Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
2.
BMC Plant Biol ; 24(1): 186, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481155

ABSTRACT

BACKGROUND: Knowledge of genetic structure and the factors that shape it has an impact on forest management practices. European ash (Fraxinus excelsior L.) has declined dramatically throughout its range as a result of a disease caused by the fungus Hymenoscyphus fraxineus. Despite the need for conservation and restoration of the species, genetic data required to guide these efforts at the country level are scarce. Thereofore, we studied the chloroplast and nuclear genetic diversity of 26 natural common ash populations (1269 trees) in Poland. RESULTS: Chloroplast polymorphisms grouped the populations into two geographically structured phylogenetic lineages ascribed to different glacial refugia (the Balkans and the Eastern Alps). However, the populations demonstrated high genetic diversity (mean AR = 12.35; mean Ho = 0.769; mean He = 0.542) but low differentiation based on nuclear microsatellites (FST = 0.045). Significant spatial genetic structure, consistent with models of isolation by distance, was detected in 14 out of 23 populations. Estimated effective population size was moderate-to-high, with a harmonic mean of 57.5 individuals per population. CONCLUSIONS: Genetic diversity was not homogeneously distributed among populations within phylogenetic gene pools, indicating that ash populations are not equal as potential sources of reproductive material. Genetic differences among populations could be related to their histories, including founder effects or gene flow between evolutionary lineages (admixture). Our results suggest that ash stands across Poland could be treated as two main management units (seed zones). Therefore, despite the homogenizing effect of pollen gene flow known for this species, the genetic structure should be taken into account in the management of the genetic resources of the common ash. Although ash dieback poses an additional challenge for the management of genetic resources, efforts should be directed towards protecting populations with high genetic diversity within defined phylogenetic units, as they may be an important source of adaptive variation for future stands.


Subject(s)
Ascomycota , Fraxinus , Humans , Fraxinus/genetics , Fraxinus/microbiology , Poland , Phylogeny , Forests , Genetic Variation
3.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Article in English | MEDLINE | ID: mdl-38114080

ABSTRACT

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Fraxinus , Fungal Viruses , Plant Diseases , Fraxinus/microbiology , Fraxinus/virology , Plant Diseases/microbiology , Plant Diseases/virology , Plant Diseases/prevention & control , Fungal Viruses/physiology , Fungal Viruses/isolation & purification , Ascomycota/virology , Ascomycota/physiology , Virulence , Pest Control, Biological , Biological Control Agents
4.
Plant Dis ; 107(2): 344-349, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35822887

ABSTRACT

Herbaria are a promising but still poorly applied information source for retrospective microbiological studies. In order to find any evidence of the virulent European origin of ash dieback agent Hymenoscyphus fraxineus and other fungal pathogens, we analyzed 109 leaf samples from three different Estonian botanical herbaria, sampled during 171 years from 20 ash species and cultivars, using a PacBio third-generation sequencing of the fungal internal transcribed spacer ITS1-5.8S-ITS2 ribosomal DNA region. We identified a large amount of saprotrophic fungi naturally colonizing ash leaves. Hymenoscyphus fraxineus colonized a Fraxinus chinensis subsp. rhynchophylla specimen and a F. chinensis specimen collected from Tallinn Botanic Garden in July 1978 and July 1992, respectively. The samples originated from trees grown in this garden from seeds collected from Shamora, Far-East Russia, in 1961 and from a Beijing botanical garden in eastern China in 1985, respectively. Repeated subsequent DNA extraction, real-time quantitative PCR, and Sanger and Illumina sequencing confirmed our findings of these apparently oldest cases of the ash dieback agent in Europe. These results show that H. fraxineus evidently was present in Estonia 19 years earlier than our previous data from fungal herbaria documented and 14 years before the first visible damage of ash trees was registered in Poland. Because we found no evidence of the saprotrophic H. albidus from earlier mycological and botanical herbarium specimens, the presence of H. albidus in Estonia remains questionable.


Subject(s)
Ascomycota , Fraxinus , Retrospective Studies , Plant Diseases/microbiology , Europe , Ascomycota/genetics , Fraxinus/genetics , Fraxinus/microbiology , DNA, Intergenic
5.
Virus Res ; 320: 198901, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36058013

ABSTRACT

The native Japanese population of the fungus Hymenoscyphus fraxineus, the causal agent of ash dieback in Europe, was screened for viruses using a high-throughput sequencing method. Five RNA viruses were detected in 116 fungal isolates sequenced via Illumina RNA-seq platform, with an overall virus prevalence of 11.2%. The viruses were completely sequenced by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) followed by Sanger sequencing. The sequences appear to represent new species from three established families (Mito-, Endorna- and Partitiviridae), one recognized genus (Botybirnavirus) and a negative-sense single-stranded RNA virus in the order Bunyavirales from the proposed family "Mybuviridae". The highest prevalence was found for the mitovirus (7.8%), that had two genomic forms (linear and circular), while the other viruses were detected each in one isolate. Co-infection of a mitovirus and an endornavirus was also observed in one of the infected isolates. Here we describe the molecular characterization of the identified viruses. This study expands the diversity of viruses in H. fraxineus and provides the basis for investigating the virus-mediated control of ash dieback in Europe.


Subject(s)
Ascomycota , Fraxinus , Fungal Viruses , RNA Viruses , Fraxinus/microbiology , Humans , Plant Diseases/microbiology
6.
Phytochemistry ; 202: 113302, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35810877

ABSTRACT

An undescribed disubstituted dihydrofuranone, named diplofuranoxin, was isolated, together with the six well known metabolites sphaeropsidins A and C, epi-sphaeropsidone, mellein and cis- and trans-4-hydroxymelleins, from the fungal species Diplodia subglobosa, an emerging pathogen involved in the ash dieback aetiology in Europe. Currently, the disease represents the main threat to European ash heritage and the wood associated industry. Diplofuranoxin, was characterized essentially by NMR and HRESIMS spectra as (3Z)-3-(2,3-dihydroxybutylidene)-5-methyldihydrofuran-2(3H)-one. Its relative and absolute configuration was determined by joining NOESY NMR experiments and computational analysis of electronic circular dichroism spectrum. All the metabolites were screened for phytotoxic, antioomycetes and zootoxic activities and only sphaeropsidin A and epi-sphaeropsidone were active in two out of three bioassays performed. In addition, sphaeropsidin A completely inhibited mycelium growth of Phytophthora cambivora, whereas the inhibition rate of epi-sphaeropsidone was less than 50% at the higher concentration used. Both metabolites were inactive in the Artemia salina assay. Results obtained in this study have allowed to characterize for the first time the main metabolites produced in vitro by D. subglobosa and to increase the knowledge on the metabolic profile of Botryosphaeriaceae for a correct taxonomic classification of the strains belonging to this family.


Subject(s)
Fraxinus , Ascomycota , Diterpenes , Europe , Fraxinus/microbiology , Plant Diseases/microbiology
7.
Syst Appl Microbiol ; 45(4): 126333, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35605315

ABSTRACT

A group of isolates of the genus Luteimonas was characterised, which represented a specific component of the healthy core microbiome of Fraxinus excelsior in forest districts with a high infection rate of H. fraxineus, the causal agent of ash dieback. Based on phylogenomic and phenotypic analyses, a clear differentiation from related Luteimonas species was shown. Comparisons of the overall genome relatedness indices with the closest phylogenetic neighbours resulted in values below the recommended species cut-off levels. In addition, differences in several physiological and chemotaxonomic traits allowed a clear demarcation from the type strains of closely related species. Conclusively, the strain group was considered to represent a novel species in the genus Luteimonas, for which the name Luteimonas fraxinea sp. nov. is proposed, with strain D4P002T (=DSM 113273T = LMG 32455T) as the type strain. A functional analysis of the genome revealed features particularly associated with attachment, biofilm production and motility, indicating the ability of D4P002T to effectively colonise ash leaves. In nursery trials, ash seedlings inoculated with this strain showed suppression of the pathogen over a period of three years. This effect was accompanied by a significant shift in the bacterial microbiome of the plants. Altogether, the exclusive occurrence in the microbiome of tolerant ash trees, the genetic background and the results of the inoculation experiment suggest that strain D4P002T may suppress the penetration and spreading of H. fraxineus in or on ash leaves via colonisation resistance or trigger a priming effect of plant defences against the pathogen.


Subject(s)
Fraxinus , Xanthomonadaceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Fraxinus/genetics , Fraxinus/microbiology , Genomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Xanthomonadaceae/genetics
8.
Sci Rep ; 12(1): 4764, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35306516

ABSTRACT

European ash (Fraxinus excelsior) and narrow-leafed ash (F. angustifolia) are keystone forest tree species with a broad ecological amplitude and significant economic importance. Besides global warming both species are currently under significant threat by an invasive fungal pathogen that has been spreading progressively throughout the continent for almost three decades. Ash dieback caused by the ascomycete Hymenoscyphus fraxineus is capable of damaging ash trees of all age classes and often ultimately leads to the death of a tree after years of progressively developing crown defoliation. While studies at national and regional level already suggested rapid decline of ash populations as a result of ash dieback, a comprehensive survey at European level with harmonized crown assessment data across countries could shed more light into the population decline from a pan-European perspective and could also pave the way for a new conservation strategy beyond national boarders. Here we present data from the ICP Forests Level I crown condition monitoring from 27 countries resulting in > 36,000 observations. We found a substantial increase in defoliation and mortality over time indicating that crown defoliation has almost doubled during the last three decades. Hotspots of mortality are currently situated in southern Scandinavia and north-eastern Europe. Overall survival probability after nearly 30 years of infection has already reached a critical value of 0.51, but with large differences among regions (0.20-0.86). Both a Cox proportional hazard model as well as an Aalen additive regression model strongly suggest that survival of ash is significantly lower in locations with excessive water regime and which experienced more extreme precipitation events during the last two decades. Our results underpin the necessity for fast governmental action and joint rescue efforts beyond national borders since overall mean defoliation will likely reach 50% as early as 2030 as suggested by time series forecasting.


Subject(s)
Fraxinus , Animals , Europe, Eastern , Forests , Fraxinus/microbiology , Plant Diseases/microbiology , Scandinavian and Nordic Countries
9.
Int J Biometeorol ; 66(3): 493-506, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34761333

ABSTRACT

The ascomycete Hymenoscyphus fraxineus has spread across most of the host range of European ash with a high level of mortality, causing important economic, cultural and environmental effects. We present a novel method combining a Monte-Carlo approach with a generalised additive model that confirms the importance of meteorology to the magnitude and timing of H. fraxineus spore emissions. The variability in model selection and the relative degree to which our models are over- or under-fitting the data has been quantified. We find that both the daily magnitude and timing of spore emissions are affected by meteorology during and prior to the spore emission diurnal peak. We found the daily emission magnitude has the strongest associations to weekly average net radiation and leaf moisture before the emission, soil temperature during the day before emission and net radiation during the spore emission. The timing of the daily peak in spore emissions has the strongest associations to net radiation both during spore emission and in the day preceding the emission. The seasonal peak in spore emissions has a near-exponential increase/decrease, and the mean daily emission peak is approximately Gaussian.


Subject(s)
Ascomycota , Fraxinus , Meteorological Concepts , Spores, Fungal , Ascomycota/physiology , Fraxinus/microbiology
10.
Sci Rep ; 11(1): 15911, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354124

ABSTRACT

The microbiome composition of living organisms is closely linked to essential functions determining the fitness of the host for thriving and adapting to a particular ecosystem. Although multiple factors, including the developmental stage, the diet, and host-microbe coevolution have been reported to drive compositional changes in the microbiome structures, very few attempts have been made to disentangle their various contributions in a global approach. Here, we focus on the emerald ash borer (EAB), an herbivorous pest and a real threat to North American ash tree species, to explore the responses of the adult EAB gut microbiome to ash leaf properties, and to identify potential predictors of EAB microbial variations. The relative contributions of specific host plant properties, namely bacterial and fungal communities on leaves, phytochemical composition, and the geographical coordinates of the sampling sites, to the EAB gut microbial community was examined by canonical analyses. The composition of the phyllosphere microbiome appeared to be a strong predictor of the microbial community structure in EAB guts, explaining 53 and 48% of the variation in fungi and bacteria, respectively. This study suggests a potential covariation of the microorganisms associated with food sources and the insect gut microbiome.


Subject(s)
Coleoptera/microbiology , Fraxinus/microbiology , Gastrointestinal Microbiome/physiology , Animals , Bacteria , Environment , Environmental Microbiology , Insecta , Larva/physiology , Microbiota , Phytochemicals/pharmacology , Plant Leaves/metabolism , Trees/microbiology
11.
Fungal Biol ; 125(7): 551-559, 2021 07.
Article in English | MEDLINE | ID: mdl-34140151

ABSTRACT

The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.


Subject(s)
Coleoptera , Fraxinus , Fungi , Animals , Biodiversity , Coleoptera/microbiology , Fraxinus/microbiology , Fraxinus/parasitology , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Larva
12.
Int J Syst Evol Microbiol ; 70(12): 6508-6517, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174835

ABSTRACT

Phytoplasmas have been associated with a disease that affects trees of at least 11 species from different botanic families in Bogotá, Colombia. 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma fraxini' are the major groups of phytoplasma in the area of Bogotá. In this study, the genetic diversity within 'Ca. P. asteris' and 'Ca. P. fraxini' was studied in five urban tree species: Croton species (Euphorbiaceae), Fraxinus uhdei (Oleaceae), Magnolia grandiflora (Magnoliaceae), Populus nigra (Salicaceae) and Quercus humboldtii (Fagaceae). Analyses of the 16S rRNA gene using nested PCR, RFLP and sequencing showed that phytoplasmas of 'Ca. P. asteris' could be assigned to: subgroup 16SrI-B; a new subgroup named 16SrI-AF, with a restriction pattern similar to that of 16SrI-B; and a new subgroup named 16SrI-AG, with a restriction pattern similar to that of 16SrI-K and 16SrI-AH with a restriction pattern similar to that of 16SrI-AC. 'Ca. P. fraxini' isolates belonged to a new subgroup named 16SrVII-G, with a restriction pattern similar to that of 16SrVII-A. To complement the identification of the phytoplasma strains, we amplified nonribosomal genes such as leuS and secA. Unexpectedly, it was observed that in 16 trees in which 16S rRNA gene analysis showed the presence of 'Ca. P. fraxini' only, the leuS or secA primers amplified sequences exclusively affiliated to 'Ca. P. asteris. In those plants, sequences belonging to 'Ca. P. fraxini' leuS or secA genes were not amplified. The present work contributes to the identification of novel strains of both species in Colombia, and supports previous suggestions that phytoplasmas in South America are highly variable.


Subject(s)
Phylogeny , Phytoplasma/classification , Plant Diseases/microbiology , Trees/microbiology , Bacterial Typing Techniques , Base Composition , Cities , Colombia , Croton/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fraxinus/microbiology , Magnolia/microbiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Populus/microbiology , Quercus/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
BMC Plant Biol ; 20(1): 455, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023496

ABSTRACT

BACKGROUND: With the expanding ash dieback epidemic that has spread across the European continent, an improved functional understanding of the disease development in afflicted hosts is needed. The study investigated whether differences in necrosis extension between common ash (Fraxinus excelsior) trees with different levels of susceptibility to the fungus Hymenoscyphus fraxineus are associated with, and can be explained by, the differences in gene expression patterns. We inoculated seemingly healthy branches of each of two resistant and susceptible ash genotypes with H. fraxineus grown in a common garden. RESULTS: Ten months after the inoculation, the length of necrosis on the resistant genotypes were shorter than on the susceptible genotypes. RNA sequencing of bark samples collected at the border of necrotic lesions and from healthy tissues distal to the lesion revealed relatively limited differences in gene expression patterns between susceptible and resistant genotypes. At the necrosis front, only 138 transcripts were differentially expressed between the genotype categories while 1082 were differentially expressed in distal, non-symptomatic tissues. Among these differentially expressed genes, several genes in the mevalonate (MVA) and iridoid pathways were found to be co-regulated, possibly indicating increased fluxes through these pathways in response to H. fraxineus. Comparison of transcriptional responses of symptomatic and non-symptomatic ash in a controlled greenhouse experiment revealed a relatively small set of genes that were differentially and concordantly expressed in both studies. This gene-set included the rate-limiting enzyme in the MVA pathway and a number of transcription factors. Furthermore, several of the concordantly expressed candidate genes show significant similarity to genes encoding players in the abscisic acid- or Jasmonate-signalling pathways. CONCLUSIONS: A set of candidate genes, concordantly expressed between field and greenhouse experiments, was identified. The candidates are associated with hormone signalling and specialized metabolite biosynthesis pathways indicating the involvement of these pathways in the response of the host to infection by H. fraxineus.


Subject(s)
Ascomycota , Fraxinus/genetics , Fraxinus/microbiology , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Susceptibility , Gene Expression Profiling , Plant Necrosis and Chlorosis , Transcription, Genetic
14.
Sci Rep ; 10(1): 5310, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210276

ABSTRACT

Determining the impacts of invasive pathogens on tree mortality and growth is a difficult task, in particular in the case of species occurring naturally at low frequencies in mixed stands. In this study, we quantify such effects by comparing national forest inventory data collected before and after pathogen invasion. In Norway, Fraxinus excelsior is a minor species representing less than 1% of the trees in the forests and being attacked by the invasive pathogen Hymenoscyphus fraxineus since 2006. By studying deviations between inventories, we estimated a 74% higher-than-expected average ash mortality and a 13% slower-than-expected growth of the surviving ash trees, indicating a lack of compensation by the remaining ash. We could confidently assign mortality and growth losses to ash dieback as no mortality or growth shifts were observed for co-occurring tree species in the same plots. The mortality comparisons also show regional patterns with higher mortality in areas with the longest disease history in Norway. Considering that ash is currently mostly growing in mixed forests and that no signs of compensation were observed by the surviving ash trees, a significant habitat loss and niche replacement could be anticipated in the mid-term.


Subject(s)
Ascomycota/pathogenicity , Fraxinus/growth & development , Plant Diseases/microbiology , Trees/growth & development , Virulence , Biodiversity , Fraxinus/microbiology , Trees/microbiology
15.
J Agric Food Chem ; 67(49): 13617-13623, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31661270

ABSTRACT

A new tetrasubstituted octanoic acid, named hyfraxinic acid (1), was isolated together with known 1-deoxyviridiol (2), viridiol (3), nodulisporiviridin M (4), and demethoxyviridiol (5) from the organic extract of Hymenoscyphus fraxineus responsible for ash (Fraxinus excelsior L.) dieback in Europe. Hyfraxinic acid (1) was characterized, using spectroscopic methods, as 2,4-dihydroxy-7-methyl-6-methyleneoctanoic acid. Furthermore, the advanced Mosher method was used to determine the absolute configuration (3R) of 1-deoxyviridiol. Nodulisporiviridin M (4) was isolated for the first time from H. fraxineus. The phytotoxicity of each compound was tested by a leaf puncture assay on Celtis australis L., Quercus suber L., Hedera elix L., Juglans regia L., and Fraxinus angustifolia L. leaves. Compounds 1, 3, and 5 exhibited remarkable phytotoxicity on all plants tested, inducing necrotic lesions at concentrations of 1.0 and 0.5 mg/mL, while compounds 2 and 4 were found to be inactive in this bioassay. These results could contribute to a deeper understanding of the pathogenicity of H. fraxineus.


Subject(s)
Androstenediols/chemistry , Androstenediols/metabolism , Ascomycota/metabolism , Caprylates/chemistry , Caprylates/metabolism , Fraxinus/microbiology , Plant Diseases/microbiology , Androstenediols/toxicity , Ascomycota/pathogenicity , Caprylates/toxicity , Juglans/drug effects , Molecular Structure , Quercus/drug effects , Virulence
16.
PLoS One ; 14(7): e0219166, 2019.
Article in English | MEDLINE | ID: mdl-31291304

ABSTRACT

Habitat heterogeneity is an important driver of aboveground species diversity but few studies have investigated effects on soil communities. Trees shape their surrounding by both leaf litter and roots generating small scale heterogeneity and potentially governing community patterns of soil organisms. To assess the role of vegetation for the soil fauna, we studied whether tree species (Fagus sylvatica L., Acer pseudoplatanus L., Fraxinus excelsior L., Tilia cordata Mill.), markedly differing in leaf litter quality and root associated mycorrhizal symbionts, affect oribatid mite communities by shaping below- and aboveground resources and habitat complexity and availability. Oribatid mite abundance, species richness, community structure and the proportion of litter living and parthenogenetic individuals were analyzed and related to microbial biomass and the amount of remaining litter mass. Although leaf litter species with higher nutritional values decomposed considerably faster, microbial biomass only slightly differed between leaf litter species. Neither root species nor leaf litter species affected abundance, species richness or community structure of oribatid mites. However, root species had an effect on the proportion of parthenogenetic individuals with increased proportions in the presence of beech roots. Overall, the results suggest that identity and diversity of vegetation via leaf litter or roots are of minor importance for structuring oribatid mite communities of a temperate forest ecosystem.


Subject(s)
Mites/growth & development , Mycorrhizae/growth & development , Plant Leaves/classification , Plant Roots/classification , Acer/classification , Acer/microbiology , Animals , Biomass , Ecosystem , Fagus/classification , Fagus/microbiology , Fraxinus/classification , Fraxinus/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Population Dynamics , Species Specificity , Symbiosis , Tilia/classification , Tilia/microbiology
17.
Curr Biol ; 29(9): R315-R316, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31063720

ABSTRACT

Invasive tree pests and diseases present some of the greatest global threats to forests, and the recent global acceleration in invasions has caused massive ecological damage [1,2]. Calls to improve biosecurity have, however, often lost out to economic arguments in favour of trade [3]. Human activities, such as trade, move organisms between continents, and interventions to reduce risk of introductions inevitably incur financial costs. No previous studies have attempted to estimate the full economic cost of a tree disease, and the economic imperative to improve biosecurity may have been underappreciated. We set out to estimate the cost of the dieback of ash, Fraxinus excelsior, caused by Hymenoscyphus fraxineus, in Great Britain, and investigate whether this may be the case [4].


Subject(s)
Ascomycota/physiology , Forestry/economics , Fraxinus/microbiology , Plant Diseases/economics , Plant Diseases/microbiology , United Kingdom
18.
Mycorrhiza ; 29(2): 85-96, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30547252

ABSTRACT

In forest ecosystems, ectomycorrhizal (ECM) fungi are important for plant growth and soil biogeochemical processes. The biochemical composition of ECM mycelium is an important fungal effect trait with consequences for its decomposition rate, and consequently on soil carbon pools and plant nutrition. Although the link between ECM fungi and leaf litter-released nutrients is well known, the response of ECM fungal biochemical composition to different leaf litter species remains poorly understood. To determine how leaf litter quality influences ECM fungi's biochemical profiles, we planted young beech trees in an oak forest and replaced the natural leaf litter with that of European beech (Fagus sylvatica), ash (Fraxinus excelsior), maple (Acer pseudoplatanus), or lime (Tilia cordata). We assessed the biochemical profiles of ECM root tips colonized by common fungal taxa in temperate forests (i.e., Cenococcum geophilum, Inocybe sp., and Lactarius subdulcis), using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). ECM fungal biochemical composition changed with leaf litter species. Changes were apparent in the infrared absorption bands assigned to functional groups of lipids, amides, and carbohydrates. C. geophilum and L. subdulcis exhibited large spectral differences corresponding to the initial pattern of leaf litter chemical composition between samples collected in the beech and ash leaf litter treatments. In contrast, Inocybe sp. was influenced by lime, but with no differences between samples from ash or beech leaf litter treatments. Although the spectral bands affected by leaf litter type differed among ECM fungi, they were mainly related to amides, indicating a dynamic response of the fungal proteome to soil nutritional changes. Overall, the results indicate that the biochemical response of ECM fungi to leaf litter species varies among ECM fungal species and suggests that the biochemical composition of ECM mycelium is a fungal response trait, sensitive to environmental changes such as shifts in leaf litter species.


Subject(s)
Forests , Mycorrhizae/chemistry , Plant Leaves/microbiology , Soil Microbiology , Trees/microbiology , Acer/microbiology , Biomass , Fagus/microbiology , Fraxinus/microbiology , Germany , Species Specificity , Tilia/microbiology
20.
Sci Rep ; 8(1): 17448, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30487524

ABSTRACT

Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.


Subject(s)
Epidemics , Phenotype , Plant Diseases/microbiology , Spectrum Analysis , Disease Susceptibility , Europe , Fraxinus/genetics , Fraxinus/microbiology , Geography , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...