbiotics) on the quality stability of refrigerated fillets was explored from the aspects of endogenous enzyme activity and the abundance of spoilage microorganisms. Compared to the control group, the samples soaked in postbiotics showed significant reductions in TVC, TVB-N and TBARS values by 39.6%, 58.6% and 25.5% on day 5, respectively. In addition, the color changes, biogenic amine accumulation and texture softening of the fish fillets soaked in postbiotics were effectively suppressed. Furthermore, the activity of endogenous enzyme activities was detected. The calpain activities were significantly inhibited (p < 0.05) after soaking in postbiotics, which declined by 23%. Meanwhile, high throughput sequencing analysis further indicated that the growth of spoilage microorganism such as Acinetobacter and Pseudomonas were suppressed. Overall, the PostbioYDFF-3 was suitable for preserving fish meat.


Subject(s)
Bacteria , Carps , Food Preservation , Seafood , Animals , Seafood/analysis , Seafood/microbiology , Food Preservation/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/enzymology , Refrigeration , Food Preservatives/pharmacology , Meat/analysis , Meat/microbiology , Pseudomonas/enzymology , Pseudomonas/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL