Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675855

ABSTRACT

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Subject(s)
Amino Acid Substitution , Capsid Proteins , Foot-and-Mouth Disease Virus , Viral Tropism , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cell Culture Techniques , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Receptors, Virus/metabolism , Receptors, Virus/genetics , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
2.
Virulence ; 15(1): 2333562, 2024 12.
Article in English | MEDLINE | ID: mdl-38622757

ABSTRACT

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Subject(s)
Enterovirus , Foot-and-Mouth Disease Virus , Picornaviridae Infections , Animals , Humans , Gene Products, pol/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Virus Replication , RNA, Viral/genetics
3.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509419

ABSTRACT

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Swine , Foot-and-Mouth Disease Virus/metabolism , Peptide Hydrolases/metabolism , Signal Transduction , Immunity, Innate , Endopeptidases/genetics , Endopeptidases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Antiviral Agents/metabolism
4.
Virol Sin ; 39(3): 378-389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499154

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease, which is caused by the FMD virus (FMDV). Although the cell receptor for FMDV has been identified, the specific mechanism of FMDV internalization after infection remains unknown. In this study, we found that kinesin family member 5B (KIF5B) plays a vital role during FMDV internalization. Moreover, we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation (Co-IP) and co-localization in FMDV-infected cells. In particular, the stalk [amino acids (aa) 413-678] domain of KIF5B was indispensable for KIF5B-VP1 interaction. Moreover, overexpression of KIF5B dramatically enhanced FMDV replication; consistently, knockdown or knockout of KIF5B suppressed FMDV replication. Furthermore, we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating. KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection. In conclusion, our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport. This study may provide a new therapeutic target for developing FMDV antiviral drugs.


Subject(s)
Foot-and-Mouth Disease Virus , Kinesins , Virus Internalization , Virus Replication , Kinesins/metabolism , Kinesins/genetics , Foot-and-Mouth Disease Virus/physiology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Animals , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Cell Line , Humans , Endosomes/metabolism , Endosomes/virology , HEK293 Cells
5.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38466127

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/metabolism , Peptide Hydrolases/metabolism , Serogroup , Foot-and-Mouth Disease/drug therapy , Foot-and-Mouth Disease/prevention & control , Endopeptidases/metabolism , 3C Viral Proteases , Antiviral Agents/pharmacology
6.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323828

ABSTRACT

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Endopeptidases/metabolism , Internal Ribosome Entry Sites , 3C Viral Proteases , Ubiquitins/genetics , Ubiquitins/metabolism
7.
J Virol ; 97(8): e0018123, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37565750

ABSTRACT

Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/metabolism , Viral Proteins/metabolism , Signal Transduction , Protein Transport , Virus Replication/physiology
8.
J Gen Virol ; 104(7)2023 07.
Article in English | MEDLINE | ID: mdl-37436428

ABSTRACT

Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting replication elements and provide direct evidence for their roles in negative-strand synthesis.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Picornaviridae , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Virus Replication/genetics , Picornaviridae/genetics , RNA, Viral/metabolism
9.
J Virol ; 97(7): e0068623, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37367489

ABSTRACT

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Swine , Foot-and-Mouth Disease Virus/metabolism , Caspase 3/metabolism , Cysteine Endopeptidases/metabolism , Gasdermins , Pyroptosis , Viral Proteins/metabolism
10.
J Virol ; 97(5): e0017123, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37154761

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/metabolism , Polyproteins/genetics , Polyproteins/metabolism , Virus Replication/genetics , Viral Nonstructural Proteins/metabolism , RNA/metabolism
11.
J Virol ; 97(5): e0036923, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37162335

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cell Line , Foot-and-Mouth Disease Virus/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines , RNA/metabolism , TOR Serine-Threonine Kinases/metabolism , Virus Replication , Cricetinae
12.
PLoS Pathog ; 19(2): e1011126, 2023 02.
Article in English | MEDLINE | ID: mdl-36735752

ABSTRACT

Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.


Subject(s)
Enterovirus , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Mice , Amino Acid Transport Systems, Neutral , Aspartic Acid/metabolism , Foot-and-Mouth Disease Virus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Virus Replication/physiology
13.
Vet Microbiol ; 274: 109550, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36084386

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes severe vesicular disease of cloven-hoofed animals. Various endocytosis mechanisms are involved in the entry of FMDV after binding to the integrin and heparan sulfate (HS) receptors. However, the mechanism of FMDV using other unknown receptors to enter the cells remains unclear. Here, we reported that the endocytosis and endosomal pathways are employed by FMDV to invade the Chinese hamster ovary cell line (CHO-677) without the integrin and HS receptors. We demonstrated that the internalization of FMDV into CHO-677 cells was abrogated by chlorpromazine, an inhibitor of clathrin-mediated endocytosis. Knockdown of the clathrin heavy chain decreased the viral protein abundance. Incubation of the CHO-677 cells with the inhibitors of caveolae-mediated endocytosis or transfection by caveolin-1 siRNA also limited FMDV replication. In addition, we determined that the acidic environment and the existence of dynamin were essential for FMDV infection in CHO-677 cells. The endosomal proteins Rab5 (early endosome) and Rab7 (late endosome), but not Rab11 (recycling endosome), were utilized by FMDV during infection. These data provide a new entry model of FMDV by unknown receptors which will help to better understand the pathogenesis mediated by FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Mouth Diseases , Rodent Diseases , Cricetinae , Animals , Clathrin/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , CHO Cells , Caveolin 1/metabolism , Cricetulus , RNA, Small Interfering , Clathrin Heavy Chains/metabolism , Chlorpromazine , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , Virus Internalization , Endocytosis , Dynamins/metabolism , Integrins/metabolism , Heparitin Sulfate , Viral Proteins/metabolism , Mouth Diseases/veterinary
14.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146866

ABSTRACT

Foot-and-mouth disease (FMD) is mainly characterized by blister formation (vesicles) in animals infected with foot-and-mouth disease virus (FMDV). However, the molecular basis of the blister formation in FMD is still unknown. BP180 is one of the main anchoring proteins connecting the dermal and epidermal layers of the skin. Previous studies have shown that the cleavage of BP180 by proteases produced by the inflammatory cells and the resulting skin loosening are major causes of the blister formation in bullous pemphigoid (BP) disease. Similar to BP, here we have demonstrated that, among the FMDV-encoded proteases, only FMDV 3Cpro contributes to the cleavage of BP180 at multiple sites, consequently inducing the degradation of BP180, leading to skin loosening. Additionally, we confirmed that FMDV 3Cpro interacts directly with BP180 and the FMDV 3Cpro C142T mutant, known to have reduced protease activity, is less effective for BP180 degradation than wild-type FMDV 3Cpro. In conclusion, for the first time, our results demonstrate the function of FMDV 3Cpro on the connective-tissue protein BP180 associated with blister formation.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Blister , Cysteine Endopeptidases/metabolism , Foot-and-Mouth Disease Virus/metabolism , Peptide Hydrolases , Viral Proteins/genetics , Viral Proteins/metabolism
15.
J Biotechnol ; 358: 1-8, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35995093

ABSTRACT

Simultaneous coexpression of multiple proteins is essential for biotechnology and synthetic biology. Currently, the most popular polyprotein coexpression system utilizes the foot-and-mouth disease virus (FMDV) 2A peptide that mediates translational ribosome-skipping events. However, due to unfavorable consumer acceptance of transgenic products containing animal-virus sequences, novel non-viral 2A-like peptides from purple sea urchin (Strongylcentrotus purpuratus) and California sea slug (Aplysia californica) were investigated for polyprotein coexpression in this study. We demonstrated that these non-viral 2A sequences functioned similarly to their viral counterpart in polyprotein processing, in both plant and mammalian cells, and were successfully used to express a functional recombinant antibody. The new non-viral 2A-like sequences offer an alternative tool for engineering multigenic traits or production of protein complexes as biomedicine via coexpression of protein subunits.


Subject(s)
Foot-and-Mouth Disease Virus , Viral Proteins , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Mammals , Peptides/metabolism , Polyproteins/metabolism , Protein Subunits/metabolism , Viral Proteins/metabolism
16.
Cell Rep ; 40(1): 111030, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793627

ABSTRACT

The foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule. Mutations at ZFER, PBL, and Pocket affect FMDV 2C ATPase activity and are lethal to FMDV infectious clones. Because the PBL-Pocket interaction between FMDV 2C molecules is essential for its functions, we design an anti-FMDV peptide derived from PBL (PBL-peptide). PBL-peptide inhibits FMDV 2C ATPase activity, binds FMDV 2C with nanomolar affinity, and disrupts FMDV 2C oligomerization. FMDV 2C targets lipid droplets (LDs) and induces LD clustering in cells, and PBL-peptide disrupts FMDV 2C-induced LD clustering. Finally, we demonstrate that PBL-peptide exhibits anti-FMDV activity in cells.


Subject(s)
Foot-and-Mouth Disease Virus , Picornaviridae , Adenosine Triphosphatases/metabolism , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Picornaviridae/metabolism , Protein Domains , Viral Nonstructural Proteins/metabolism
17.
J Virol ; 96(12): e0031722, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35604142

ABSTRACT

The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1-/- knockout cells showed IFN-ß production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-ß production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-ß or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-ß production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-ß production and FMDV 3A antagonizes ANXA1-promoted IFN-ß production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world's most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-ß and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.


Subject(s)
Annexin A1 , Foot-and-Mouth Disease Virus , Virus Replication , Animals , Annexin A1/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Foot-and-Mouth Disease Virus/physiology , Host-Pathogen Interactions , Interferon Regulatory Factor-3 , Interferon-beta/metabolism , Interferon-gamma , Janus Kinase 1/metabolism , Protein Serine-Threonine Kinases/metabolism , STAT1 Transcription Factor/metabolism
18.
Genomics ; 113(6): 4254-4266, 2021 11.
Article in English | MEDLINE | ID: mdl-34757126

ABSTRACT

Foot-and-mouth disease virus (FMDV) causes a severe infection in ruminant animals. Here we present an in-depth transcriptional analysis of soft-palate tissue from cattle experimentally infected with FMDV. The differentially expressed genes from two Indian cattle (Bos indicus) breeds (Malnad Gidda and Hallikar) and Holstein Friesian (HF) crossbred calves, highlighted the activation of metabolic processes, mitochondrial functions and significant enrichment of innate antiviral immune response pathways in the indigenous calves. The results of RT-qPCR based validation of 12 genes was in alignment with the transcriptome data. The indigenous calves showing lesser virus load, elicited early neutralizing antibodies and IFN-γ immune responses. This study revealed that induction of potent innate antiviral response and cell mediated immunity in indigenous cattle, especially Malnad Gidda, significantly restricted FMDV replication during acute infection. These data highlighting the molecular processes associated with host-pathogen interactions, could aid in the conception of novel strategies to prevent and control FMDV infection in cattle.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Antiviral Agents/metabolism , Cattle , Cattle Diseases/genetics , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Immunity, Cellular , Immunity, Innate/genetics , Viral Load
19.
Viruses ; 13(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34696469

ABSTRACT

Foot and mouth disease virus (FMDV), whose transmission occurs through mucosal surfaces, can also be transmitted through aerosols, direct contact, and pollutants. Therefore, mucosal immunity can efficiently inhibit viral colonization. Since vaccine material delivery into immune sites is important for efficient oral mucosal vaccination, the M cell-targeting approach is important for effective vaccination given M cells are vital for luminal antigen influx into the mucosal lymph tissues. In this study, we coupled M cell-targeting ligand Co1 to multi-epitope TB1 of FMDV to obtain TB1-Co1 in order to improve delivery efficiency of the multi-epitope protein antigen TB1. Lactococcus lactis (L. lactis) was engineered to express heterologous antigens for applications as vaccine vehicles with the ability to elicit mucosal as well as systemic immune responses. We successfully constructed L. lactis (recombinant) with the ability to express multi-epitope antigen proteins (TB1 and TB1-Co1) of the FMDV serotype A (named L. lactis-TB1 and L. lactis-TB1-Co1). Then, we investigated the immunogenic potential of the constructed recombinant L. lactis in mice and guinea pigs. Orally administered L. lactis-TB1 as well as L. lactis-TB1-Co1 in mice effectively induced mucosal secretory IgA (SIgA) and IgG secretion, development of a strong cell-mediated immune reactions, substantial T lymphocyte proliferation in the spleen, and upregulated IL-2, IFN-γ, IL-10, and IL-5 levels. Orally administered ligand-conjugated TB1 promoted specific IgG as well as SIgA responses in systemic and mucosal surfaces, respectively, when compared to orally administered TB1 alone. Then, guinea pigs were orally vaccinated with L. lactis-TB1-Co1 plus adjuvant CpG-ODN at three different doses, L. lactis-TB1-Co1, and PBS. Animals that had been immunized with L. lactis-TB1-Co1 plus adjuvant CpG-ODN and L. lactis-TB1-Co1 developed elevated antigen-specific serum IgG, IgA, neutralizing antibody, and mucosal SIgA levels, when compared to control groups. Particularly, in mice, L. lactis-TB1-Co1 exhibited excellent immune effects than L. lactis-TB1. Therefore, L. lactis-TB1-Co1 can induce elevations in mucosal as well as systemic immune reactions, and to a certain extent, provide protection against FMDV. In conclusion, M cell-targeting approaches can be employed in the development of effective oral mucosa vaccines for FMDV.


Subject(s)
Epitopes/immunology , Foot-and-Mouth Disease Virus/metabolism , Foot-and-Mouth Disease/immunology , Lactococcus lactis/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Antibody Formation , Disease Models, Animal , Female , Foot-and-Mouth Disease Virus/genetics , Guinea Pigs , Immunity, Mucosal/immunology , Immunization , Immunoglobulin A, Secretory , Lactococcus lactis/genetics , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Recombinant Proteins , Vaccination , Viral Vaccines/immunology
20.
Virus Res ; 306: 198597, 2021 12.
Article in English | MEDLINE | ID: mdl-34648884

ABSTRACT

Foot-and-mouth disease virus (FMDV) is an important pathogen that harms cloven-hoofed animals and has caused serious losses to livestock production since its discovery. Furthermore, inhibitor of DNA binding (ID) proteins have been thoroughly studied in tumorigenesis, differentiation and metastasis, but its role in viral infection is rarely known. In this study, three gene knockout cell lines ID1 KO, ID3 KO, ID1/3 KO were obtained based on BHK-21 cells. We found that ID1 and ID3 genes single or double knockout promote the replication of FMDV. Moreover, compared with negative control cells during virus infection, there were 551 up-regulated genes and 1222 down-regulated genes in the ID1 KO cell line; 916 up-regulated genes and 1845 down-regulated genes in the ID3 KO cell line; 810 up-regulated genes and 1566 down-regulated genes in ID1/3 KO cell line. Further genes expression patterns verification results also showed a good correlation between the data of RT-qRCR and RNA-seq. These findings provide a basis for studying the relevant mechanisms between host genes and ID genes during FMDV infection.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cell Differentiation , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Neoplasm Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL