Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.610
Filter
1.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602359

ABSTRACT

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Subject(s)
Fishes , Formaldehyde , Limit of Detection , Trityl Compounds , Formaldehyde/analysis , Formaldehyde/chemistry , Animals , Trityl Compounds/chemistry , Trityl Compounds/analysis , Gases/chemistry , Gases/analysis , Seafood/analysis , Food Contamination/analysis , Solutions , Food Analysis/methods , Food Analysis/instrumentation , Spectrometry, Fluorescence/methods
2.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678702

ABSTRACT

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Subject(s)
Air Pollution, Indoor , Formaldehyde , Inhalation Exposure , Formaldehyde/analysis , Formaldehyde/toxicity , Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Risk Assessment , Humans
4.
Environ Sci Technol ; 58(18): 7916-7923, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683040

ABSTRACT

In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 µg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.


Subject(s)
COVID-19 , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Particulate Matter/analysis , Ozone/analysis , Formaldehyde/analysis , SARS-CoV-2 , Disinfection , Air Pollutants/analysis , Ultraviolet Rays , Humans
5.
J Environ Sci (China) ; 142: 142-154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527880

ABSTRACT

Formaldehyde (HCHO) is considered one of the most abundant gas-phase carbonyl compounds in the atmosphere, which can be directly emitted through transportation sources. Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) was used to observe HCHO in the river channel of Wusong Wharf in Shanghai, China for the whole year of 2019. Due to the impact of ship activity, the annual average HCHO level in the channel is about 2.5 times higher than that in the nearby campus environment. To explain the sources of HCHO under different meteorological conditions, the tracer-pair of CO and Ox (NO2+O3) was used on the clustered air masses. The results of the source appointment show that primary, secondary and background account for 24.14% (3.34 ± 1.19 ppbv), 44.78% (6.20 ± 2.04 ppbv) and 31.09% (4.31 ± 2.33 ppbv) of the HCHO in the channel when the air masses were from the mixed direction of the city and channel, respectively. By performing background station subtraction at times of high primary HCHO values and resolving the plume peaks, directly emitted HCHO/NO2 in the channel environment and plume were determined to be mainly distributed between 0.2 and 0.3. General cargo ships with higher sailing speeds or main engine powers tend to have higher HCHO/NO2 levels. With the knowledge of NO2 (or NOx) emission levels from ships, this study may provide data support for the establishment of HCHO emission factors.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Ships , Nitrogen Dioxide/analysis , China , Environmental Monitoring/methods , Formaldehyde/analysis
6.
Bioresour Technol ; 399: 130645, 2024 May.
Article in English | MEDLINE | ID: mdl-38554759

ABSTRACT

Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.


Subject(s)
Acetone , Aldehydes , Amination , Wood/chemistry , Adhesives/analysis , Adhesives/chemistry , Polyamines/analysis , Glyoxal/analysis , Glyoxal/chemistry , Lignin/chemistry , Formaldehyde/analysis , Ethylenediamines
7.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412365

ABSTRACT

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Subject(s)
Air Pollutants , Formaldehyde/adverse effects , Petroleum , Respiratory Hypersensitivity , Air Pollutants/analysis , Vehicle Emissions/analysis , Texas , Natural Gas , Environmental Monitoring , Formaldehyde/analysis
8.
Sci Total Environ ; 919: 170836, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346658

ABSTRACT

Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Hong Kong , Macau , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Photochemical Processes , Environmental Monitoring , Air Pollution/analysis , China , Formaldehyde/analysis , Ozone/analysis
9.
J Natl Cancer Inst ; 116(5): 737-744, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38180898

ABSTRACT

BACKGROUND: Industrial facilities are not located uniformly across communities in the United States, but how the burden of exposure to carcinogenic air emissions may vary across population characteristics is unclear. We evaluated differences in carcinogenic industrial pollution among major sociodemographic groups in the United States and Puerto Rico. METHODS: We evaluated cross-sectional associations of population characteristics including race and ethnicity, educational attainment, and poverty at the census tract level with point-source industrial emissions of 21 known human carcinogens using regulatory data from the US Environmental Protection Agency. Odds ratios and 95% confidence intervals comparing the highest emissions (tertile or quintile) to the referent group (zero emissions [ie, nonexposed]) for all sociodemographic characteristics were estimated using multinomial, population density-adjusted logistic regression models. RESULTS: In 2018, approximately 7.4 million people lived in census tracts with nearly 12 million pounds of carcinogenic air releases. The odds of tracts having the greatest burden of benzene, 1,3-butadiene, ethylene oxide, formaldehyde, trichloroethylene, and nickel emissions compared with nonexposed were 10%-20% higher for African American populations, whereas White populations were up to 18% less likely to live in tracts with the highest emissions. Among Hispanic and Latino populations, odds were 16%-21% higher for benzene, 1,3-butadiene, and ethylene oxide. Populations experiencing poverty or with less than high school education were associated with up to 51% higher burden, irrespective of race and ethnicity. CONCLUSIONS: Carcinogenic industrial emissions disproportionately impact African American and Hispanic and Latino populations and people with limited education or experiencing poverty thus representing a source of pollution that may contribute to observed cancer disparities.


Subject(s)
Air Pollutants , Humans , United States/epidemiology , Air Pollutants/analysis , Air Pollutants/adverse effects , Cross-Sectional Studies , Environmental Exposure/adverse effects , Carcinogens/analysis , Butadienes/analysis , Butadienes/adverse effects , Benzene/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Socioeconomic Factors , Sociodemographic Factors , Formaldehyde/analysis , Formaldehyde/adverse effects , Nickel/analysis , Nickel/adverse effects , Industry/statistics & numerical data , Puerto Rico/epidemiology
10.
Food Chem ; 443: 138520, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290296

ABSTRACT

Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg-1 Lcm-2) in linearity range 0.03-0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde.


Subject(s)
Fruit , Vegetables , Humans , Fruit/chemistry , Reproducibility of Results , Colorimetry/methods , Formaldehyde/analysis
11.
Environ Sci Process Impacts ; 26(2): 436-450, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38258874

ABSTRACT

Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Formaldehyde/analysis , Volatile Organic Compounds/analysis , Monoterpenes
12.
J Air Waste Manag Assoc ; 74(2): 131-144, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059786

ABSTRACT

Indoor air pollution remains a major concern, with formaldehyde (HCHO) a primary contributor due to its long emission period and associated health risks, including skin allergies, coughing, and bronchitis. This study evaluated the adsorption performance and economic efficiency of various adsorbents (biochar, activated carbon, zeolites A, X, and Y) selected for HCHO removal. The impact of thermal treatment on adsorbent regeneration was also assessed. The experimental apparatus featured an adsorption column and HCHO concentration meter with an electrochemical sensor designed for adsorption analysis. Zeolite X exhibited the highest adsorption performance, followed by zeolite A, zeolite Y, activated carbon, and biochar. All adsorbents displayed increased HCHO removal rates with an extended length/diameter (L/D) ratio of the adsorption column. Zeolite A demonstrated the highest economic efficiency, followed by zeolite X, activated carbon, zeolite Y, and biochar. Higher L/D ratios improved economic efficiency and prolonged the replacement cycle (the optimal timing for adsorbent replacement to maintain high adsorption performance). Sensitivity analysis of adsorbent regeneration under varying thermal treatment conditions (150, 120, and 80°C) and durations (60, 45, and 30 min) revealed minimal changes in adsorption efficiency (±3%). The results indicated the potential of adsorbent regeneration under energy-efficient thermal treatment conditions (80°C, 30 min). In conclusion, this study underscores the importance of a comprehensive assessment, considering factors such as adsorption performance, replacement cycle, economic efficiency, and regeneration performance for the selection of optimal adsorbents for HCHO adsorption and removal.Implications: This study underscores the importance of adsorption technology for the removal of formaldehyde and similar volatile organic compounds (VOCs), highlighting the potential of alternative adsorbents, such as environmentally friendly biochar, in addition to traditional strategies, such as activated carbon and zeolites. Our findings demonstrate the feasibility of adsorbent regeneration under energy-efficient thermal treatment conditions. These results hold promise for improving indoor air quality, reducing environmental pollutants, and enhancing responses to air contaminants like fine dust and VOCs.


Subject(s)
Charcoal , Zeolites , Charcoal/chemistry , Zeolites/chemistry , Adsorption , Formaldehyde/analysis
14.
Chemosphere ; 349: 140962, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104739

ABSTRACT

Formaldehyde (HCHO) is a key carcinogen and plays an important role in atmospheric chemistry. Both field measurements and Positive Matrix Factorization (PMF) modeling have been employed to investigate the concentrations and sources of HCHO in the Lewiston-Clarkston (LC) valley of the mountainous northwestern U.S. Different instruments were deployed to measure surface formaldehyde and other related compounds in July of 2016 and 2017. The measurements reveal that the average HCHO concentrations have significantly decreased to 2-5 ppb in the LC valley in comparison to its levels (10-20 ppb) observed in July 2006. This discovery with surface measurements deserves attention given that satellite retrievals showed an increasing long-term trend from 2005 to 2014 in total vertical column density of HCHO in the region, suggesting that satellite instruments may not adequately resolve small valleys in the mountainous region. Our PMF modeling identified four major sources of HCHO in the valley: (1) emissions from a local paper mill, (2) secondary formation and background, (3) biogenic sources, and (4) traffic. This study reveals that the emissions from the paper mill cause high HCHO spikes (6-19 ppb) in the early morning. It is found that biogenic volatile organic compounds (VOCs) in the area are influenced by national forests surrounding the region (e.g., Nez Perce-Clearwater, Umatilla, Wallowa-Whitman, and Idaho Panhandle National Forests). The results provide useful information for developing strategies to control HCHO levels and have implications for future HCHO studies in atmospheric chemistry, which affects secondary aerosols and ozone formation.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Formaldehyde/analysis , Ozone/analysis , Environment , Northwestern United States , Volatile Organic Compounds/analysis , Environmental Monitoring/methods
15.
Lancet Planet Health ; 7(11): e900-e911, 2023 11.
Article in English | MEDLINE | ID: mdl-37940210

ABSTRACT

BACKGROUND: High-level exposure to indoor air pollutants (IAPs) and their corresponding adverse health effects have become a public concern in China in the past 10 years. However, neither national nor provincial level burden of disease attributable to multiple IAPs has been reported for China. This is the first study to estimate and rank the annual burden of disease and the financial costs attributable to targeted residential IAPs at the national and provincial level in China from 2000 to 2017. METHODS: We first did a systematic review and meta-analysis of 117 articles from 37 231 articles identified in major databases, and obtained exposure-response relationships for the candidate IAPs. The exposure levels to these IAPs were then collected by another systematic review of 1864 articles selected from 52 351 articles. After the systematic review, ten IAPs with significant and robust exposure-response relationships and sufficient exposure data were finally targeted: PM2·5, nitrogen dioxide, sulphur dioxide, ozone, carbon monoxide, radon, formaldehyde, benzene, toluene, and p-dichlorobenzene. The annual exposure levels in residences were then evaluated in all 31 provinces in mainland China continuously from 2000 to 2017, using the spatiotemporal Gaussian process regression model to analyse indoor originating IAPs, and the infiltration factor method to analyse outdoor originating IAPs. The disability-adjusted life-years (DALYs) attributable to the targeted IAPs were estimated at both national and provincial levels in China, using the population attributable fraction method. Financial costs were estimated by an adapted human capital approach. FINDINGS: From 2000 to 2017, annual DALYs attributable to the ten IAPs in mainland China decreased from 4620 (95% CI 4070-5040) to 3700 (3210-4090) per 100 000. Nevertheless, in 2017, IAPs still ranked third among all risk factors, and their DALYs and financial costs accounted for 14·1% (95% CI 12·3-15·6) of total DALYs and 3·45% (3·01-3·82) of the gross domestic product. Specifically, the rank of ten targeted IAPs in order of their contribution to DALYs in 2017 was PM2·5, carbon monoxide, radon, benzene, nitrogen dioxide, ozone, sulphur dioxide, formaldehyde, toluene, and p-dichlorobenzene. The DALYs attributable to IAPs were 9·50% higher than those attributable to outdoor air pollution in 2017. For the leading IAP, PM2·5, the DALYs attributable to indoor origins are 18·3% higher than those of outdoor origins. INTERPRETATION: DALYs attributed to IAPs in China have decreased by 20·0% over the past two decades. Even so, they are still much higher than those in the USA and European countries. This study can provide a basis for determining which IAPs to target in various indoor air quality standards and for estimating the health and economic benefits of various indoor air quality control approaches, which will help to reduce the adverse health effects of IAPs in China. FUNDING: The National Key Research and Development Program of China and the National Natural Science Foundation of China.


Subject(s)
Air Pollutants , Ozone , Radon , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Carbon Monoxide/analysis , Sulfur Dioxide/analysis , Benzene/adverse effects , Benzene/analysis , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Formaldehyde/analysis , Cost of Illness , Particulate Matter/analysis , Radon/analysis , Ozone/analysis , Toluene/analysis
16.
BMC Public Health ; 23(1): 2136, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907892

ABSTRACT

OBJECTIVE: To explore comprehensive interventions to reduce occupational hazards among medical staff in the pathology department of five primary hospitals. METHODS: The indoor air quality in the pathology department of five primary hospitals and the health status of staff were investigated and analyzed. Formaldehyde and benzene concentrations in the technical and diagnostic rooms of the pathology departments were analyzed before and after comprehensive interventions. The Environmental Protection Agency risk assessment paradigm was used to assess the health risks from occupational exposure to benzene and formaldehyde. Consequently, considering the local environment, targeted comprehensive intervention measures were developed, including optimizing management, raising awareness, updating equipment, and replacing reagents. RESULTS: Eye discomfort was higher among technicians in the pathology department than among clinical medical staff (P < 0.05). Before comprehensive interventions, formaldehyde concentrations were higher in the technical room than in the diagnostic room at the five primary hospitals (P < 0.05). However, compared to before interventions, formaldehyde and benzene concentrations in both rooms were significantly lower after comprehensive interventions. Furthermore, although medium risks of occupational exposure to benzene and formaldehyde remained in both rooms before and after comprehensive interventions, the risk values before interventions were higher than after comprehensive interventions. The staff of the technical rooms showed higher risk values that those of the diagnostic rooms before and after comprehensive interventions. Similarly, although hazard quotient (HQ) values for occupational exposure to benzene and formaldehyde were < 1 in both the technical and diagnostic rooms before and after comprehensive interventions, with lower noncarcinogenic risks, the values were higher before than after comprehensive interventions. Moreover, staff in the technical room had higher HQ values before and after comprehensive interventions than those in the diagnostic room. The use of environmentally friendly reagents for the preparation of frozen sections was effective. CONCLUSION: Comprehensive interventions significantly reduced occupational hazards among staff at the pathology department of five primary hospitals, which is of great practical significance to protect the health of staff.


Subject(s)
Air Pollution, Indoor , Occupational Exposure , Humans , Benzene , Environmental Monitoring , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Formaldehyde/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Hospitals
17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(11): 1748-1751, 2023 Nov 06.
Article in Chinese | MEDLINE | ID: mdl-38008558

ABSTRACT

Formaldehyde, as an important pollutant in indoor air, has always been of great concern. In the newly issued "Standards for indoor air quality (GB/T 18883-2022)", the standard limit of formaldehyde has been restricted to 0.08 mg/m3. In order to better promote the implementation and application of this new standard, this study reviewed and interpreted the relevant technical content for determining the standard limit, including the indoor concentration and human exposure levels of formaldehyde, the health effects of formaldehyde, and the derivation of safety reference values. It also proposed prospect for the future development and revision of quality standards for formaldehyde in indoor air.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Pollutants , Humans , Air Pollutants/analysis , Formaldehyde/analysis , China
18.
Environ Sci Technol ; 57(43): 16489-16499, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37844299

ABSTRACT

We analyzed two data sets of atmospheric formaldehyde (FA) at an urban site in the Shanghai megacity during the summer of 2017 and the winter of 2017/18, with the primary objective of determining the emission ratio of formaldehyde versus carbon monoxide (CO). Through the photochemical age method and the minimum R squared (MRS) method, we derived the summer urban formaldehyde release ratios of 3.37 ppbv (ppmv of CO)-1 and 4.04 ppbv (ppmv of CO)-1, respectively. The error of both estimations is within ±20%, indicating the consistency of the results. We recognized the hourly minimum emission ratios determined from the MRS method to be indicative of actual formaldehyde emission ratios. Similarly, the emission ratio in winter is determined to be 2.10 ppbv (ppmv of CO)-1 utilizing the MRS method. The findings provide significant insights into the potential impact of motor vehicle exhaust on formaldehyde emissions in urban areas. This work demonstrates that the formaldehyde emission ratio determined by the MRS method can be used to represent the emissions of the freshest air mass. Formaldehyde photolysis contributed an average of 9% to the free radical primary reaction rate (P(ROx)) as a single chemical species during the daytime in summer, which was lower than the 11% recorded in winter. Formaldehyde emission reduction positively impacts local ozone production, so models describing ozone formation in Shanghai during summer need to reflect these emissions accurately. Evidence of the crucial catalytic role of formaldehyde in particulate matter formation has been confirmed by recent research. A potentially effective way to decrease the incidence of haze days in autumn and winter in the future is therefore to focus on reducing formaldehyde emissions.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , Environmental Monitoring/methods , China , Vehicle Emissions/analysis , Formaldehyde/analysis , Ozone/analysis
19.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827760

ABSTRACT

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Subject(s)
Air Pollutants , Neoplasms , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Ozone/analysis , Toluene/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis , China
20.
Anal Methods ; 15(38): 5095-5101, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37750010

ABSTRACT

Formaldehyde is a harmful substance that can cause sick building syndrome and other diseases, such as contact allergy, asthma, leukemia, cancer, and brain/neuron disorders. Formaldehyde is a ubiquitous chemical owing to its use in many common products, including as a preservative in household and personal care products. To prevent overexposure to formaldehyde, a simple method for determining and controlling the formaldehyde content in commercial products is required. In this study, 3-aminoquinoline (3-AQ) was used to derivatize formaldehyde under mild conditions (2 min at 30 °C) without the use of catalysts or activators. The derivatized sample solutions were separated using narrow-bore liquid chromatography with an ultraviolet (UV) detector in a run time of only 5 min. All sample extraction and derivatization protocols were performed on the microliter scale to reduce the use of organic solvents. The linear range for the determination was 5-1000 µg mL-1, with a detection limit of approximately 1 µg mL-1 (2 ng per 2 µL injection). The proposed microscale method was successfully applied to the analysis of formaldehyde in commercial household products.


Subject(s)
Formaldehyde , Household Products , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Solvents/chemistry , Household Products/analysis , Formaldehyde/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...