Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.678
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0012141, 2024 May.
Article in English | MEDLINE | ID: mdl-38728365

ABSTRACT

BACKGROUND: Francisella tularensis, the bacterium that causes tularemia, has been a persistent and widespread pathogen in various regions of the world for centuries. Francisella tularensis can affect humans and various domestic and wild animals. The current study aimed to determine the epidemiological status of tularemia in countries of the WHO Eastern Mediterranean Region (EMRO) through a systematic review and meta-analysis. METHODS: All included studies were identified through a systematic search of online databases, including Scopus, PubMed, Web of Science, and EMBASE, through July 26, 2022, using keywords and suitable combinations. We focused on cross-sectional studies investigating the prevalence of F. tularensis. The weighted pooled prevalence was calculated using a random-effects model. RESULTS: A total of 206 studies were identified, of which 20 were finally included in the analysis. The human seroprevalence of tularemia in WHO-EMRO countries was 6.2% (95% CI, 4.2 9.2). In the subgroup analysis, anti-F. tularensis antibodies were found in 6.92% and 5.5% of the high-risk individuals and Iran, respectively. The pooled prevalence of F. tularensis in environmental samples (water and soil) from the WHO-EMRO countries was 5.8% (9.4% by PCR and 0.5% by culture). In addition, 2.5% (95% CI, 0.2 0.22.7) of ticks in WHO-EMRO countries were positive for F. tularensis. The pooled prevalence of F. tularensis in rodents is 2.0% (1.1% by PCR and 3.7% by serology). In addition, 0.6% of domestic ruminants (0.4% by PCR and 2.4% by serology) were positive for F. tularensis in WHO-EMRO countries. CONCLUSION: According to the results of the present study, tularemia is an endemic but neglected disease in the WHO-EMRO region. However, most studies on tularemia are limited to a few countries in this region. Studies on tularemia in human populations, reservoirs, and vectors have been conducted in all countries in the WHO-EMRO region to obtain more detailed information about the epidemiology of tularemia in these regions.


Subject(s)
Francisella tularensis , Tularemia , Tularemia/epidemiology , Tularemia/microbiology , Humans , Animals , Francisella tularensis/isolation & purification , Mediterranean Region/epidemiology , Prevalence , Seroepidemiologic Studies , World Health Organization , Cross-Sectional Studies , Ticks/microbiology
2.
PLoS One ; 19(5): e0294998, 2024.
Article in English | MEDLINE | ID: mdl-38713688

ABSTRACT

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Subject(s)
Bacterial Vaccines , Disease Models, Animal , Francisella tularensis , Rats, Inbred F344 , Tularemia , Vaccines, Subunit , Animals , Tularemia/prevention & control , Tularemia/immunology , Rats , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Francisella tularensis/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Glucans/immunology , Glucans/pharmacology , T-Lymphocytes/immunology , Female , Antigens, Bacterial/immunology
3.
Front Cell Infect Microbiol ; 14: 1381776, 2024.
Article in English | MEDLINE | ID: mdl-38628552

ABSTRACT

Introduction: For a majority of tularemia patients, serology is the basis for the diagnosis. The aim of this study was to perform an analysis of the samples analyzed at a Swedish reference laboratory for the presence of Francisella tularensis-specific antibody levels in sera from individuals with suspected tularemia. Annual and monthly variations of the total number of samples and proportions of positive samples were analyzed, as well as the influence of age and gender. Methods: We performed a retrospective analysis of the presence of F. tularensis-specific antibodies in serological samples from patients with suspected tularemia analyzed during the period 2010 - 2022 at the University Hospital of Umeå in Sweden, a national reference laboratory, by use of various statistical methods. In total, some 15,100 serum samples had been analyzed for the presence of IgG and IgM antibodies by ELISA during the 13-year period. Results: Overall, there were higher number of samples with IgG positive or borderline titers, 2,522 and 921, respectively, than with IgM positive or borderline titers, 1,802 and 409, respectively. Repeated samples were obtained from some 1,930 individuals and approximately a third of the cases, which were initially seronegative, had seroconverted when resampled. Peak number of monthly samples were recorded in August and September, > 3,000. Annual numbers varied greatly and peak numbers were observed in 2015 and 2019, 1,832 and 2,250, respectively, whereas some other years the numbers were 700 - 800. There was also much variation in the annual and monthly percentages of positive samples and they varied between less than 10% to greater than 20%. The highest percentages of positive samples were recorded in September and October. IgG and IgM titers declined with age and these differences were highly significant for IgG titers, with decreasing average titers for each 20-year interval. Discussion: Collectively, the data demonstrate the marked annual and seasonal variations in tularemia sampling occurring in Sweden. Also, the proportion of positive samples increased during months and years with peak number of samples. Another notable finding was that average antibody titers decreased with increased age.


Subject(s)
Francisella tularensis , Tularemia , Humans , Tularemia/diagnosis , Tularemia/epidemiology , Sweden/epidemiology , Retrospective Studies , Antibodies, Bacterial , Immunoglobulin M , Immunoglobulin G
4.
Sci Rep ; 14(1): 7797, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565565

ABSTRACT

Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.


Subject(s)
Francisella tularensis , Tularemia , Animals , Francisella tularensis/genetics , Actins/metabolism , Biotin/metabolism , Proteomics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Macrophages/metabolism , Life Cycle Stages , Tularemia/microbiology , Genomic Islands
5.
PLoS One ; 19(4): e0299701, 2024.
Article in English | MEDLINE | ID: mdl-38683788

ABSTRACT

Recombinant Francisella tularensis universal stress protein with a C-terminal histidine-tag (rUsp/His6) was expressed in Escherichia coli. Endogenous F. tularensis Usp has a predicted molecular mass of 30 kDa, but rUsp/His6 had an apparent molecular weight of 33 kDa based on Western blot analyses. To determine the source of the higher molecular weight for rUsp/His6, post translational modifications were examined. Tryptic peptides of purified rUsp/His6 were subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) and fragmentation spectra were searched for acetylated lysines and polyaminated glutamines. Of the 24 lysines in rUsp/His6, 10 were acetylated (K63, K68, K72, K129, K175, K201, K208, K212, K233, and K238) and three of the four glutamines had putrescine, spermidine and spermine adducts (Q55, Q60 and Q267). The level of post-translational modification was substoichiometric, eliminating the possibility that these modifications were the sole contributor to the 3 kDa extra mass of rUsp/His6. LC-MS/MS revealed that stop codon readthrough had occurred resulting in the unexpected addition of 20 extra amino acids at the C-terminus of rUsp/His6, after the histidine tag. Further, the finding of polyaminated glutamines in rUsp/His6 indicated that E. coli is capable of transglutaminase activity.


Subject(s)
Bacterial Proteins , Codon, Terminator , Escherichia coli , Francisella tularensis , Protein Processing, Post-Translational , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Acetylation , Codon, Terminator/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Francisella tularensis/genetics , Francisella tularensis/metabolism , Tandem Mass Spectrometry , Histidine/metabolism , Amino Acid Sequence
6.
Mol Cell Probes ; 74: 101956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492609

ABSTRACT

Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.


Subject(s)
Francisella tularensis , Francisella tularensis/genetics , Francisella tularensis/chemistry , Francisella tularensis/metabolism , Lysine/metabolism , Peptides/genetics , Codon/genetics , Protein Sorting Signals/genetics
7.
Front Cell Infect Microbiol ; 14: 1355113, 2024.
Article in English | MEDLINE | ID: mdl-38500499

ABSTRACT

Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.


Subject(s)
Francisella tularensis , Francisella , Proteogenomics , Ticks , Tularemia , Animals , Humans , Rabbits , Tularemia/microbiology , Phylogeny , Proteomics , Genotype , Mammals
8.
BMJ Case Rep ; 17(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553022

ABSTRACT

Tularaemia is a highly infectious, zoonotic disease caused by Francisella tularensis, which has become increasingly prevalent over the past decade. Depending on the route of infection, different clinical manifestations can be observed. We report a case of typhoidal tularaemia presenting as a febrile illness with gastrointestinal symptoms in a patient in her mid-80s. During the acute illness phase and in the context of alcohol-related liver cirrhosis, the patient developed progressive ascites. During paracentesis, spontaneous bacterial peritonitis was consistently reported. Blood culture revealed Gram-negative bacilli identified as F. tularensis upon microscopic examination. Immediate clinical improvement was observed after adaptation to a pathogen-specific antibiotic regime. Typhoidal tularaemia presents general, non-specific symptoms without the local manifestations seen in other forms of the disease, thus representing a diagnostic challenge. In the case of protracted fever and if the epidemiological context as well as possible exposure are compatible, tularaemia should be considered in the differential diagnosis.


Subject(s)
Francisella tularensis , Tularemia , Animals , Female , Humans , Tularemia/complications , Tularemia/diagnosis , Tularemia/drug therapy , Ascites/diagnosis , Ascites/etiology , Ascites/drug therapy , Zoonoses/drug therapy , Anti-Bacterial Agents/therapeutic use
9.
Vaccine ; 42(9): 2171-2180, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38461051

ABSTRACT

Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.


Subject(s)
Francisella tularensis , Tularemia , Humans , Tularemia/prevention & control , Bacterial Vaccines/therapeutic use , Vaccines, Attenuated , Vaccination
10.
Microbiology (Reading) ; 170(2)2024 02.
Article in English | MEDLINE | ID: mdl-38421161

ABSTRACT

Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.


Subject(s)
Francisella tularensis , Francisella , Hydroxymethyl and Formyl Transferases , Tularemia , Animals , Mice , Francisella tularensis/genetics , O Antigens/genetics , Lipopolysaccharides , Hydroxymethyl and Formyl Transferases/genetics , Phase Variation , Mutation
11.
Clin Infect Dis ; 78(5): 1222-1231, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38393822

ABSTRACT

BACKGROUND: Tularemia is an important reemerging disease with a multimodal transmission pattern. Treatment outcomes of current recommended antibiotic regimens (including ciprofloxacin and doxycycline) remain unclear. In this retrospective cohort study, we report clinical, laboratory, geographical, and treatment outcomes of laboratory-confirmed tularemia cases over an 11-year period in Northern Sweden. METHODS: Data from reported tularemia cases (aged >10 years at time of study) in Norrbotten county between 2011 and 2021 were collected through review of electronic medical records and participant questionnaires; 415 of 784 accepted participation (52.9%). Of these, 327 were laboratory-confirmed cases (serology and/or polymerase chain reaction). A multivariable logistic regression model was used to investigate variables associated with retreatment. RESULTS: Median age of participants was 54 years (interquartile range [IQR], 41.5-65) and 49.2% were female. Although ulceroglandular tularemia was the predominant form (n = 215, 65.7%), there were several cases of pulmonary tularemia (n = 40; 12.2%). Inflammatory markers were largely nonspecific, with monocytosis frequently observed (n = 36/75; 48%). Tularemia was often misdiagnosed on presentation (n = 158, 48.3%), with 65 (19.9%) receiving initial inappropriate antibiotics and 102 (31.2%) retreated. Persistent lymphadenopathy was infrequent (n = 22, 6.7%), with 10 undergoing surgical interventions. In multivariable analysis of variables associated with retreatment, we highlight differences in time until receiving appropriate antibiotics (8 [IQR, 3.25-20.75] vs 7 [IQR, 4-11.25] days; adjusted P = .076), and doxycycline-based treatment regimen (vs ciprofloxacin; adjusted P = .084), although this was not significant after correction for multiple comparisons. CONCLUSIONS: We comprehensively summarize clinical, laboratory, and treatment outcomes of type B tularemia. Targeting tularemia requires clinical awareness, early diagnosis, and timely commencement of treatment for an appropriate duration.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Tularemia , Humans , Tularemia/drug therapy , Tularemia/diagnosis , Tularemia/epidemiology , Sweden/epidemiology , Female , Middle Aged , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Male , Adult , Aged , Treatment Outcome , Doxycycline/therapeutic use , Francisella tularensis/isolation & purification , Ciprofloxacin/therapeutic use , Young Adult
12.
Proteins ; 92(6): 693-704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38179877

ABSTRACT

Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding ß-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/ß hydrolase structure and a potential allosteric binding site within human APTs.


Subject(s)
Catalytic Domain , Protein Binding , Protein Folding , Thiolester Hydrolases , Humans , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Ligands , Models, Molecular , Amino Acid Sequence , Kinetics , Conserved Sequence , Enzyme Stability , Francisella tularensis/enzymology , Francisella tularensis/metabolism , Francisella tularensis/chemistry , Crystallography, X-Ray , Substrate Specificity
13.
Clin Infect Dis ; 78(Suppl 1): S15-S28, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294108

ABSTRACT

BACKGROUND: Francisella tularensis, the causative agent of tularemia, is endemic throughout the Northern Hemisphere and requires as few as 10 organisms to cause disease, making this potential bioterrorism agent one of the most infectious bacterial pathogens known. Aminoglycosides, tetracyclines, and, more recently, fluoroquinolones are used for treatment of tularemia; however, data on the relative effectiveness of these and other antimicrobial classes are limited. METHODS: Nine databases, including Medline, Global Health, and Embase, were systematically searched for articles containing terms related to tularemia. Articles with case-level data on tularemia diagnosis, antimicrobial treatment, and patient outcome were included. Patient demographics, clinical findings, antimicrobial administration, and outcome (eg, intubation, fatality) were abstracted using a standardized form. RESULTS: Of the 8878 publications identified and screened, 410 articles describing 870 cases from 1993 to 2023 met inclusion criteria. Cases were reported from 35 countries; more than half were from the United States, Turkey, or Spain. The most common clinical forms were ulceroglandular, oropharyngeal, glandular, and pneumonic disease. Among patients treated with aminoglycosides (n = 452 [52%]), fluoroquinolones (n = 339 [39%]), or tetracyclines (n = 419 [48%]), the fatality rate was 0.7%, 0.9%, and 1.2%, respectively. Patients with pneumonic disease who received ciprofloxacin had no fatalities and the lowest rates of thoracentesis/pleural effusion drainage and intubation compared to those who received aminoglycosides and tetracyclines. CONCLUSIONS: Aminoglycosides, fluoroquinolones, and tetracyclines are effective antimicrobials for treatment of tularemia, regardless of clinical manifestation. For pneumonic disease specifically, ciprofloxacin may have slight advantages compared to other antimicrobials.


Subject(s)
Francisella tularensis , Tularemia , Humans , Tularemia/diagnosis , Tularemia/drug therapy , Tularemia/epidemiology , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Aminoglycosides/therapeutic use , Tetracyclines/therapeutic use
14.
Clin Infect Dis ; 78(Suppl 1): S7-S14, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294111

ABSTRACT

BACKGROUND: The incidence of pneumonic tularemia is very low; therefore, it is not feasible to conduct clinical efficacy testing of tularemia medical countermeasures (MCMs) in humans. The US Food and Drug Administration's Animal Model Qualification Program under the Drug Development Tools Program is a regulatory pathway for animal models used in MCM efficacy testing and approval under the Animal Rule. The National Institute of Allergy and Infectious Diseases and Biomedical Advanced Research and Development Authority worked together to qualify the cynomolgus macaque model of pneumonic tularemia. METHODS: Using the model parameters and end points defined in the qualified model, efficacy of the antibiotics doxycycline and ciprofloxacin was evaluated in separate studies. Antibiotic administration, aimed to model approved human dosing, was initiated at time points of 24 hours or 48 hours after onset of fever as an indicator of disease. RESULTS: Upon aerosol exposure (target dose of 1000 colony-forming units) to Francisella tularensis SchuS4, 80% of vehicle-treated macaques succumbed or were euthanized. Ciprofloxacin treatment led to 10 of 10 animals surviving irrespective of treatment time. Doxycycline administered at 48 hours post-fever led to 10 of 10 animals surviving, while 9/10 animals survived in the group treated with doxycycline 24 hours after fever. Selected surviving animals in both the placebo and doxycycline 48-hour group showed residual live bacteria in peripheral tissues, while there were no bacteria in tissues from ciprofloxacin-treated macaques. CONCLUSIONS: Both doxycycline and ciprofloxacin were efficacious in treatment of pneumonic tularemia, although clearance of bacteria may be different between the 2 drugs.


Subject(s)
Francisella tularensis , Tularemia , Animals , Humans , Tularemia/drug therapy , Tularemia/microbiology , Ciprofloxacin/therapeutic use , Doxycycline/therapeutic use , Disease Models, Animal , Anti-Bacterial Agents/therapeutic use , Fever/drug therapy , Macaca
15.
Clin Infect Dis ; 78(Suppl 1): S47-S54, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294114

ABSTRACT

BACKGROUND: Tularemia is caused by the gram-negative bacterium Francisella tularensis. Although rare, tularemia during pregnancy has been associated with pregnancy complications; data on efficacy of recommended antimicrobials for treatment are limited. We performed a systematic literature review to characterize clinical manifestations of tularemia during pregnancy and examine maternal, fetal, and neonatal outcomes with and without antimicrobial treatment. METHODS: We searched 9 databases, including Medline, Embase, Global Health, and PubMed Central, using terms related to tularemia and pregnancy. Articles reporting cases of tularemia with ≥1 maternal or fetal outcome were included. RESULTS: Of 5891 articles identified, 30 articles describing 52 cases of tularemia in pregnant patients met inclusion criteria. Cases were reported from 9 countries, and oropharyngeal and ulceroglandular tularemia were the most common presenting forms. A plurality (46%) of infections occurred in the second trimester. Six complications were observed: lymph node aspiration, lymph node excision, maternal bleeding, spontaneous abortion, intrauterine fetal demise, and preterm birth. No deaths among mothers were reported. Of 28 patients who received antimicrobial treatment, 1 pregnancy loss and 1 fetal death were reported. Among 24 untreated patients, 1 pregnancy loss and 3 fetal deaths were reported, including one where F. tularensis was detected in placental and fetal tissues. CONCLUSIONS: Pregnancy loss and other complications have been reported among cases of tularemia during pregnancy. However, risk of adverse outcomes may be lower when antimicrobials known to be effective are used. Without treatment, transplacental transmission appears possible. These data underscore the importance of prompt recognition and treatment of tularemia during pregnancy.


Subject(s)
Abortion, Spontaneous , Anti-Infective Agents , Francisella tularensis , Premature Birth , Tularemia , Humans , Female , Infant, Newborn , Pregnancy , Tularemia/complications , Tularemia/diagnosis , Tularemia/drug therapy , Placenta , Anti-Infective Agents/therapeutic use
16.
Clin Infect Dis ; 78(Suppl 1): S67-S70, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294110

ABSTRACT

Tularemia is caused by the highly infectious bacterium Francisella tularensis, which is recognized as a Tier 1 bioterrorism agent. Tularemia has a range of recognized clinical manifestations, but fewer than 20 bone or joint infections from 6 countries have been reported in the literature to date. This series includes 13 cases of F. tularensis septic arthritis or osteomyelitis in the United States during 2004-2023 and describes exposures, clinical presentation, diagnosis, and outcomes for this rare but severe form of tularemia. Clinicians should consider F. tularensis in patients with compatible exposures or a history of joint replacement or immunosuppression.


Subject(s)
Arthritis, Infectious , Francisella tularensis , Tularemia , Humans , United States/epidemiology , Tularemia/diagnosis , Tularemia/epidemiology , Tularemia/microbiology , Arthritis, Infectious/diagnosis , Arthritis, Infectious/epidemiology
17.
Clin Infect Dis ; 78(Suppl 1): S29-S37, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294115

ABSTRACT

BACKGROUND: Tularemia, a potentially fatal zoonosis caused by Francisella tularensis, has been reported from nearly all US states. Information on relative effectiveness of various antimicrobials for treatment of tularemia is limited, particularly for newer classes such as fluoroquinolones. METHODS: Data on clinical manifestations, antimicrobial treatment, and illness outcome of patients with tularemia are provided voluntarily through case report forms to the US Centers for Disease Control and Prevention by state and local health departments. We summarized available demographic and clinical information submitted during 2006-2021 and evaluated survival according to antimicrobial treatment. We grouped administered antimicrobials into those considered effective for treatment of tularemia (aminoglycosides, fluoroquinolones, and tetracyclines) and those with limited efficacy. Logistic regression models with a bias-reduced estimation method were used to evaluate associations between antimicrobial treatment and survival. RESULTS: Case report forms were available for 1163 US patients with tularemia. Francisella tularensis was cultured from a clinical specimen (eg, blood, pleural fluid) in approximately half of patients (592; 50.9%). Nearly three-quarters (853; 73.3%) of patients were treated with a high-efficacy antimicrobial. A total of 27 patients (2.3%) died. After controlling for positive culture as a proxy for illness severity, use of aminoglycosides, fluoroquinolones, and tetracyclines was independently associated with increased odds of survival. CONCLUSIONS: Most US patients with tularemia received high-efficacy antimicrobials; their use was associated with improved odds of survival regardless of antimicrobial class. Our findings provide supportive evidence that fluoroquinolones are an effective option for treatment of tularemia.


Subject(s)
Anti-Infective Agents , Francisella tularensis , Tularemia , Humans , Tularemia/drug therapy , Tularemia/epidemiology , Tularemia/prevention & control , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Fluoroquinolones/therapeutic use , Aminoglycosides/therapeutic use , Tetracyclines/therapeutic use
18.
Clin Infect Dis ; 78(Suppl 1): S55-S63, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294117

ABSTRACT

BACKGROUND: Neuroinvasive infection with Francisella tularensis, the causative agent of tularemia, is rare. Establishing clinical suspicion is challenging if risk factors or clinical features classically associated with tularemia are absent. Tularemia is treatable with antibiotics; however, there are limited data to inform management of potentially fatal neuroinvasive infection. METHODS: We collected epidemiologic and clinical data on 2 recent US cases of neuroinvasive F. tularensis infection, and performed a literature review of cases of neuroinvasive F. tularensis infection published after 1950. RESULTS: One patient presented with focal neurologic deficits and brain lesions; broad-range molecular testing on resected brain tissue detected F. tularensis. The other patient presented with meningeal signs; tularemia was suspected based on animal exposure, and F. tularensis grew in cerebrospinal fluid (CSF) culture. Both patients received combination antibiotic therapy and recovered from infection. Among 16 published cases, tularemia was clinically suspected in 4 cases. CSF often displayed lymphocytic pleocytosis. Among cases with available data, CSF culture was positive in 13 of 16 cases, and F. tularensis antibodies were detected in 11 of 11 cases. Treatment typically included an aminoglycoside combined with either a tetracycline or a fluoroquinolone. Outcomes were generally favorable. CONCLUSIONS: Clinicians should consider neuroinvasive F. tularensis infection in patients with meningitis and signs suggestive of tularemia or compatible exposures, lymphocyte-predominant CSF, unrevealing standard microbiologic workup, or lack of response to empiric bacterial meningitis treatment. Molecular testing, culture, and serologic testing can reveal the diagnosis. Favorable outcomes can be achieved with directed antibiotic treatment.


Subject(s)
Francisella tularensis , Meningitis , Tularemia , Animals , Humans , Tularemia/diagnosis , Tularemia/drug therapy , Tularemia/microbiology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/therapeutic use
19.
Clin Infect Dis ; 78(Suppl 1): S4-S6, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294116

ABSTRACT

Francisella tularensis is the causative agent of tularemia. We tested the susceptibility of 278 F. tularensis isolates from the United States received during 2009-2018 to 8 antimicrobial drugs (ciprofloxacin, levofloxacin, doxycycline, tetracycline, gentamicin, streptomycin, chloramphenicol, and erythromycin). All isolates were susceptible to all tested drugs.


Subject(s)
Francisella tularensis , Tularemia , Humans , United States/epidemiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Tularemia/epidemiology , Tularemia/drug therapy , Doxycycline/pharmacology , Doxycycline/therapeutic use
20.
Clin Infect Dis ; 78(Suppl 1): S64-S66, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294112

ABSTRACT

A male patient with distant history of extensive rabbit contact and pulmonary nodules for 6 years developed empyema. Francisella tularensis holarctica was isolated from thoracentesis fluid. Retrospective immunohistochemical examination of a pulmonary nodule, biopsied 3 years prior, was immunoreactive for F. tularensis. These findings suggest the potential for chronic tularemia.


Subject(s)
Francisella tularensis , Multiple Pulmonary Nodules , Tularemia , Animals , Humans , Male , Rabbits , Tularemia/diagnosis , Nebraska , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...