Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Neuroscience ; 138(4): 1083-8, 2006.
Article in English | MEDLINE | ID: mdl-16426765

ABSTRACT

Long-term potentiation is a form of neural functional plasticity which has been related with memory formation and recovery of function after brain injury. Previous studies have shown that a transient early-long-term potentiation can be prolonged by direct stimulation of distinct brain areas, or behavioral stimuli with a high motivational content. The basolateral amygdala and other subcortical structures, like the medial septum and the locus coeruleus, are involved in mediating the reinforcing effect. We have previously shown that the lesion of the fimbria-fornix--the main entrance of subcortical afferents to the hippocampus--abolishes the reinforcing basolateral amygdala-effects on long-term potentiation in the dentate gyrus in vivo. It remains to be investigated, however, if such subcortical afferents may also be important for behavioral reinforcement of long-term potentiation. Young-adult (8 weeks) Sprague-Dawley male rats were fimbria-fornix-transected under anesthesia, and electrodes were implanted at the dentate gyrus and the perforant path. One week after surgery the freely moving animals were studied. Fimbria-fornix-lesion reduced the ability of the animals to develop long-term potentiation when a short pulse duration was used for tetanization (0.1 ms per half-wave of a biphasic stimulus), whereas increasing the pulse duration to 0.2 ms per half-wave during tetanization resulted in a transient early-long-term potentiation lasting about 4 h in the lesioned animals, comparable to that obtained in non-lesioned or sham-operated control rats. In water-deprived (24 h) control animals, i.e. in non-lesioned and sham-operated rats, early-long-term potentiation could be behaviorally reinforced by drinking 15 min after tetanization. However, in fimbria-fornix-lesioned animals long-term potentiation-reinforcement by drinking was not detected. This result indicates that the effect of behavioral-motivational stimuli to reinforce long-term potentiation is mediated by subcortical, heterosynaptic afferents.


Subject(s)
Afferent Pathways/injuries , Behavior, Animal/physiology , Dentate Gyrus/physiology , Long-Term Potentiation/physiology , Reinforcement, Psychology , Afferent Pathways/surgery , Amygdala/physiology , Animals , Denervation , Drinking/physiology , Electric Stimulation , Electrodes, Implanted , Fornix, Brain/injuries , Fornix, Brain/surgery , Male , Movement/physiology , Perforant Pathway/physiology , Rats , Rats, Sprague-Dawley , Reward , Water Deprivation/physiology
2.
Rev Neurol ; 29(8): 704-8, 1999.
Article in Spanish | MEDLINE | ID: mdl-10560104

ABSTRACT

INTRODUCTION: Lesion of the fimbria-fornix causes dysfunction of learning processes and has been used in animal models for the study of Alzheimer's disease. MATERIAL AND METHODS: With the objective of comparing the efficacy of two methods of producing a lesion of the fimbria-fornix, 40 young male Sprague-Dawley rats were distributed in four experimental groups: control (6), falsely lesioned (8), lesion due to aspiration (12) and lesion due to transection (14). RESULTS: The results showed that whilst with both techniques, in rats, serious cognitive defects were produced, as expressed by the high latencies of escape and small number of crossings of Morris's aquatic labyrinth, the aspiration lesion led to greater mortality than the transection lesion did. Similarly, the aspiration technique in rats induced hyperactivity, aggressiveness and tigmotaxia, while in the rats with lesions due to transection tigmotaxia ceased after their first attempts and hyperactivity on the second day of training. CONCLUSION: These results would suggest that a bilateral lesion due to transection of the fimbria-fornix is an effective alternative to an aspiration lesion to interrupt this pathway.


Subject(s)
Fornix, Brain/pathology , Fornix, Brain/surgery , Alzheimer Disease , Animals , Biopsy, Needle/methods , Cognition Disorders/diagnosis , Disease Models, Animal , Learning/physiology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL