Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980086

ABSTRACT

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Subject(s)
Cerebellar Ataxia , Humans , Cerebellar Ataxia/drug therapy , Cerebellar Ataxia/genetics , Genetic Therapy/methods , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Friedreich Ataxia/therapy
2.
Mov Disord ; 39(7): 1099-1108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696306

ABSTRACT

BACKGROUND: Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES: Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS: 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS: Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/µg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/µg), relative controls (10.1 pg/µg), and FRDA patients (5.7 pg/µg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS: Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Calcitriol , Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Humans , Friedreich Ataxia/drug therapy , Male , Female , Calcitriol/pharmacology , Calcitriol/administration & dosage , Adult , Middle Aged , Young Adult , Quality of Life , Adolescent , Treatment Outcome
4.
Expert Opin Pharmacother ; 25(5): 529-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622054

ABSTRACT

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Humans , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Genetic Therapy/methods , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Iron-Binding Proteins/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Triterpenes
5.
Sci Rep ; 14(1): 8391, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600238

ABSTRACT

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.


Subject(s)
Frataxin , Friedreich Ataxia , Humans , Animals , Mice , Heart , Protein Processing, Post-Translational , Liver/metabolism , Genetic Therapy , Iron-Binding Proteins/metabolism , Friedreich Ataxia/therapy , Friedreich Ataxia/drug therapy
6.
Curr Pharm Des ; 30(19): 1472-1489, 2024.
Article in English | MEDLINE | ID: mdl-38638052

ABSTRACT

BACKGROUND: Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.


Subject(s)
Friedreich Ataxia , Iron-Binding Proteins , Friedreich Ataxia/drug therapy , Friedreich Ataxia/metabolism , Humans , Iron-Binding Proteins/metabolism , Frataxin , Animals
7.
Ann Clin Transl Neurol ; 11(3): 540-553, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311797

ABSTRACT

OBJECTIVE: Current treatments for Friedreich's ataxia, a neurodegenerative disorder characterized by decreased intramitochondrial frataxin, do not address low frataxin concentrations. Nomlabofusp (previously CTI-1601) is a frataxin replacement therapy with a unique mechanism of action that directly addresses this underlying frataxin deficiency. Phase 1 studies assessed the safety, pharmacokinetic, and pharmacodynamic profiles of subcutaneously administered nomlabofusp in adults with Friedreich's ataxia. METHODS: Patients were enrolled in two Phase 1, double-blind, placebo-controlled studies. The single ascending-dose (SAD) study (NCT04176991) evaluated single doses of nomlabofusp (25, 50, 75, or 100 mg) or placebo. The multiple ascending-dose (MAD) study (NCT04519567) evaluated nomlabofusp (25 mg daily for 4 days then every third day, 50 mg daily for 7 days then every 2 days, or 100 mg daily) or placebo for 13 days. RESULTS: Patients aged 19-69 years were enrolled (SAD, N = 28; MAD, N = 27). Nomlabofusp was generally well tolerated through 13 days. Most adverse events were mild and resolved quickly. No serious adverse events or deaths were reported. Peak nomlabofusp plasma concentrations occurred 15 min after subcutaneous administration. Nomlabofusp plasma exposures increased with increasing doses and daily administration and decreased with reduced dosing frequency. Increased frataxin concentrations were observed in buccal cells, skin, and platelets with higher and more frequent nomlabofusp administration. INTERPRETATION: Results from this study support a favorable safety profile for nomlabofusp. Subcutaneous nomlabofusp injections were quickly absorbed; higher doses and daily administration resulted in increased tissue frataxin concentrations. Future studies will evaluate longer-term safety and possible efficacy of nomlabofusp.


Subject(s)
Friedreich Ataxia , Adult , Humans , Frataxin , Friedreich Ataxia/drug therapy , Mouth Mucosa , Young Adult , Middle Aged , Aged
8.
Expert Rev Neurother ; 24(3): 251-258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269532

ABSTRACT

INTRODUCTION: Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED: The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION: Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.


Subject(s)
Friedreich Ataxia , Triterpenes , Humans , Friedreich Ataxia/drug therapy , Triterpenes/therapeutic use
9.
Trends Mol Med ; 30(2): 117-125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38272714

ABSTRACT

Friedreich ataxia (FA) is an inherited autosomal recessive neurodegenerative disease (NDD) characterized primarily by progressive sensory and spinocerebellar ataxia associated with hypertrophic cardiomyopathy. FA is due to an intronic GAA repeat expansion within the frataxin gene (FXN) leading to reduced levels of frataxin (FXN) which causes mitochondrial dysfunction, production of reactive oxygen species (ROS), and altered iron metabolism. To date there is no resolutive cure for FA; however, the FDA has recently approved omaveloxolone - a potent activator of nuclear factor erythroid 2-related factor 2 (NRF2) - as the first treatment for FA. We discuss herein the urgency to find a resolutive cure for NDDs that will most probably be achieved via combinatorial therapy targeting multiple disease pathways, and how omavaloxolone serves as an example for future treatments.


Subject(s)
Cardiomyopathy, Hypertrophic , Friedreich Ataxia , Neurodegenerative Diseases , Triterpenes , Humans , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Triterpenes/therapeutic use , Frataxin
10.
Rev. esp. anestesiol. reanim ; 70(6): 362-365, Jun-Jul. 2023. tab
Article in Spanish | IBECS | ID: ibc-221252

ABSTRACT

Paciente de 26 años afecto de ataxia de Friederich con una miocardiopatía hipertrófica no obstructiva sometido a una tiroidectomía total por una tirotoxicosis secundaria a amiodarona persistente (a pesar de elevadas dosis de antitiroideos y corticoides), que intraoperatoriamente presentó un episodio sugestivo de tormenta tiroidea.La tormenta tiroidea es una urgencia endocrinológica que asocia una elevada morbimortalidad. Para mejorar la supervivencia es de vital importancia un diagnóstico temprano y un tratamiento precoz que incluya: un tratamiento sintomático, el tratamiento de las manifestaciones cardiovasculares, neurológicas y/o hepáticas y de la tirotoxicosis, así como suprimir o evitar estímulos desencadenantes y practicar un tratamiento definitivo.(AU)


A 26-year-old patient with Friederich's ataxia with hypertrophic obstructive cardiomyopathy undergoing a total thyroidectomy due to persistent amiodarone-induced thyrotoxicosis (despite high doses of antithyroid drugs and corticosteroids), presented an intraoperative episode suggestive of thyroid storm.Thyroid storm is an endocrine emergency that is associated with high morbimortality. Early diagnosis and treatment, which is of vital importance to improve survival. Treatment includes: symptomatic treatment, treatment of cardiovascular, neurological, and/or hepatic manifestations and thyrotoxicosis, measures to suppress or avoid triggering stimuli, and definitive treatment.(AU)


Subject(s)
Humans , Male , Adult , Friedreich Ataxia/complications , Friedreich Ataxia/drug therapy , Thyroid Crisis/complications , Thyroid Crisis/drug therapy , Cardiomyopathy, Hypertrophic , Thyrotoxicosis , Amiodarone , Anesthesia , Anesthesiology , Treatment Outcome , Inpatients , Physical Examination , Symptom Assessment
13.
Medicina (B Aires) ; 73 Suppl 1: 49-54, 2013.
Article in Spanish | BINACIS | ID: bin-132953

ABSTRACT

Autosomal recessive cerebellar ataxias belong to a broader group of disorders known as inherited ataxias. In most cases onset occurs before the age of 20. These neurological disorders are characterized by degeneration or abnormal development of the cerebellum and spinal cord. Currently, specific treatment is only available for some of the chronic ataxias, more specifically those related to a known metabolic defect, such as abetalipoproteinemia, ataxia with vitamin E deficiency, and cerebrotendinous xanthomatosis. Treatment based on a diet with reduced intake of fat, supplementation of oral vitamins E and A, and the administration of chenodeoxycholic acid could modify the course of the disease. Although for most of autosomal recessive ataxias there is no definitive treatment, iron chelators and antioxidants have been proposed to reduce the mitochondrial iron overload in Friederichs ataxia patients. Corticosteroids have been used to reduce ataxia symptoms in ataxia telangiectasia. Coenzyme Q10 deficiency associated with ataxia may be responsive to Co Q10 or ubidecarenone supplementations. Early treatment of these disorders may be associated with a better drug response.


Subject(s)
Cerebellar Ataxia/drug therapy , Adrenal Cortex Hormones/therapeutic use , Ataxia/drug therapy , Cerebellar Ataxia/etiology , Chronic Disease , Friedreich Ataxia/drug therapy , Humans , Iron-Binding Proteins/physiology , Mitochondrial Diseases/drug therapy , Muscle Weakness/drug therapy , Ubiquinone/deficiency , Vitamin E/therapeutic use , Vitamin E Deficiency/complications
14.
Medicina (B.Aires) ; 73 Suppl 1: 49-54, 2013.
Article in Spanish | LILACS, BINACIS | ID: biblio-1165148

ABSTRACT

Autosomal recessive cerebellar ataxias belong to a broader group of disorders known as inherited ataxias. In most cases onset occurs before the age of 20. These neurological disorders are characterized by degeneration or abnormal development of the cerebellum and spinal cord. Currently, specific treatment is only available for some of the chronic ataxias, more specifically those related to a known metabolic defect, such as abetalipoproteinemia, ataxia with vitamin E deficiency, and cerebrotendinous xanthomatosis. Treatment based on a diet with reduced intake of fat, supplementation of oral vitamins E and A, and the administration of chenodeoxycholic acid could modify the course of the disease. Although for most of autosomal recessive ataxias there is no definitive treatment, iron chelators and antioxidants have been proposed to reduce the mitochondrial iron overload in Friederich’s ataxia patients. Corticosteroids have been used to reduce ataxia symptoms in ataxia telangiectasia. Coenzyme Q10 deficiency associated with ataxia may be responsive to Co Q10 or ubidecarenone supplementations. Early treatment of these disorders may be associated with a better drug response.


Subject(s)
Cerebellar Ataxia/drug therapy , Cerebellar Ataxia/etiology , Friedreich Ataxia/drug therapy , Ataxia/drug therapy , Adrenal Cortex Hormones/therapeutic use , Muscle Weakness/drug therapy , Vitamin E Deficiency/complications , Chronic Disease , Mitochondrial Diseases/drug therapy , Humans , Iron-Binding Proteins/physiology , Ubiquinone/deficiency , Vitamin E/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL