Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.624
Filter
1.
Alzheimers Res Ther ; 16(1): 107, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734612

ABSTRACT

BACKGROUND: The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center. METHODS: Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aß42, Aß42/Aß40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information. RESULTS: Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis. CONCLUSIONS: In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Frontotemporal Lobar Degeneration , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/diagnosis , Amyloid beta-Peptides/blood , tau Proteins/blood , Female , Male , Aged , Peptide Fragments/blood , Middle Aged , Neurofilament Proteins/blood
2.
J Alzheimers Dis ; 99(2): 577-593, 2024.
Article in English | MEDLINE | ID: mdl-38701145

ABSTRACT

Background: Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) account for the vast majority of neurodegenerative dementias. AD and FTLD have different clinical phenotypes with a genetic overlap between them and other dementias. Objective: This study aimed to identify the genetic spectrum of sporadic AD and FTLD in the Chinese population. Methods: A total of 74 sporadic AD and 29 sporadic FTLD participants were recruited. All participants underwent whole-exome sequencing (WES) and testing for a hexanucleotide expansion in C9orf72 was additionally performed for participants with negative WES results. Results: Four known pathogenic or likely pathogenic variants, including PSEN1 (p.G206D), MAPT (p.R5H), LRRK2 (p.W1434*), and CFAP43 (p.C934*), were identified in AD participants, and 1 novel pathogenic variant of ANXA11 (p.D40G) and two known likely pathogenic variants of MAPT (p.D177V) and TARDBP (p.I383V) were identified in FTLD participants. Twenty-four variants of uncertain significance as well as rare variants in risk genes for dementia, such as ABCA7, SORL1, TRPM7, NOS3, MPO, and DCTN1, were also found. Interestingly, several variants in participants with semantic variant primary progressive aphasia were detected. However, no participants with C9orf72 gene variants were found in the FTLD cohort. Conclusions: There was a high frequency of genetic variants in Chinese participants with sporadic AD and FTLD and a complex genetic overlap between these two types of dementia and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Asian People , Frontotemporal Lobar Degeneration , Genetic Testing , Humans , Male , Female , Alzheimer Disease/genetics , Frontotemporal Lobar Degeneration/genetics , Aged , Genetic Testing/methods , Asian People/genetics , Middle Aged , Exome Sequencing , China/epidemiology , C9orf72 Protein/genetics , Aged, 80 and over , Genetic Predisposition to Disease/genetics , East Asian People
3.
JAMA Netw Open ; 7(4): e244266, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558141

ABSTRACT

Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Adult , Aged , Female , Humans , Male , Middle Aged , Cohort Studies , Frontotemporal Dementia/diagnosis , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Lobar Degeneration/psychology , Neuropsychological Tests , Reproducibility of Results , Smartphone , Clinical Trials as Topic
4.
Brain Nerve ; 76(4): 343-351, 2024 Apr.
Article in Japanese | MEDLINE | ID: mdl-38589279

ABSTRACT

A definite diagnosis of neurodegenerative diseases is required for neuropathological examination during an autopsy. Each neurodegenerative disease has specific vulnerable regions and affected systems (system degeneration), and is typified by an accumulation of abnormal protein with the formation of characteristic morphological aggregates in the nerve and glial cells, called proteinopathy. The most common neurodegenerative diseases are tauopathy, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD); α-synucleinopathy, including multiple system atrophy (MSA); and TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). PSP and CBD show characteristic tau-positive astrocytic inclusions known as tufted astrocytes and astrocytic plaques, respectively. PiD shows tau-positive neuronal inclusions termed Pick bodies. MSA is characterized by α-synuclein-positive oligodendroglial inclusions, called glial cytoplasmic inclusions. ALS- and FTLD-TDP show TDP-43-positive neuronal inclusions, such as skein-like and round inclusions. Huntington's disease shows polyglutamine-positive neuronal inclusions, and Creutzfeldt-Jakob disease shows diffuse deposition of granular prions in the neuropil. The atypical proteins in these diseases have abnormal conformational properties. A comprehensive comparison of the clinical findings and neuropathological observations, including neuroanatomy and images acquired during life, is important to improve the sensitivity of clinical diagnosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Multiple System Atrophy , Pick Disease of the Brain , Tauopathies , Humans , tau Proteins/metabolism , Amyotrophic Lateral Sclerosis/pathology , Tauopathies/metabolism , Tauopathies/pathology , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , DNA-Binding Proteins/metabolism
5.
Acta Neuropathol ; 147(1): 73, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641715

ABSTRACT

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
6.
Alzheimers Dement ; 20(5): 3416-3428, 2024 May.
Article in English | MEDLINE | ID: mdl-38572850

ABSTRACT

INTRODUCTION: Screening for Alzheimer's disease neuropathologic change (ADNC) in individuals with atypical presentations is challenging but essential for clinical management. We trained automatic speech-based classifiers to distinguish frontotemporal dementia (FTD) patients with ADNC from those with frontotemporal lobar degeneration (FTLD). METHODS: We trained automatic classifiers with 99 speech features from 1 minute speech samples of 179 participants (ADNC = 36, FTLD = 60, healthy controls [HC] = 89). Patients' pathology was assigned based on autopsy or cerebrospinal fluid analytes. Structural network-based magnetic resonance imaging analyses identified anatomical correlates of distinct speech features. RESULTS: Our classifier showed 0.88 ± $ \pm $ 0.03 area under the curve (AUC) for ADNC versus FTLD and 0.93 ± $ \pm $ 0.04 AUC for patients versus HC. Noun frequency and pause rate correlated with gray matter volume loss in the limbic and salience networks, respectively. DISCUSSION: Brief naturalistic speech samples can be used for screening FTD patients for underlying ADNC in vivo. This work supports the future development of digital assessment tools for FTD. HIGHLIGHTS: We trained machine learning classifiers for frontotemporal dementia patients using natural speech. We grouped participants by neuropathological diagnosis (autopsy) or cerebrospinal fluid biomarkers. Classifiers well distinguished underlying pathology (Alzheimer's disease vs. frontotemporal lobar degeneration) in patients. We identified important features through an explainable artificial intelligence approach. This work lays the groundwork for a speech-based neuropathology screening tool.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Magnetic Resonance Imaging , Speech , Humans , Female , Alzheimer Disease/pathology , Male , Aged , Frontotemporal Dementia/pathology , Speech/physiology , Middle Aged , Phenotype , Frontotemporal Lobar Degeneration/pathology , Machine Learning
7.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38521060

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Prefrontal Cortex , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Neurons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Single-Cell Gene Expression Analysis
8.
Alzheimers Dement ; 20(4): 2886-2893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456576

ABSTRACT

INTRODUCTION: Federal policies and guidelines have expanded the return of individual results to participants and expectations for data sharing between investigators and through repositories. Here, we report investigators' and study participants' views and experiences with data stewardship practices within frontotemporal lobal degeneration (FTLD) research, which reveal unique ethical challenges. METHODS: Semi-structured interviews with (1) investigators conducting FTLD research that includes genetic data collection and/or analysis and (2) participants enrolled in a single site longitudinal FTLD study. RESULTS: Analysis of the interviews identified three meta themes: perspectives on data sharing, experiences with enrollment and participation, and data management and security as mechanisms for participant protections. DISCUSSION: This study identified a set of preliminary gaps and needs regarding data stewardship within FTLD research. The results offer initial insights on ethical challenges to data stewardship aimed at informing future guidelines and policies.


Subject(s)
Frontotemporal Lobar Degeneration , Humans , Frontotemporal Lobar Degeneration/genetics , Atrophy , Research Personnel
9.
Acta Neuropathol ; 147(1): 62, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526799

ABSTRACT

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Membrane Proteins , Nerve Tissue Proteins , Animals , Humans , Mice , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Transgenic , Nerve Tissue Proteins/genetics , tau Proteins/genetics
10.
Neurochem Int ; 175: 105719, 2024 May.
Article in English | MEDLINE | ID: mdl-38452814

ABSTRACT

Cortical synaptic loss has emerged as an early abnormality in Alzheimer's disease (AD) with a strong relationship to cognitive performance. However, the status of synapses in frontotemporal lobar degeneration (FTLD) has received meager experimental attention. The purpose of this study was to investigate changes in cortical synaptic proteins in FTLD with tar DNA binding protein-43 (TDP-43) proteinopathy. A second aim was to study phagocytosis of synaptic proteins by microglia as a surrogate for synaptic pruning. Western blot analysis in frozen tissue from the middle frontal gyrus revealed decreased levels of the presynaptic protein synaptophysin, but slightly increased levels of the postsynaptic density protein 95 (PSD95) in FTLD-TDP. Levels of the dendritic spine protein spinophilin displayed the largest decrease. Double immunofluorescent staining visualized aggregate or punctate synaptic protein immunoreactivity in microglia. Overall, the proportion of microglia containing synaptic proteins was larger in FTLD-TDP when compared with normal controls. The increase in PSD95 levels may represent reactive upregulation of this protein, as suggested in AD. While greater numbers of microglia containing synaptic proteins is consistent with loss of synapses in FTLD-TDP, it may also be an indication of abnormal synaptic pruning by microglia.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Microglia/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , TDP-43 Proteinopathies/genetics , Frontal Lobe/metabolism
11.
Brain Behav Immun ; 118: 380-397, 2024 May.
Article in English | MEDLINE | ID: mdl-38485064

ABSTRACT

Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.


Subject(s)
Autoantibodies , Frontotemporal Lobar Degeneration , Animals , Humans , Mice , Autoantibodies/metabolism , Frontotemporal Dementia , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Receptors, AMPA , Synaptic Transmission , tau Proteins/metabolism
12.
Acta Neuropathol Commun ; 12(1): 31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389095

ABSTRACT

Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Pick Disease of the Brain , Tauopathies , Humans , Pick Disease of the Brain/pathology , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Brain/pathology , Frontotemporal Lobar Degeneration/pathology , Atrophy/pathology , Tauopathies/pathology
13.
J Biol Chem ; 300(3): 105703, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301895

ABSTRACT

Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Eukaryotic Initiation Factor-5 , Frontotemporal Lobar Degeneration , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , C9orf72 Protein/genetics , Dipeptides/genetics , DNA Repeat Expansion/genetics , Drosophila/genetics , Drosophila/metabolism , Eukaryotic Initiation Factor-5/genetics , Eukaryotic Initiation Factor-5/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/physiopathology , HeLa Cells , Humans , Disease Models, Animal
14.
Nat Commun ; 15(1): 1508, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374041

ABSTRACT

Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Protein Aggregates , TDP-43 Proteinopathies , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Neurons/metabolism , Proteomics , TDP-43 Proteinopathies/metabolism
15.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355792

ABSTRACT

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , C-Reactive Protein , DNA-Binding Proteins , Frontotemporal Lobar Degeneration , Nerve Net , Nerve Tissue Proteins , Neurons , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C-Reactive Protein/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Nerve Net/metabolism , Nerve Net/pathology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Reproducibility of Results
16.
Alzheimers Res Ther ; 16(1): 34, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355535

ABSTRACT

BACKGROUND: Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer's disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups. METHODS: Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald's backward selection. Correlations with cognitive measures were performed using Pearson's partial correlation analysis. RESULTS: NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93-0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79-0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson's r = 0.29, p = 0.036) and GluR4 (Pearson's r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson's r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson's r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD. CONCLUSION: Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/diagnosis , ROC Curve , Neuropsychological Tests , Biomarkers/cerebrospinal fluid
17.
Neuroradiology ; 66(4): 507-519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378906

ABSTRACT

PURPOSE: Single-subject voxel-based morphometry (VBM) compares an individual T1-weighted MRI to a sample of normal MRI in a normative database (NDB) to detect regional atrophy. Outliers in the NDB might result in reduced sensitivity of VBM. The primary aim of the current study was to propose a method for outlier removal ("NDB cleaning") and to test its impact on the performance of VBM for detection of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). METHODS: T1-weighted MRI of 81 patients with biomarker-confirmed AD (n = 51) or FTLD (n = 30) and 37 healthy subjects with simultaneous FDG-PET/MRI were included as test dataset. Two different NDBs were used: a scanner-specific NDB (37 healthy controls from the test dataset) and a non-scanner-specific NDB comprising 164 normal T1-weighted MRI from 164 different MRI scanners. Three different quality metrics based on leave-one-out testing of the scans in the NDB were implemented. A scan was removed if it was an outlier with respect to one or more quality metrics. VBM maps generated with and without NDB cleaning were assessed visually for the presence of AD or FTLD. RESULTS: Specificity of visual interpretation of the VBM maps for detection of AD or FTLD was 100% in all settings. Sensitivity was increased by NDB cleaning with both NDBs. The effect was statistically significant for the multiple-scanner NDB (from 0.47 [95%-CI 0.36-0.58] to 0.61 [0.49-0.71]). CONCLUSION: NDB cleaning has the potential to improve the sensitivity of VBM for the detection of AD or FTLD without increasing the risk of false positive findings.


Subject(s)
Alzheimer Disease , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/pathology , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/pathology , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Atrophy/pathology , Brain/pathology
18.
Biophys J ; 123(3): 361-373, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38178578

ABSTRACT

Phosphorylated TAR DNA-binding protein of 43 kDa (TDP-43) is present within the aggregates of several age-related neurodegenerative disorders, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease, to the point that the presence of phosphorylated TDP-43 is considered a hallmark of some of these diseases. The majority of known TDP-43 phosphorylation sites detected in amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients is located in the low-complexity domain (LCD), the same domain that has been shown to be critical for TDP-43 liquid-liquid phase separation (LLPS). However, the effect of these LCD phosphorylation sites on TDP-43 LLPS has been largely unexplored, and any work that has been done has mainly focused on sites near the C-terminal end of the LCD. Here, we used a phosphomimetic approach to explore the impact of phosphorylation at residues S332 and S333, sites located within the transiently α-helical region of TDP-43 that have been observed to be phosphorylated in disease, on protein LLPS. Our turbidimetry and fluorescence microscopy data demonstrate that these phosphomimetic substitutions greatly suppress LLPS, and solution NMR data strongly suggest that this effect is at least in part due to the loss of α-helical propensity of the phosphomimetic protein variant. We also show that the S332D and S333D substitutions slow TDP-43 LCD droplet aging and fibrillation of the protein. Overall, these findings provide a biophysical basis for understanding the effect of phosphorylation within the transiently α-helical region of TDP-43 LCD on protein LLPS and fibrillation, suggesting that phosphorylation at residues 332 and 333 is not necessarily directly related to the pathogenic process.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Phase Separation , Phosphorylation
19.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38197897

ABSTRACT

Cytoplasmic aggregation of TDP-43 in neurons is a pathological feature common to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We demonstrate that the IκB kinase (IKK) complex promotes the degradation of cytoplasmic TDP-43 through proteasomes. While IKKß is a major factor in TDP-43 degradation, IKKα acts as a cofactor, and NEMO functions as a scaffold for the recruitment of TDP-43 to the IKK complex. Furthermore, we identified IKKß-induced phosphorylation sites of TDP-43 and found that phosphorylation at Thr8 and Ser92 is important for the reduction of TDP-43 by IKK. TDP-43 phosphorylation at Ser92 was detected in a pattern different from that of C-terminal phosphorylation in the pathological inclusion of ALS. IKKß was also found to significantly reduce the expression level and toxicity of the disease-causing TDP-43 mutation. Finally, the favorable effect of IKKß on TDP-43 aggregation was confirmed in the hippocampus of mice. IKK and the N-terminal phosphorylation of TDP-43 are potential therapeutic targets for ALS and FTLD.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , I-kappa B Kinase , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , I-kappa B Kinase/genetics , Proteasome Endopeptidase Complex , Disease Models, Animal
20.
Nat Commun ; 15(1): 486, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212334

ABSTRACT

The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Amyloid/metabolism , Cryoelectron Microscopy , Amyloidogenic Proteins , Frontotemporal Lobar Degeneration/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...