Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000247

ABSTRACT

Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.


Subject(s)
Fos-Related Antigen-2 , Humans , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Animals , Respiratory Tract Diseases/metabolism , Respiratory Tract Diseases/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/metabolism , Asthma/pathology
2.
J Physiol Pharmacol ; 75(3)2024 Jun.
Article in English | MEDLINE | ID: mdl-39042389

ABSTRACT

Disorders of glucose and lipid metabolism are important causes of type 2 diabetes mellitus (T2DM). Defining the molecular mechanisms of metabolic disorders and exploring drug targets are key to the treatment of T2DM. The study discovered the effects of catalpol on insulin resistance (IR) and lipid metabolism disorder (LMD) in type 2 diabetes mellitus (T2DM). A T2DM mouse model was established by a high-fat diet and a single intraperitoneal injection of streptozotocin. and injected with catalpol at 10 mg/kg for 12 weeks, and the lentiviral vector of miR-101-3p or Fos-related antigen 2 (FOSL2) expression was interfered with intravenously mouse insulin resistance (IR) and lipid metabolism disorder (LMD)-related indices were then measured. Pancreatic histopathology was observed by hematoxylin and eosin (HE) staining and TUNEL staining. The miR-101-3p and FOSL2 were detected by RT-qPCR or Western blot. In results: catalpol improved IR and LMD (both P<0.05) in diabetic mice, and alleviated the histopathological changes in the pancreas. miR-101-3p was upregulated (P<0.05), and FOSL2 was downregulated (P<0.05) in T2DM mice, while catalpol rescued their expression pattern (both P<0.05). The miR-101-3p targeted FOSL2. Down-regulating miR-101-3p or up-regulating FOSL2 improved IR and LMD (all P<0.05) in diabetic mice, and alleviated pancreatic histopathological changes. Overexpressing miR-101-3p or suppressing FOSL2 weakened the ameliorative effects of catalpol in T2DM mice (all P<0.05). We conclude that catalpol improves IR and LMD in diabetic mice by inhibiting miR-101-3p to up-regulate FOSL2.


Subject(s)
Diabetes Mellitus, Experimental , Fos-Related Antigen-2 , Insulin Resistance , Iridoid Glucosides , Lipid Metabolism , MicroRNAs , Up-Regulation , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Male , Mice , Up-Regulation/drug effects , Lipid Metabolism/drug effects , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Streptozocin
3.
Tissue Cell ; 88: 102407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776730

ABSTRACT

Pulmonary fibrosis is a chronic and progressive lung disorder. The pro-fibrosis factors induced by M2 macrophage phenotype promote the differentiation of fibroblasts into myofibroblasts, which is essential for pulmonary fibrosis. We aimed to explore the role and mechanism of BTB domain and CNC homology 1 (BACH1) in pulmonary fibrosis. BACH1 was knocked down in THP-1 polarized M2 macrophages with or without FOS-like antigen 2 (FOSL2) overexpression, the expression of M2 macrophage markers was detected. Cell viability, migration, invasion and extracellular matrix (ECM) accumulation were estimated by CCK-8, wound healing, transwell, western bot and immunofluorescence staining. Luciferase reporter and chromatin immunoprecipitation assays were used to verify the binding of BACH1 to FOSL2 promotor region. In vivo, a bleomycin (BLM)-induced pulmonary fibrosis mice model was established to evaluate the effect of BACH1 silencing on the histopathological changes, M2 macrophage phenotype and extracellular matrix (ECM) deposition. Expression of proteins was assessed with western blot. Results indicated that BACH1 expression was upregulated in M2 macrophages polarized from THP-1 cells. BACH1 deficiency inhibited the polarization of THP-1 to the M2 macrophage phenotype to promote the transformation of lung fibroblasts into myofibroblasts. Additionally, BACH1 could transcriptionally activate FOSL2 expression in THP-1-derived macrophages to upregulate TGFß/SMAD signaling in HFL-1 cells. The animal experiments indicated that BACH1 knockdown alleviated BLM-induced pulmonary fibrosis, M2 macrophage polarization and inactivated FOSL2/TGFß/SMAD signaling in mice lung tissues. Together, this finding suggests BACH1/FOSL2 may be useful therapeutic targets for the treatment of pulmonary fibrosis.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Fos-Related Antigen-2 , Lung , Macrophages , Myofibroblasts , Signal Transduction , Smad Proteins , Transforming Growth Factor beta , Up-Regulation , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Animals , Humans , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Lung/pathology , Lung/metabolism , Smad Proteins/metabolism , Mice , Macrophages/metabolism , Macrophages/pathology , Transforming Growth Factor beta/metabolism , Phenotype , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Bleomycin , Cell Differentiation , Mice, Inbred C57BL , THP-1 Cells
4.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657045

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Subject(s)
Carcinoma, Hepatocellular , Fos-Related Antigen-2 , Liver Neoplasms , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-jun , Proto-Oncogene Proteins c-myc , Transcription Factor AP-1 , Animals , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Hepatocytes/metabolism , Protein Multimerization , Gene Expression Regulation, Neoplastic , Mice, Transgenic
5.
Cell Death Differ ; 31(2): 136-149, 2024 02.
Article in English | MEDLINE | ID: mdl-38104183

ABSTRACT

Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.


Subject(s)
Neoplasms , Transcription Factor AP-1 , Humans , Cell Transformation, Neoplastic/genetics , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Regulation , Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/metabolism , Tumor Microenvironment
6.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923140

ABSTRACT

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Subject(s)
Fos-Related Antigen-2 , GATA Transcription Factors , Glutaredoxins , Homeostasis , Iron-Sulfur Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Humans , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Oxidoreductases/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
7.
Eur J Neurosci ; 58(10): 4107-4122, 2023 11.
Article in English | MEDLINE | ID: mdl-37846812

ABSTRACT

Activation and polarization of microglia play decisive roles in the progression of intracerebral haemorrhage (ICH), and lactate exposure correlates with microglia polarization. This study explores molecules influencing lactate production and microglia phenotype alteration following ICH. A murine model of ICH was induced by intracerebral injection of collagenase. The mice experienced autonomous neurological function recovery, haematoma resolution and rapid lactate production, along with a gradual increase in angiogenesis activity, neuronal recovery and an M1-to-M2 phenotype change of microglia. Galloflavin, a lactate dehydrogenase antagonist, suppressed this phenotype change and the functional recovery in mice. FOS like 2 (FOSL2) was significantly upregulated in the brain tissues from day 7 post-ICH. Overexpression of FOSL2 induced an M1-to-M2 phenotype shift in microglia and accelerated lactate production in vivo and in haemoglobin-treated microglia in vitro. Long non-coding RNA MIR17HG impeded FOSL2-mediated transcription activation of hypermethylated in cancer 1 (HIC1). MIR17HG overexpression induced pro-inflammatory activation of microglia in mice, which was blocked by further HIC1 overexpression. Overall, this study demonstrates that MIR17HG maintains a pro-inflammatory phenotype of microglia during ICH progression by negating FOSL2-mediated transcription activation of HIC1. Specific inhibition of MIR17HG or upregulation of FOSL2 or HIC1 may favour inflammation inhibition and haematoma resolution in ICH.


Subject(s)
Cerebral Hemorrhage , Fos-Related Antigen-2 , Kruppel-Like Transcription Factors , Microglia , RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Microglia/metabolism , Cerebral Hemorrhage/metabolism , Lactic Acid/biosynthesis , Transcriptional Activation , Hematoma , Male , Mice, Inbred C57BL , Cells, Cultured
8.
Br J Cancer ; 129(3): 426-443, 2023 08.
Article in English | MEDLINE | ID: mdl-37380804

ABSTRACT

BACKGROUND: The epigenetic mechanisms involved in the progression of pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. This study aimed to identify key transcription factors (TFs) through multiomics sequencing to investigate the molecular mechanisms of TFs that play critical roles in PDAC. METHODS: To characterise the epigenetic landscape of genetically engineered mouse models (GEMMs) of PDAC with or without KRAS and/or TP53 mutations, we employed ATAC-seq, H3K27ac ChIP-seq, and RNA-seq. The effect of Fos-like antigen 2 (FOSL2) on survival was assessed using the Kaplan-Meier method and multivariate Cox regression analysis for PDAC patients. To study the potential targets of FOSL2, we performed Cleavage Under Targets and Tagmentation (CUT&Tag). To explore the functions and underlying mechanisms of FOSL2 in PDAC progression, we employed several assays, including CCK8, transwell migration and invasion, RT-qPCR, Western blotting analysis, IHC, ChIP-qPCR, dual-luciferase reporter, and xenograft models. RESULTS: Our findings indicated that epigenetic changes played a role in immunosuppressed signalling during PDAC progression. Moreover, we identified FOSL2 as a critical regulator that was up-regulated in PDAC and associated with poor prognosis in patients. FOSL2 promoted cell proliferation, migration, and invasion. Importantly, our research revealed that FOSL2 acted as a downstream target of the KRAS/MAPK pathway and recruited regulatory T (Treg) cells by transcriptionally activating C-C motif chemokine ligand 28 (CCL28). This discovery highlighted the role of an immunosuppressed regulatory axis involving KRAS/MAPK-FOSL2-CCL28-Treg cells in the development of PDAC. CONCLUSION: Our study uncovered that KRAS-driven FOSL2 promoted PDAC progression by transcriptionally activating CCL28, revealing an immunosuppressive role for FOSL2 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Up-Regulation , Chromatin , Ligands , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Chemokines, CC/metabolism , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Pancreatic Neoplasms
9.
Cancer Biol Ther ; 24(1): 2223377, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37370246

ABSTRACT

Cisplatin resistance is a major therapeutic challenge in non-small cell lung cancer (NSCLC). Herein, the regulatory role of long non-coding RNA (lncRNA) ITGB2-AS1 in regulating NSCLC cisplatin resistance was investigated. NSCLC cisplatin resistance cells were constructed using A549 and H1975 cells. Cell viability and proliferation were detected by MTT assay and colony formation assay, respectively. Cell apoptosis and cell cycle were examined by flow cytometry. GSH, MDA, ROS, and Fe2+ levels were measured by the corresponding kits. The expressions of ferroptosis-negative regulation genes (GPX4 and SLC7A11) were determined by qRT-PCR and western blot. Molecular interactions were analyzed by RNA pull-down, RIP, ChIP, and dual-luciferase reporter assays. The effects of ITGB2-AS1 silencing on NSCLC cisplatin resistance in vivo were elevated by the tumor xenograft experiment. ITGB2-AS1 expression was increased in NSCLC patients and cisplatin-resistant NSCLC cells, which was positively correlated with ferroptosis-negative regulation genes. ITGB2-AS1 knockdown suppressed resistant cell proliferation and promoted cell apoptosis and ferroptosis. ITGB2-AS1 increased NAMPT expression by binding to FOSL2, thereby repressing p53 expression. The ITGB2-AS1 knockdown also inhibited NSCLC cisplatin resistance in vivo. ITGB2-AS1 promoted NSCLC cisplatin resistance by inhibiting p53-mediated ferroptosis via activating the FOSL2/NAMPT axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ferroptosis/genetics , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/genetics
10.
Clin Epigenetics ; 15(1): 86, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179374

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder characterized by chronic low-grade inflammation. Previous studies have demonstrated that the gut microbiome can affect the host tissue cells' mRNA N6-methyladenosine (m6A) modifications. This study aimed to understand the role of intestinal flora in ovarian cells inflammation by regulating mRNA m6A modification particularly the inflammatory state in PCOS. The gut microbiome composition of PCOS and Control groups was analyzed by 16S rRNA sequencing, and the short chain fatty acids were detected in patients' serum by mass spectrometry methods. The level of butyric acid was found to be decreased in the serum of the obese PCOS group (FAT) compared to other groups, and this was correlated with increased Streptococcaceae and decreased Rikenellaceae based on the Spearman's rank test. Additionally, we identified FOSL2 as a potential METTL3 target using RNA-seq and MeRIP-seq methodologies. Cellular experiments demonstrated that the addition of butyric acid led to a decrease in FOSL2 m6A methylation levels and mRNA expression by suppressing the expression of METTL3, an m6A methyltransferase. Additionally, NLRP3 protein expression and the expression of inflammatory cytokines (IL-6 and TNF-α) were downregulated in KGN cells. Butyric acid supplementation in obese PCOS mice improved ovarian function and decreased the expression of local inflammatory factors in the ovary. Taken together, the correlation between the gut microbiome and PCOS may unveil crucial mechanisms for the role of specific gut microbiota in the pathogenesis of PCOS. Furthermore, butyric acid may present new prospects for future PCOS treatments.


Subject(s)
Polycystic Ovary Syndrome , Humans , Mice , Animals , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Butyric Acid/metabolism , RNA, Ribosomal, 16S/metabolism , DNA Methylation , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Fatty Acids, Volatile/metabolism , Granulosa Cells , RNA, Messenger/genetics , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism
11.
Cancer Lett ; 562: 216145, 2023 05 28.
Article in English | MEDLINE | ID: mdl-36997107

ABSTRACT

The outcome of neoadjuvant chemoradiotherapy (nCRT) remains highly unpredictable for individuals with locally advanced rectal cancer (LARC). We set out to characterize effective biomarkers that promote a pathological complete response (pCR). We quantified the abundances of 6483 high-confidence proteins in pre-nCRT biopsies of 58 LARC patients from two hospitals with pressure cycling technology (PCT)-assisted pulse data-independent acquisition (PulseDIA) mass spectrometry. Compared with non-pCR patients, pCR patients achieved long-term disease-free survival (DFS) and had higher tumor immune infiltration, especially CD8+ T cell infiltration, before nCRT. FOSL2 was selected as the candidate biomarker for predicting pCR and was found to be significantly upregulated in pCR patients, which was verified in another 54 pre-nCRT biopsies of LARC patients by immunohistochemistry. FOSL2 expression was able to predict pCR by multiple reaction monitoring (MRM) with high efficiency (Area under curve (AUC) = 0.939, specificity = 1.000, sensitivity = 0.850), and high FOSL2 expression was associated with long-term DFS (p = 0.044). When treated with simulated nCRT, FOSL2 sufficiency resulted in more significant inhibition of cell proliferation, and more significant promotion of cell cycle arrest and cell apoptosis. Moreover, CXCL10 secretion with abnormal cytosolic dsDNA accumulation was found in FOSL2-wildtype (FOSL2-WT) tumor cells over nCRT, which might elevate CD8+ T-cell infiltration and CD8+ T-cell-mediated cytotoxicity to promote nCRT-induced antitumor immunity. Our study revealed proteomic profiles in LARC patients before nCRT and highlighted immune activation in the tumors of patients who achieved pCR. We identified FOSL2 as a promising biomarker to predict pCR and promote long-term DFS by contributing to CD8+ T-cell infiltration.


Subject(s)
Fos-Related Antigen-2 , Rectal Neoplasms , Humans , Chemoradiotherapy/methods , Disease-Free Survival , Fos-Related Antigen-2/metabolism , Neoadjuvant Therapy/methods , Proteomics , Rectal Neoplasms/genetics , Rectal Neoplasms/therapy , Treatment Outcome
13.
Eur J Haematol ; 109(6): 680-685, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36018564

ABSTRACT

INTRODUCTION: Dysregulation of microRNAs (miRNAs) has been associated with the pathophysiology of myelodysplastic syndrome (MDS). Trisomy 8 is the most frequent chromosomal abnormalities in Korean patients with MDS. We investigated the dysregulation of miR-597-5p, located on chromosome 8, which is reported to induce cell death in numerous cancers. MATERIALS AND METHODS: We compared the expression profiles of miR-597-5p among 65 MDS patients and 11 controls, and analyzed the in vitro effects of miR-597 on leukemic cells using an acute myeloid leukemia cell line transfected with miR-597. RESULTS: We found that miR-597-5p levels were upregulated 4.05-fold in MDS patients compared to those in controls. In vitro study results demonstrated that transfection with a miR-597 mimic induced apoptosis through downregulation of FOS like 2 (FOSL2). CONCLUSION: These findings suggest that upregulation of miR-597 induces apoptosis and that miR-597 has a possible role in the pathophysiology of MDS.


Subject(s)
Fos-Related Antigen-2 , Leukemia, Myeloid, Acute , MicroRNAs , Myelodysplastic Syndromes , Humans , Apoptosis , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Transcription Factors/genetics , Up-Regulation
14.
Front Immunol ; 13: 909270, 2022.
Article in English | MEDLINE | ID: mdl-35812461

ABSTRACT

Natural killer (NK) cells play an important role in recognizing and killing pathogen-infected or malignant cells. Changes in their numbers or activation can contribute to several diseases and pathologies including systemic sclerosis (SSc), an autoimmune disease characterized by inflammation and tissue remodeling. In these patients, increased expression of the AP-1 transcription factor, Fra-2 was reported. In mice ectopic overexpression of Fra-2 (TG) leads to SSc with strong pulmonary fibrosis, pulmonary hypertension, and inflammation. Analysis of the underlying immune cell profile in the lungs of young TG mice, which do not yet show any signs of lung disease, revealed increased numbers of eosinophils and T cells but strongly reduced NK numbers. Therefore, we aimed to identify the cause of the absence of NK cells in the lungs of these mice and to determine the potential role of Fra-2 in NK development. Examination of inflammatory cell distribution in TG mice revealed similar NK deficiencies in the spleen, blood, and bone marrow. Deeper analysis of the WT and TG bone marrow revealed a potential NK cell developmental defect beginning at the preNKP stage. To determine whether this defect was cell-intrinsic or extrinsic, mixed bone marrow chimera and in vitro differentiation experiments were performed. Both experiments showed that the defect caused by Fra-2 was primarily cell-intrinsic and minimally dependent on the environment. Closer examination of surface markers and transcription factors required for NK development, revealed the expected receptor distribution but changes in transcription factor expression. We found a significant reduction in Nfil3, which is essential for the transition of common lymphoid cells to NK committed precursor cells and an AP-1 binding site in the promotor of this gene. In Summary, our data demonstrates that regulation of Fra-2 is essential for NK development and maturation, and suggests that the early NK dysfunction plays an important role in the pathogenesis of systemic sclerosis.


Subject(s)
Scleroderma, Systemic , Transcription Factor AP-1 , Animals , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Inflammation/metabolism , Killer Cells, Natural , Mice , Scleroderma, Systemic/pathology , Transcription Factor AP-1/metabolism
15.
Inflamm Res ; 71(7-8): 873-885, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670841

ABSTRACT

BACKGROUND: Fos-related antigen-2 (Fra-2) is a transcription factor belonging to the activator protein 1 (AP-1) family, which is associated with many chronic airway diseases such as asthma. Alternatively activated (M2) macrophages are associated with Fra2 in airway diseases such as pulmonary fibrosis. However, there is no specific study that explores the relationship between M2 macrophages and Fra2 in asthma. OBJECTIVE: We hypothesized that a potential mechanism of allergic asthma could be that Fra2 is highly expressed in M2 macrophages through JAK3-STAT5 and facilitates the production of downstream T-helper 2 (Th2) cytokines, thus promoting the pathogenesis of asthma. METHODS: Peripheral venous blood and airway tissue samples of patients with asthma and controls were obtained. Moreover, a C57BL/6 mouse model of asthma was established. Fra2 expression was detected using immunohistochemistry and immunofluorescence. Macrophages were obtained by flow sorting, and expression of the JAK3-STAT5-Fra2 signaling pathway was determined using PCR and western blotting. Enzyme-linked immunosorbent assay was used to determine M2 macrophage-associated Th2-type cytokine levels. RESULTS: Fra2 was highly expressed in patients with asthma and asthmatic mice. The JAK3-STAT5 was a signal pathway related to the high expression of Fra2 in M2 macrophages. Moreover, we found that Fra2 could affect the production of Th2 cytokines downstream of M2 macrophages, including interleukin 4 (IL-4) and IL-13. CONCLUSION: M2 macrophages could promote airway inflammation through JAK3-STAT5-Fra2 to induce allergic asthma. Our study offers a new insight to further understand the pathogenesis of asthma and also provides a new direction for targeted treatment.


Subject(s)
Asthma , STAT5 Transcription Factor , Animals , Asthma/pathology , Cytokines/metabolism , Fos-Related Antigen-2/metabolism , Inflammation/metabolism , Janus Kinase 3/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , STAT5 Transcription Factor/metabolism
16.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35511484

ABSTRACT

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Fos-Related Antigen-2 , Proto-Oncogene Proteins c-fos/metabolism , Th17 Cells , Transcription Factor AP-1 , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Regulation , Humans , Mice , Th17 Cells/cytology , Th17 Cells/metabolism , Transcription Factor AP-1/metabolism
17.
Genes Genomics ; 44(1): 29-38, 2022 01.
Article in English | MEDLINE | ID: mdl-34773569

ABSTRACT

BACKGROUND: Ovarian cancer is a common gynecological malignancy among female patients and poses a serious threat to women's health. Although it has been established that Fos-like antigen 2 (FOSL2) is linked to ovarian cancer (OC), its exact role in the development of OC remains unknown. OBJECTIVE: This article aims to investigate the role of FOSL2 in ovarian cancer development. METHODS: FOSL2 expression in ovarian carcinoma and adjacent tissues was assessed using real-time fluorescent quantitative PCR and western blot. We constructed OE/sh-FOSL2 plasmids and Caspase-1 specific inhibitors (Yvad-CMK) and transfected A 2780 cells with them to identify the relevant cell functions. Furthermore, we used western blot assay to determine the changes in expression of apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartate-specific proteasezymogen procaspase 1 (pro-caspase-1), cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1ß precursor (pro-IL-1ß), interleukin-1ß (IL-1ß), interleukin-18 precursor (pro-IL-18), and interleukin-18 (IL-18). In addition, we measured the concentration of IL-1ß and IL-18 using an enzyme-linked immunosorbent assay (ELISA). Moreover, Tthe level of lactate dehydrogenase (LDH) in the cell supernatant was measured by LDH release assay kit. RESULTS: The expression of FOSL2 was significantly higher compared with the surrounding tissues. The proliferation, migration, and invasion of A2780 cells were enhanced after transfection with OE-FOSL2 plasmids; however, the cell apoptosis was significantly decreased. When FOSL2 was overexpressed, the inflammasome-associated proteins such as ASC, caspase-1, IL-1ß, and IL-18 were downregulated. Furthermore, FOSL2 induced apoptosis and activated the production of inflammasomes in A2780 cells. Co-therapy with Yvad-CMK and substantially inhibited apoptosis and activation of inflammasomes. CONCLUSIONS: Inhibition of FOSL2 promotes the apoptosis of OC cells by mediating the formation of an inflammasome.


Subject(s)
Apoptosis/genetics , Fos-Related Antigen-2/genetics , Gene Expression Regulation, Neoplastic , Inflammasomes/genetics , Ovarian Neoplasms/genetics , RNA Interference , Amino Acid Chloromethyl Ketones/pharmacology , Caspase 1/genetics , Caspase 1/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cysteine Proteinase Inhibitors/pharmacology , Female , Fos-Related Antigen-2/metabolism , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Up-Regulation/drug effects
18.
Nat Cell Biol ; 23(9): 953-966, 2021 09.
Article in English | MEDLINE | ID: mdl-34475534

ABSTRACT

While the acquisition of cellular plasticity in adult stem cells is essential for rapid regeneration after tissue injury, little is known about the underlying mechanisms governing this process. Our data reveal the coordination of airway progenitor differentiation plasticity by inflammatory signals during alveolar regeneration. Following damage, interleukin-1ß (IL-1ß) signalling-dependent modulation of Jag1 and Jag2 expression in ciliated cells results in the inhibition of Notch signalling in secretory cells, which drives the reprogramming and acquisition of differentiation plasticity. We identify the transcription factor Fosl2 (also known as Fra2) for secretory cell fate conversion to alveolar type 2 cells that retain the distinct genetic and epigenetic signatures of secretory lineages. We also reveal that human secretory cells positive for KDR (also known as FLK-1) display a conserved capacity to generate alveolar type 2 cells via Notch inhibition. Our results demonstrate the functional role of an IL-1ß-Notch-Fosl2 axis in the fate decision of secretory cells during injury repair, proposing a potential therapeutic target for human lung alveolar regeneration.


Subject(s)
Cell Differentiation/physiology , Fos-Related Antigen-2/metabolism , Interleukin-1beta/metabolism , Receptors, Notch/metabolism , Regeneration/physiology , Animals , Fos-Related Antigen-2/genetics , Gene Expression Regulation/physiology , Interleukin-1beta/genetics , Mice , Respiratory System/metabolism , Signal Transduction/physiology , Stem Cells/metabolism
19.
Biomed Res Int ; 2021: 3445970, 2021.
Article in English | MEDLINE | ID: mdl-34458365

ABSTRACT

Mounting evidence has recently shown that role of long noncoding RNA is critical in many human cancers. lncRNA GSTM3TV2 was first proven to play a vital role in pancreatic cancer. However, the mechanism of lncRNA GSTM3TV2 in hepatocellular carcinoma (HCC) is still uncovered. Here, we object to distinguish the expression of lncRNA GSTM3TV2 and reveal its mechanistic relationship with HCC. We observed that the expression of lncRNA GSTM3TV2 and FOSL2 were upregulated in HCC. Knockdown of lncRNA GSTM3TV2 significantly inhibited cell proliferation. Meanwhile, the migration and invasion of HCC cells were greatly decreased by the downregulated lncRNA GSTM3TV2. The luciferase reporter assays showed that lncRNA GSTM3TV2 could be directly bound to miR-597, and the level of miR-597 was also decreased in the tumor tissues. lncRNA GSTM3TV2 could stabilize FOSL2 expression, resulting in the oncogenic properties of lncRNA GSTM3TV2 in HCC. Our study indicated the oncogenic activities of lncRNA GSTM3TV2 and emphasized the role of the miR-597/FOSL2 signaling pathway.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Fos-Related Antigen-2/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Female , Fos-Related Antigen-2/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , MicroRNAs/genetics , Middle Aged , RNA, Long Noncoding/genetics , Signal Transduction , Up-Regulation
20.
BMC Cardiovasc Disord ; 21(1): 344, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34271875

ABSTRACT

BACKGROUND: Myocardial infarction (MI) contributes to high mortality and morbidity and can also accelerate atherosclerosis, thus inducing recurrent event due to status changing of coronary artery walls or plaques. The research aimed to investigate the differentially expressed genes (DEGs), which may be potential therapeutic targets for plaques progression in stable coronary artery disease (CAD) and ST-elevated MI (STEMI). METHODS: Two human datasets (GSE56885 and GSE59867) were analyzed by GEO2R and enrichment analysis was applied through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. To explore the seed genes, the protein-protein interaction (PPI) network was constructed and seed genes, as well as top30 ranking neighbours were screened out. To validate these findings, one human dataset GSE120521 was analyzed. Linear regression analysis and ROC curve were also performed to determine which seed genes above mentioned could be independent factors for plaques progression. Mice MI model and ELISA of seed genes were applied and ROC curve was also performed for in vivo validation. RESULTS: 169 DEGs and 573 DEGs were screened out in GSE56885 and GSE59867, respectively. Utilizing GO and KEGG analysis, these DEGs mainly enriched in immune system response and cytokines interaction. PPI network analysis was carried out and 19 seed genes were screened out. To validate these findings, GSE120521 was analyzed and three genes were demonstrated to be targets for plaques progression and stable CAD progression, including KLRD1, FOSL2 and LILRB3. KLRD1 and LILRB3 were demonstrated to be high-expressed at 1d after MI compared to SHAM group and FOSL2 expression was low-expressed at 1d and 1w. To investigate the diagnostic abilities of seed genes, ROC analysis was applied and the AUCs of KLRD1, FOSL2 and LILRB3, were 0.771, 0.938 and 0.972, respectively. CONCLUSION: This study provided the screened seed genes, KLRD1, FOSL2 and LILRB3, as credible molecular biomarkers for plaques status changing in CAD progression and MI recurrence. Other seed genes, such as FOS, SOCS3 and MCL1, may also be potential targets for treatment due to their special clinical value in cardiovascular diseases.


Subject(s)
Antigens, CD/genetics , Coronary Artery Disease/genetics , Fos-Related Antigen-2/genetics , NK Cell Lectin-Like Receptor Subfamily D/genetics , Plaque, Atherosclerotic , Receptors, Immunologic/genetics , ST Elevation Myocardial Infarction/genetics , Animals , Antigens, CD/metabolism , Case-Control Studies , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/metabolism , Databases, Genetic , Disease Models, Animal , Disease Progression , Fos-Related Antigen-2/metabolism , Gene Regulatory Networks , Genetic Markers , Humans , Male , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Protein Interaction Maps , Receptors, Immunologic/metabolism , Recurrence , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL