Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Avian Dis ; 68(1): 33-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687105

ABSTRACT

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.


Desarrollo de un ensayo de PCR múltiple para la diferenciación rápida de los virus de la viruela aviar y la viruela de paloma. El objetivo de este estudio fue desarrollar un ensayo de PCR múltiple capaz de diferenciar rápidamente dos especies principales de Avipoxvirus (APV) (viruela del pollo), el Fowlpox virus (FWPV) y el Pigeonpox virus (PGPV), (viruela de la gallina), que causan enfermedades en especies de aves. A pesar de la importancia de un ensayo de diferenciación rápida, no existe ningún ensayo que pueda diferenciar las especies de APV sin secuenciación. Para lograr esto, se seleccionaron fragmentos blanco de ADN específicos de especie del gene fpv122 de FWPV y el gene HM89_gp120 de Pigeonpox virus, que son únicos para cada genoma. Nueve muestras recolectadas de pollos, palomas y un pavo que no fueron vacunados con lesiones típicas de la viruela se identificaron genéticamente como FWPV y PGPV. Los iniciadores diseñados y los fragmentos de ADN blanco se validaron mediante análisis in silico mediante la herramienta de búsqueda de alineación local básica de nucleótidos (BLAST). El ensayo de PCR múltiple consistió en iniciadores específicos de especie y cebadores PanAPV previamente descritos (específicos de género) y fue capaz de diferenciar entre Fowlpox virus y Pigeonpox virus, de acuerdo con los resultados filogenéticos. Este estudio representa la primera diferenciación exitosa de los genomas de Fowlpox virus y Pigeonpox virus utilizando una prueba de PCR múltiple convencional. Este ensayo tiene el potencial de facilitar el diagnóstico rápido y el control de las infecciones por Avipoxvirus.


Subject(s)
Avipoxvirus , Chickens , Columbidae , Fowlpox virus , Multiplex Polymerase Chain Reaction , Poultry Diseases , Poxviridae Infections , Animals , Multiplex Polymerase Chain Reaction/veterinary , Multiplex Polymerase Chain Reaction/methods , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Avipoxvirus/genetics , Avipoxvirus/isolation & purification , Avipoxvirus/classification , Turkeys , Fowlpox/virology , Fowlpox/diagnosis , Species Specificity , Phylogeny , Bird Diseases/virology , Bird Diseases/diagnosis
2.
Vet Ital ; 59(4)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38685825

ABSTRACT

Fowl Pox Viruses (FPV) infect chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth etc. The birds, affected with FPV, also show anemia and ruffled appearance which are clinical symptoms of Reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of Reticuloendotheliosis Virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the Chorio-allantoic Membrane (CAM) of 10 days old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. But the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV virus, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Subject(s)
Chickens , Fowlpox virus , Poultry Diseases , Reticuloendotheliosis virus , Animals , Reticuloendotheliosis virus/isolation & purification , Chickens/virology , Poultry Diseases/virology , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Specific Pathogen-Free Organisms , Chick Embryo , Fowlpox/virology , Chorioallantoic Membrane/virology , Retroviridae Infections/veterinary , Retroviridae Infections/virology
3.
PLoS One ; 16(12): e0261122, 2021.
Article in English | MEDLINE | ID: mdl-34914770

ABSTRACT

Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.


Subject(s)
Chorioallantoic Membrane/virology , Fowlpox virus/isolation & purification , Fowlpox/diagnosis , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Skin/virology , Whole Genome Sequencing/methods , Animals , Australia , Chick Embryo , Chickens , Fowlpox/virology , Fowlpox virus/classification , Fowlpox virus/genetics , Fowlpox virus/growth & development , Polymorphism, Genetic
4.
Arch Virol ; 166(5): 1485-1488, 2021 May.
Article in English | MEDLINE | ID: mdl-33620554

ABSTRACT

Fowlpox virus (FWPV), which is the type member of the genus Avipoxvirus, subfamily Chordopoxvirinae, family Poxviridae, can lead to significant losses to the poultry industry. Although a large number of fowlpox virus genomes have been sequenced and characterised globally, there are no sequences available at the genomic level from Australian isolates. Here, we present the first complete genome sequence of a fowlpox virus vaccine strain (FWPV-S) containing an integrated near-full-length reticuloendotheliosis virus (REV) provirus. The genome of FWPV-S showed the highest sequence similarity to a fowlpox virus from the USA (97.74% identity). The FWPV-S genome contained 16 predicted unique genes, while a further two genes were fragmented compared to previously reported FWPV genome sequences. Subsequent phylogenetic analysis showed that FWPV-S was most closely related to other fowlpox viruses. This is the first reported genome sequence of FWPV from Australia.


Subject(s)
Fowlpox virus/genetics , Proviruses/genetics , Reticuloendotheliosis virus/genetics , Viral Vaccines/genetics , Animals , Australia , Base Sequence , Cells, Cultured , Chick Embryo , DNA, Viral/genetics , Fowlpox virus/classification , Fowlpox virus/isolation & purification , Genes, Viral , Genome, Viral/genetics , Open Reading Frames , Phylogeny , Viral Vaccines/classification , Viral Vaccines/isolation & purification , Virus Integration
5.
Arch Razi Inst ; 75(4): 501-508, 2021 01.
Article in English | MEDLINE | ID: mdl-33403845

ABSTRACT

Fowlpox is an economically significant viral disease in poultry, characterized by two forms of clinical signs, including cutaneous and diphtheritic lesions. This infection can have several adverse effects on flock performance, such as a reduction in egg production and growth and an increase in mortality. In winter 2018, an infection suspected to fowlpox was reported from a Hy-line W-36 laying farm in Isfahan province, Iran. The birds were 38 weeks of age and showed obvious diphtheritic signs in mucous membranes with increased mortality and reduced egg production. In total, 20 samples were collected from diphtheritic lesions (Trachea and Esophagus) of infected birds. The Polymerase Chain Reaction method was used to amplify a 578 bp fragment of the poxvirus 4b core protein gene. Phylogenetic relationships of avian poxviruses are usually analyzed using the 4b core protein-coding gene sequences with molecular weights of 75.2 kDa. The major elements had the fowlpox genome, and sequencing was performed for one isolate as representative. The nucleotide sequence result showed that this isolate (FP\UT-POX-2018) had a similarity rate of 99.53% with the previous Iranian fowlpox isolate (FP\GHPCRLAB.3) sequenced in the GenBank.Moreover, there was a 100% similarity among the current isolate nucleotide sequence, FP/NobilisVarioleW, and FP/FPV-VR250. The derived phylogenetic tree showed that these isolates were clustered in A1 subclades. Therefore, Iranian isolates of fowlpox virus have remained in the same subclade of phylogenetic classification (subclade A1), and they show high genomic similarity with previous isolates of Iran. Veterinarians and farmers must not underestimate fowlpox. However, they should consider the importance of vaccination against this disease like any other disease care.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Fowlpox virus/isolation & purification , Fowlpox/epidemiology , Poultry Diseases/epidemiology , Animals , Female , Fowlpox/virology , Fowlpox virus/classification , Fowlpox virus/genetics , Iran/epidemiology , Phylogeny , Polymerase Chain Reaction/veterinary , Poultry Diseases/virology
6.
J Wildl Dis ; 55(1): 142-148, 2019 01.
Article in English | MEDLINE | ID: mdl-29953311

ABSTRACT

Poxvirus infections have been reported in domestic, captive, and wild avian hosts including many raptor species. A wild Common Buzzard ( Buteo buteo) admitted to a wildlife veterinary clinic in Sardinia, Italy, showed multiple, wart-like proliferative cutaneous lesions on both legs. Histologically, there was ballooning degeneration and large intracytoplasmic inclusion bodies consistent with avipoxvirus (APV) infection. Diagnosis was confirmed by PCR detecting APV genes: P4b (locus fpv167), P35 (locus fpv140), and partial DNA polymerase. Phylogenetic analyses were performed to compare the detected virus with a panel of selected APVs. Analyses of P4b and DNA polymerase assigned the virus to clade A (fowlpox virus), subclade A7, grouping with many other APVs previously isolated in birds of prey. Further research should highlight the diversity of avian pox viral strains circulating among Common Buzzards as well as the phylogenetic role of locus fpv140 (P35) in comparison with the more-conserved P4b and DNA polymerase genes.


Subject(s)
Bird Diseases/virology , Falconiformes/virology , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Animals , Base Sequence , Bird Diseases/epidemiology , Bird Diseases/pathology , Fatal Outcome , Fowlpox virus/genetics , Gene Expression Regulation, Viral , Italy/epidemiology , Phylogeny , Poxviridae Infections/epidemiology , Poxviridae Infections/pathology , Poxviridae Infections/virology , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Virus Res ; 260: 53-59, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30359622

ABSTRACT

Fowlpox virus (FWPV), the type species of the genus Avipoxvirus family Poxviridae, is a large double-stranded DNA virus that causes fowlpox in chickens and turkeys. Notably, sequences of the avian retrovirus reticuloendotheliosis virus (REV) are frequently found integrated into the genome of FWPV. While some FWPV strains carry remnants of the REV long terminal repeats (LTRs), other strains have been shown to contain insertions of nearly the full-length REV provirus in their genome. In the present study we detected heterogeneous FWPV populations carrying the REV LTR or the near full-length REV provirus genome in a Merriam's wild turkey (Meleagris gallopavo merriami). The bird presented papules distributed throughout the non-feathered areas of the head. Avipoxvirus-like virions were observed in the lesions by transmission electron microscopy and the presence of FWPV was confirmed by DNA sequencing. Metagenomic sequencing performed on nucleic acid extracted from the skin lesions revealed two FWPV genome populations carrying either a 197-nt remnant of the REV LTR or a 7939-nt long fragment corresponding to the full-length REV provirus. Notably, PCR amplification using primers targeting FWPV sequences flanking the REV insertion site, confirmed the natural occurrence of the heterogeneous FWPV genome populations in one additional clinical sample from another turkey affected by fowlpox. Additionally, sequencing of a historical FWPV isolate obtained from chickens in the US in 2000 also revealed the presence of the two FWPV-REV genome populations. Results here demonstrate distinct FWPV populations containing variable segments of REV genome integrated into their genome. These distinct genome populations are likely a result of homologous recombination events that take place during FWPV replication.


Subject(s)
Fowlpox virus/genetics , Fowlpox/virology , Reticuloendotheliosis virus/genetics , Turkeys/virology , Animals , Fowlpox/pathology , Fowlpox virus/isolation & purification , Genome, Viral , Metagenomics , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Sequence Analysis, DNA , Skin/pathology , Skin/virology , Terminal Repeat Sequences , Virus Integration
8.
J Vet Diagn Invest ; 30(6): 946-950, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30199325

ABSTRACT

Fowlpox is one of the oldest diseases reported in birds. The causative genus Avipoxvirus affects ~232 domestic and wild species. We present herein the history, clinical findings, and macroscopic and histologic lesions caused by a clade C poxvirus in an exotic psittacine breeding colony in southern Brazil. Clinical signs included yellow nodular lesions at the commissure of the beak and on the periocular skin, loss of appetite, and death. Fifty birds were autopsied, and fragments of periocular skin, tongue, and trachea were examined histologically, which revealed hyperkeratosis associated with eosinophilic intracytoplasmic inclusion bodies. Tracheal fragments and periocular skin were subjected to nested PCR and phylogenetic analyses. The sequenced strain showed 99.58% identity with the nucleotide sequences of Avipoxvirus strains AY53011, KC018069, AM050383, and AM05382 isolated from birds in Germany, United States, and United Kingdom. The strain was grouped under clade C, which represents isolates exclusively from the Psittacidae family. The infection caused by clade C Avipoxvirus in the exotic psittacines examined ( Platycercus sp. and Psephotus haematonotus) demonstrates the circulation of this clade in this breeding colony.


Subject(s)
Bird Diseases/epidemiology , Disease Outbreaks/veterinary , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Animals , Bird Diseases/virology , Brazil/epidemiology , Fowlpox virus/genetics , Parrots , Phylogeny , Polymerase Chain Reaction/veterinary , Poxviridae Infections/epidemiology
9.
Emerg Infect Dis ; 23(9): 1602-1604, 2017 09.
Article in English | MEDLINE | ID: mdl-28820373
10.
Avian Dis ; 60(3): 705-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27610735

ABSTRACT

Concurrent fowlpox and candidiasis diseases occurred in a backyard chicken flock. Four deceased chickens (one Nagoya breed and three white silkie chickens) were examined for diagnosis. At necropsy, white curd-like plaques were observed in the crop. Fungal elements that stained positive for Candida albicans with immunohistochemistry were distributed throughout the tongue, choanal mucosa, esophagus, and crop. Typical fowlpox lesions, composed of proliferating epithelial cells with ballooning degeneration and viral intracytoplasmic inclusions, were observed in the conjunctiva, nasal mucosa, and skin around the cloaca. Interestingly, hyperplastic interfollicular epithelium with rare virus inclusions was observed in the bursa of Fabricius (BF). Some bursal follicles were replaced by proliferating epithelial cells. These proliferating cells immunohistochemically stained positive for cytokeratin. PCR and subsequent genetic sequencing detected the C. albicans gene in the crop, and fowlpox virus genes in the BF. These results indicate that this outbreak was a rare presentation of fowlpox in spontaneously infected chickens, with unusual pox lesions in the BF.


Subject(s)
Candidiasis/veterinary , Chickens , Coinfection/veterinary , Disease Outbreaks/veterinary , Fowlpox/epidemiology , Poultry Diseases/epidemiology , Animals , Candida/isolation & purification , Candidiasis/diagnosis , Candidiasis/epidemiology , Candidiasis/microbiology , Coinfection/diagnosis , Coinfection/epidemiology , Coinfection/microbiology , Fowlpox/diagnosis , Fowlpox/virology , Fowlpox virus/isolation & purification , Japan/epidemiology , Male , Poultry Diseases/diagnosis , Poultry Diseases/microbiology , Poultry Diseases/virology
11.
Transbound Emerg Dis ; 63(6): e187-e196, 2016 Dec.
Article in English | MEDLINE | ID: mdl-25651753

ABSTRACT

Infectious diseases can be serious threats for the success of reinforcement programmes of endangered species. Houbara Bustard species (Chlamydotis undulata and Chlamydotis macqueenii), whose populations declined in the last decades, have been captive-bred for conservation purposes for more than 15 years in North Africa and the Middle East. Field observations show that pox disease, caused by avipoxviruses (APV), regularly emerges in conservation projects of Houbara Bustard, despite a very strict implementation of both vaccination and biosecurity. Data collected from captive flocks of Houbara Bustard in Morocco from 2006 through 2013 and in the United Arab Emirates from 2011 through 2013 were analysed, and molecular investigations were carried out to define the virus strains involved. Pox cases (n = 2311) were observed during more than half of the year (88% of the months in Morocco, 54% in the United Arab Emirates). Monthly morbidity rates showed strong variations across the time periods considered, species and study sites: Four outbreaks were described during the study period on both sites. Molecular typing revealed that infections were mostly due to canarypox-like viruses in Morocco while fowlpox-like viruses were predominant in the United Arab Emirates. This study highlights that APV remain a major threat to consider in bird conservation initiatives.


Subject(s)
Canarypox virus/isolation & purification , Disease Outbreaks/veterinary , Fowlpox virus/isolation & purification , Fowlpox/epidemiology , Poxviridae Infections/veterinary , Vaccination/veterinary , Animals , Birds , Breeding , Canarypox virus/genetics , Conservation of Natural Resources , Female , Fowlpox/mortality , Fowlpox/virology , Fowlpox virus/genetics , Male , Morocco/epidemiology , Poxviridae Infections/epidemiology , Poxviridae Infections/mortality , Poxviridae Infections/virology , United Arab Emirates/epidemiology
12.
Avian Dis ; 57(4): 812-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24597128

ABSTRACT

Visceral lymphomas occurred in a 236-day-old layer flock previously diagnosed with reticuloendotheliosis virus (REV)-integrated fowlpox virus (FPV) infection at the age of 77 days. Common pathologic lesions were multiple neoplastic nodules of homogeneous lymphocytes in the livers and spleens of all submitted chickens. All neoplastic tissues were positive for the REV envelope (env) gene by PCR. In a retrospective molecular study of FPV-infected 77-day-old chickens from the same flock, we identified nearly full-length REV provirus integrated into the genome of FPV as well as the REV env gene in trachea samples, whereas only the REV LTR region was present in the FPV strain used to vaccinate this flock. The 622-bp REV env gene nucleotide sequence derived from the trachea and neoplastic tissues was identical. Commercial ELISA of serum samples revealed that all chickens aged between 17 and 263 days in this flock were positive for REV but not for avian leukosis virus. Taken together, the evidence suggests that the visceral lymphomas were caused by a REV-integrated FPV field strain. FPV infections of commercial chickens should be followed up by careful monitoring for manifestations of REV infection, including lymphomas and immune depression, considering the ease with which the REV provirus appears to be able to integrate into the FPV genome.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Fowlpox virus/genetics , Lymphoma/veterinary , Poultry Diseases/epidemiology , Proviruses/genetics , Reticuloendotheliosis virus/genetics , Animals , Avian Leukosis/epidemiology , Avian Leukosis/virology , Avian Leukosis Virus/isolation & purification , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Fowlpox/complications , Fowlpox/epidemiology , Fowlpox/virology , Fowlpox virus/isolation & purification , Fowlpox virus/physiology , Genes, env , Incidence , Lymphoma/epidemiology , Lymphoma/pathology , Lymphoma/virology , Molecular Sequence Data , Polymerase Chain Reaction/veterinary , Poultry Diseases/virology , Proviruses/isolation & purification , Proviruses/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Republic of Korea/epidemiology , Reticuloendotheliosis virus/isolation & purification , Reticuloendotheliosis virus/physiology , Reticuloendotheliosis, Avian/epidemiology , Reticuloendotheliosis, Avian/virology , Retrospective Studies , Sequence Analysis, RNA/veterinary
13.
Avian Dis ; 55(4): 714-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312999

ABSTRACT

The present report documents the occurrence of a poxvirus infection in commercial meat turkeys. The affected farm had six flocks, with a total of 11,680 birds at different ages; birds from two of these flocks were affected. The clinical picture was characterized by severe epithelial lesions and proliferations on the head and neck regions as reported for the cutaneous form of poxvirus infection. Except for these lesions, no adverse clinical signs or gross pathologic lesions were observed. Only a low number of birds was affected (n = 20) and no increase of mortality could be seen. Bacteriologic investigations from the lesions revealed multiresistant Staphylococcus aureus. Eosinophilic inclusions (Bollinger bodies) in histologic examinations in the cytoplasm of keratinocytes were noticeable. Typical pox virions were demonstrated by electron microscopy, and poxvirus was isolated on the chorioallantoic membrane of specific-pathogen-free chicken eggs. Further identification of the poxvirus species was carried out by PCR and sequencing, revealing an infection with the species fowlpox. Layers in vicinity of the turkey farm that also were affected by fowlpox were considered as potential source of infection. Although it is assumed that avian poxviruses are strongly species specific, the present case report reinforces the changing picture of poxvirus infections in turkeys. Furthermore, it supports the assumption of previous data that fowlpox virus has to be seen as recently emerging pathogen in turkeys.


Subject(s)
Disease Outbreaks/veterinary , Fowlpox virus/classification , Fowlpox/epidemiology , Turkeys , Animals , Fowlpox/pathology , Fowlpox/virology , Fowlpox virus/isolation & purification , Microscopy, Electron, Transmission , Polymerase Chain Reaction/veterinary
14.
Avian Pathol ; 39(1): 25-30, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20390533

ABSTRACT

An outbreak of acute respiratory disease in layers was diagnosed as being of dual nature due to fowlpox and infectious laryngotracheitis using a multidisciplinary approach including virus isolation, histopathology, electron microscopy and polymerase chain reaction (PCR). The diagnosis was based on virus isolation of gallid herpesvirus 1 (GaHV-1) in chicken kidney cells and fowlpox virus (FWPV) in 9-day-old chicken embryonated eggs inoculated via the chorioallantoic membrane. The histopathology of tracheas from dead birds revealed intra-cytoplasmic and intra-nuclear inclusions suggestive of poxvirus and herpesvirus involvement. The presence of FWPV was further confirmed by electron microscopy, PCR and histology. All FWPV isolates contained the long terminal repeats of reticuloendotheliosis virus as demonstrated by PCR. GaHV-1 isolates were detected by PCR and were shown to have a different restriction fragment length polymorphism pattern when compared with the chicken embryo origin SA2 vaccine strain; however, they shared the same pattern with the Intervet chicken embryo origin vaccine strain. This is a first report of dual infection of chickens with GaHV-1 and naturally occurring FWPV with reticuloendotheliosis virus insertions. Further characterization of the viruses was carried out and the results are reported here.


Subject(s)
Fowlpox virus/genetics , Herpesviridae Infections/veterinary , Herpesvirus 1, Gallid/genetics , Respiratory Tract Infections/veterinary , Reticuloendotheliosis virus/genetics , Animal Husbandry , Animals , Base Sequence , Chickens , DNA, Viral , Fowlpox/complications , Fowlpox/diagnosis , Fowlpox/virology , Fowlpox virus/isolation & purification , Herpesviridae Infections/complications , Herpesviridae Infections/diagnosis , Herpesviridae Infections/virology , Herpesvirus 1, Gallid/isolation & purification , Intranuclear Inclusion Bodies , Molecular Sequence Data , Mutagenesis, Insertional , Polymorphism, Restriction Fragment Length , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Sequence Alignment , Terminal Repeat Sequences , Trachea/pathology , Trachea/virology , Viral Vaccines/genetics
15.
Vet Microbiol ; 127(1-2): 39-49, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-17913400

ABSTRACT

Current strains of fowlpox virus (FWPV) carrying circulating reticuloendotheliosis virus (FWPV-REV) sequence are becoming more pathogenic to poultry. This is evidenced by the fact that vaccination with current available FWPV vaccines provides limited protection against them. To characterize REV insertions in a collection of both older and more recent field isolates, we developed three different types of adjacent oligoprobes and primer sets from specific genomic locations of FWPV and REV: REV-ENV (accession no. K02537, 1382-2260), FWPV-REV integration site (accession no. AF006064, 86-1328), FWPV (accession no. AF198100, 232461-232670), and REV-LTR (accession no. V01204, 305-496). The data indicated that the primers from the REV-ENV region and the TaqMan probes specifically targeted REV-ENV sequences of FWPV-REV strains. Furthermore, the strains were differentiated based on quantitative melting temperature (T(m)) of their amplified products using FRET-based probes. The amplified products were further characterized by sequencing and multiple sequence alignment analysis. The results suggest that integrated REV-ENV sequences are both common and mostly conserved in field isolates. However, the minor variations found within the short-targeted ENV sequence from FWPV-REV strains suggest that these strains could have either undergone periodic point mutational changes or integration with different REV-ENV subtypes.


Subject(s)
Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Genetic Variation , Reticuloendotheliosis Viruses, Avian/genetics , Reticuloendotheliosis Viruses, Avian/isolation & purification , Virus Integration/genetics , Animals , Base Sequence , Benzothiazoles , Chick Embryo , Chickens , Diamines , Fluorescence Resonance Energy Transfer/methods , Molecular Sequence Data , Organic Chemicals/analysis , Polymerase Chain Reaction , Quinolines , Sequence Alignment , Sequence Analysis, DNA , Transition Temperature
16.
J Gen Virol ; 87(Pt 12): 3545-3549, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17098969

ABSTRACT

The emergence of variant fowlpox viruses (FWPVs) and increasing field use of recombinants against avian influenza H5N1 emphasize the need to monitor vaccines and to distinguish them from field strains. Five commercial vaccines, two laboratory viruses and two European field isolates were characterized by PCR and sequencing at 18 loci differing between attenuated FP9 and its pathogenic progenitor. PCR failed to discriminate between the viruses and sequence determination revealed no significant differences at any locus, except for a polymorphic locus encompassed by deletion 24 (9.3 kbp) in FP9. Surprisingly, 'novel' previously unreported sequence (spanning 1.2 kbp) was found in both European field isolates and three of the vaccines. It was absent from the other two vaccines, removed by a 1.2 kbp deletion identical to that surprisingly also observed in the completely sequenced genome of FPV USDA. This locus (H9) adds a potentially useful tool for discriminating between FWPV field isolates and vaccines.


Subject(s)
Fowlpox virus/genetics , Open Reading Frames/genetics , Viral Proteins/genetics , Viral Vaccines/genetics , Amino Acid Sequence , DNA, Viral/chemistry , DNA, Viral/genetics , Fowlpox virus/immunology , Fowlpox virus/isolation & purification , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA , Vaccines, Synthetic/genetics
17.
Vet Microbiol ; 116(1-3): 106-19, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16650660

ABSTRACT

The immune effects of fowlpox virus (FPV) field isolates and vaccine strains were evaluated in chickens infected at the age of 1 day and 6 weeks. The field isolates and the obsolete vaccine strain (FPV S) contained integrated reticuloendotheliosis virus (REV) provirus, while the current vaccine strain (FPVST) carries only REV LTR sequences. An indirect antibody ELISA was used to measure the FPV-specific antibody response. The non-specific humoral response was evaluated by injection of two T-cell-dependent antigens, sheep red blood cells (SRBC) and bovine serum albumin (BSA). There was no significant difference in the antibody response to FPV between chickens infected with FPV various isolates and strains at either age. In contrast, antibody responses to both SRBC and BSA were significantly lower in 1-day-old chickens inoculated with field isolates and FPV S at 2-3 weeks post-inoculation. Furthermore, cell-mediated immune (CMI) responses measured by in vitro lymphocyte proliferation assay and in vivo using a PHA-P skin test were significantly depressed in chickens inoculated with field isolates and FPV S at the same periods. In addition, thymus and bursal weights were lower in infected chickens. These immunosuppressive effects were not observed in chickens inoculated with the current vaccine strain, FPVST, at any time. The results of this study suggest that virulent field isolates and FPV S have immunosuppressive effects when inoculated into young chickens, which appeared in the first 3 weeks post infection. REV integrated in the FPV field isolates and FPV S may have played a central role in the development of immunosuppression.


Subject(s)
Chickens/immunology , Fowlpox virus/classification , Fowlpox virus/immunology , Fowlpox/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/isolation & purification , Bursa of Fabricius/pathology , Fowlpox/prevention & control , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Organ Size , Poultry Diseases/immunology , Poultry Diseases/prevention & control , RNA, Viral , Skin/immunology , Thiolester Hydrolases , Thymus Gland/pathology
18.
Avian Dis ; 50(1): 152-6, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16618002

ABSTRACT

Cutaneous fowlpox occurring in vaccinated layer hens was investigated pathologically and microbiologically. Anorexia, decrease of egg production, increased mortality, yellow scabs on faces, and alopecia of feathered skins with yellow scabs were observed in affected hens. Histologically, proliferative and necrotic dermatitis with eosinophilic ring-shaped cytoplasmic inclusions (Bollinger bodies) and clumps of gram-positive cocci (Staphylococcus hyicus) were noted in the affected birds. Fowlpox lesions were primarily observed in the feathered skins. Proliferation of feather follicle epidermal cells, with cytoplasmic inclusions and degeneration of the feather, and bacterial clumps in the feather follicles were noted in the affected skins. Ultrastructurally, characteristic fowlpox viral particles were observed in the cytoplasmic inclusions of hyperplastic epidermal cells. Amyloid deposition was observed in the Disse space of the liver, splenic sinus, and lamina propria of the bronchiolar, bronchial, and tracheal areas. Amyloidosis could be one factor inducing the fowlpox infection in vaccinated chickens.


Subject(s)
Amyloidosis/veterinary , Fowlpox/complications , Fowlpox/pathology , Viral Vaccines/administration & dosage , Amyloidosis/complications , Amyloidosis/pathology , Animals , Chickens , Female , Fowlpox/prevention & control , Fowlpox/virology , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Phylogeny , Skin/pathology , Skin/virology
19.
J Environ Monit ; 8(10): 1006-13, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17240906

ABSTRACT

The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.


Subject(s)
Air Microbiology , Environment, Controlled , Environmental Monitoring/methods , Bacillus subtilis/isolation & purification , Filtration , Fowlpox virus/isolation & purification , Metapneumovirus/isolation & purification , Transmissible gastroenteritis virus/isolation & purification
20.
Avian Dis ; 49(3): 401-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16252496

ABSTRACT

Fowlpox virus (FWPV) has been isolated from vaccinated chicken flocks during subsequent fowlpox outbreaks that were characterized by a high degree of mortality and significant economic losses. This inability of current vaccines to induce adequate immunity in poultry could be reflective of an antigenic and/or biologic distinctiveness of FWPV field isolates. In this regard, whereas an infectious reticuloendotheliosis virus (REV) provirus is present in the majority of the field viruses' genomes, only remnants of REV long terminal repeats (LTR) have been retained in the DNAs of each vaccine strain. Although it has not been demonstrated whether the partial LTRs can provide an avenue for FWPV to reacquire the REV provirus by homologous recombination, utilizing viruses of which genomes lack any known integrated retroviral sequences could resolve concern over this issue. Therefore, such an entity was created by genetically modifying a recently isolated field strain of FWPV. This selection, in lieu of a commercial vaccine virus, as the progenitor was based on the probability that a virus circulating in the environment would be more antigenically similar to others in this locale and thus might be a better candidate for vaccine development. A comparison in vivo of the pathogenic traits of the parental wild-type field isolate, its genetically modified progeny, and a rescue mutant in whose genome the REV provirus was inserted at its previous location, indicated that elimination of the provirus sequence correlated with reduced virulence. However, even with elimination of the parasitic REV, the modified FWPV was still slightly more invasive than a commercial vaccine virus. Interestingly, both types of attenuated FWPV elicited a similar degree of antibody production in inoculated chickens and afforded them protection against a subsequent challenge by a field virus, the origin of which was temporally and geographically distinct from that of the progenitor strain. Due to its antigenicity being retained despite a decrease in virulence, this REV-less FWPV could potentially be developed as a vaccine against fowlpox.


Subject(s)
Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Fowlpox/prevention & control , Genome, Viral , Proviruses/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Base Sequence , Chickens/immunology , Chickens/virology , Fowlpox/immunology , Fowlpox/virology , Fowlpox virus/immunology , Fowlpox virus/pathogenicity , Genetic Engineering , Vaccination , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...