Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(9): e5099, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39145409

ABSTRACT

The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.


Subject(s)
Tauopathies , tau Proteins , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism , Humans , Tauopathies/genetics , Tauopathies/metabolism , Mutation , Protein Conformation , Protein Multimerization , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism
2.
Sci Signal ; 17(848): eadl1030, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106320

ABSTRACT

Hexanucleotide repeat expansion in the C9ORF72 gene is the most frequent inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion results in multiple dipeptide repeat proteins, among which arginine-rich poly-GR proteins are highly toxic to neurons and decrease the rate of protein synthesis. We investigated whether the effect on protein synthesis contributes to neuronal dysfunction and degeneration. We found that the expression of poly-GR proteins inhibited global translation by perturbing translation elongation. In iPSC-differentiated neurons, the translation of transcripts with relatively slow elongation rates was further slowed, and stalled, by poly-GR. Elongation stalling increased ribosome collisions and induced a ribotoxic stress response (RSR) mediated by ZAKα that increased the phosphorylation of the kinase p38 and promoted cell death. Knockdown of ZAKα or pharmacological inhibition of p38 ameliorated poly-GR-induced toxicity and improved the survival of iPSC-derived neurons from patients with C9ORF72-ALS/FTD. Our findings suggest that targeting the RSR may be neuroprotective in patients with ALS/FTD caused by repeat expansion in C9ORF72.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Neurons , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Neurons/metabolism , Neurons/pathology , Induced Pluripotent Stem Cells/metabolism , DNA Repeat Expansion/genetics , Peptide Chain Elongation, Translational , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Stress, Physiological/genetics , Ribosomes/metabolism , Ribosomes/genetics
3.
Subcell Biochem ; 104: 485-501, 2024.
Article in English | MEDLINE | ID: mdl-38963497

ABSTRACT

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/chemistry , Humans , Protein Multimerization , Animals , Mutation , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Muscular Dystrophies, Limb-Girdle
4.
ACS Chem Neurosci ; 15(16): 3009-3021, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39084211

ABSTRACT

The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aß42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.


Subject(s)
Inflammasomes , Organoids , Prefrontal Cortex , Humans , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Organoids/drug effects , Inflammasomes/metabolism , Neuroprotective Agents/pharmacology , Space Flight , Weightlessness , Neurodegenerative Diseases , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/metabolism
5.
Proc Natl Acad Sci U S A ; 121(31): e2220020121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042693

ABSTRACT

Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , G-Quadruplexes , RNA-Binding Proteins , RNA , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Binding , Protein Biosynthesis , RNA/metabolism , RNA/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
6.
Nat Commun ; 15(1): 6125, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033178

ABSTRACT

Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.


Subject(s)
Frontotemporal Dementia , Haploinsufficiency , Lysosomes , Progranulins , Proteome , Progranulins/metabolism , Progranulins/genetics , Animals , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/drug therapy , Proteome/metabolism , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Brain/metabolism , Brain/drug effects , Vorinostat/pharmacology
7.
Mol Neurodegener ; 19(1): 46, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862967

ABSTRACT

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.


Subject(s)
Disease Progression , Frontotemporal Dementia , Mice, Transgenic , RNA-Binding Protein FUS , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Brain/pathology , Disease Models, Animal , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , Protein Aggregation, Pathological/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics
8.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38906677

ABSTRACT

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Frontotemporal Dementia , Kelch-Like ECH-Associated Protein 1 , Mitochondria , NF-E2-Related Factor 2 , Oxidative Stress , Phenotype , Signal Transduction , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Mitochondria/metabolism , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Reactive Oxygen Species/metabolism , Mitophagy/genetics , Dimethyl Fumarate/pharmacology , Male
9.
Cell Signal ; 121: 111269, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909930

ABSTRACT

Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.


Subject(s)
Glutamic Acid , Mice, Transgenic , Synaptosomes , tau Proteins , Animals , tau Proteins/metabolism , Glutamic Acid/metabolism , Synaptosomes/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Disease Models, Animal , Calcium/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , Tauopathies/metabolism , Tauopathies/drug therapy , Humans , Methylene Blue/analogs & derivatives
11.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38858079

ABSTRACT

Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.


Subject(s)
Dendritic Spines , Frontotemporal Dementia , Mutation , Protein Isoforms , tau Proteins , tau Proteins/metabolism , tau Proteins/genetics , Animals , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Rats , Male , Humans , Female , Protein Isoforms/genetics , Protein Isoforms/metabolism , Synapses/metabolism , Synapses/pathology , Rats, Sprague-Dawley , Hippocampus/metabolism , Hippocampus/pathology , Cells, Cultured
12.
Cell Rep ; 43(7): 114375, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38935506

ABSTRACT

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this genetic mutation leads to neurodegeneration remains largely unknown. Using CRISPR-Cas9 technology, we deleted EXOC2, which encodes an essential exocyst subunit, in induced pluripotent stem cells (iPSCs) derived from C9ORF72-ALS/FTD patients. These cells are viable owing to the presence of truncated EXOC2, suggesting that exocyst function is partially maintained. Several disease-relevant cellular phenotypes in C9ORF72 iPSC-derived motor neurons are rescued due to, surprisingly, the decreased levels of dipeptide repeat (DPR) proteins and expanded G4C2 repeats-containing RNA. The treatment of fully differentiated C9ORF72 neurons with EXOC2 antisense oligonucleotides also decreases expanded G4C2 repeats-containing RNA and partially rescued disease phenotypes. These results indicate that EXOC2 directly or indirectly regulates the level of G4C2 repeats-containing RNA, making it a potential therapeutic target in C9ORF72-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Dementia , Induced Pluripotent Stem Cells , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Induced Pluripotent Stem Cells/metabolism , DNA Repeat Expansion/genetics , Motor Neurons/metabolism , Motor Neurons/pathology
13.
PLoS One ; 19(5): e0303111, 2024.
Article in English | MEDLINE | ID: mdl-38768188

ABSTRACT

BACKGROUND: The use of amyloid-PET in dementia workup is upcoming. At the same time, amyloid-PET is costly and limitedly available. While the appropriate use criteria (AUC) aim for optimal use of amyloid-PET, their limited sensitivity hinders the translation to clinical practice. Therefore, there is a need for tools that guide selection of patients for whom amyloid-PET has the most clinical utility. We aimed to develop a computerized decision support approach to select patients for amyloid-PET. METHODS: We included 286 subjects (135 controls, 108 Alzheimer's disease dementia, 33 frontotemporal lobe dementia, and 10 vascular dementia) from the Amsterdam Dementia Cohort, with available neuropsychology, APOE, MRI and [18F]florbetaben amyloid-PET. In our computerized decision support approach, using supervised machine learning based on the DSI classifier, we first classified the subjects using only neuropsychology, APOE, and quantified MRI. Then, for subjects with uncertain classification (probability of correct class (PCC) < 0.75) we enriched classification by adding (hypothetical) amyloid positive (AD-like) and negative (normal) PET visual read results and assessed whether the diagnosis became more certain in at least one scenario (PPC≥0.75). If this was the case, the actual visual read result was used in the final classification. We compared the proportion of PET scans and patients diagnosed with sufficient certainty in the computerized approach with three scenarios: 1) without amyloid-PET, 2) amyloid-PET according to the AUC, and 3) amyloid-PET for all patients. RESULTS: The computerized approach advised PET in n = 60(21%) patients, leading to a diagnosis with sufficient certainty in n = 188(66%) patients. This approach was more efficient than the other three scenarios: 1) without amyloid-PET, diagnostic classification was obtained in n = 155(54%), 2) applying the AUC resulted in amyloid-PET in n = 113(40%) and diagnostic classification in n = 156(55%), and 3) performing amyloid-PET in all resulted in diagnostic classification in n = 154(54%). CONCLUSION: Our computerized data-driven approach selected 21% of memory clinic patients for amyloid-PET, without compromising diagnostic performance. Our work contributes to a cost-effective implementation and could support clinicians in making a balanced decision in ordering additional amyloid PET during the dementia workup.


Subject(s)
Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Male , Female , Aged , Middle Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Imaging/methods , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/metabolism , Dementia, Vascular/diagnostic imaging , Dementia, Vascular/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Amyloid/metabolism
14.
Nucleic Acids Res ; 52(11): 6707-6717, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38738637

ABSTRACT

The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Šresolution) and in the free form (0.92 and 1.5 Šresolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Ligands , RNA, Antisense/genetics , RNA, Antisense/chemistry , RNA, Antisense/metabolism , Nucleic Acid Conformation , DNA Repeat Expansion/genetics , Crystallography, X-Ray , Models, Molecular
15.
Stem Cell Res ; 78: 103447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796984

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Clinical heterogeneity and complex genetics pose challenges to understanding disease mechanisms and producing effective cures. To model clinical heterogeneity, we generated human induced pluripotent stem cells (iPSCs) from two sporadic ALS patients (sporadic ALS and sporadic ALS with frontotemporal dementia), two familial ALS patients (familial SOD1 mutation positive and familial C9orf72 repeat expansion positive), and four age- and sex-matched healthy controls. These iPSCs can be used to generate 2D and 3D in vitro models of ALS to investigate mechanisms of disease and screen for therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Female , Male , Cell Line , Middle Aged
16.
Biochem Soc Trans ; 52(3): 961-972, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38813817

ABSTRACT

The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Nuclear Matrix-Associated Proteins , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Nuclear Matrix-Associated Proteins/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , DNA-Binding Proteins/metabolism , Animals , DNA Damage , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/chemistry
17.
Nat Rev Neurol ; 20(6): 364-376, 2024 06.
Article in English | MEDLINE | ID: mdl-38769202

ABSTRACT

Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Phenotype , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/metabolism , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Biomarkers/metabolism
18.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791483

ABSTRACT

Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.


Subject(s)
Alzheimer Disease , DNA Methylation , Epigenesis, Genetic , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Female , Male , Middle Aged , Brain/metabolism , Brain/pathology , Genome-Wide Association Study , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , CpG Islands/genetics , Cell Line , Lymphocytes/metabolism
19.
PLoS One ; 19(5): e0301267, 2024.
Article in English | MEDLINE | ID: mdl-38753768

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Cerebellum , Frontal Lobe , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
20.
Nucleus ; 15(1): 2349085, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38700207

ABSTRACT

The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Neurodegenerative Diseases , Humans , Endosomal Sorting Complexes Required for Transport/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Animals , Cell Nucleus/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Dementia/genetics , Endosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL