Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
1.
Leukemia ; 34(8): 2087-2101, 2020 08.
Article in English | MEDLINE | ID: mdl-32439895

ABSTRACT

Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1, the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models, that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native (BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin ß3, integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin ß3/ILK-mediated signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via modulation of the ECM may be a feasible therapeutic approach to consider in this setting.


Subject(s)
Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Animals , Drug Resistance, Neoplasm , Fibronectins/analysis , Fibronectins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/physiology , Fusion Proteins, bcr-abl/analysis , Fusion Proteins, bcr-abl/physiology , Humans , Imidazoles/pharmacology , Integrin beta3/physiology , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/physiology , Pyridazines/pharmacology
4.
Leukemia ; 33(8): 1964-1977, 2019 08.
Article in English | MEDLINE | ID: mdl-30842608

ABSTRACT

Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.


Subject(s)
Janus Kinase 1/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/physiology , Signal Transduction/physiology , Animals , Apoptosis , Cell Line, Tumor , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/physiology , Humans , Janus Kinase 1/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mice
5.
Br J Haematol ; 183(2): 242-250, 2018 10.
Article in English | MEDLINE | ID: mdl-30272826

ABSTRACT

To study glycolysis/glycogenesis-related genes expression in childhood B-cell acute lymphoblastic leukaemia (B-ALL), we performed a microarray-based analysis using published gene expression profiles. We found that SLC2A5, which encodes solute carrier family 2 member 5 (SLC2A5, previously termed GLUT5) that facilitates cell fructose uptake, was up-regulated in Philadelphia chromosome-positive ALL (Ph+ALL). Microarray-based analyses also suggested that SLC2A5 expression was significantly down-regulated in childhood B-ALL with t(1;19) or 11q23 mutation. High SLC2A5 expression was found in patients who had disease recurrence within 3 years, early relapse, shortened complete remission duration and positive minimal residue disease (MRD) status after treatment. SLC2A5 overexpression at both the mRNA and protein level in Ph+ALL was confirmed in a validation cohort of childhood B-ALL. We also validated the correlation of SLC2A5 expression and MRD status. A mechanistic study using a human Ph+ALL cell line showed that BCR-ABL1 kinase might regulate SLC2A5 expression via MYC. The tyrosine kinase inhibitors (TKIs) imatinib and dasatinib repressed SLC2A5 expression and the cell uptake of fructose. Fructose protected the tumour cells from nutrition deficiency and drug-induced cell death. Overall, our findings showed that SLC2A5 was up-regulated in childhood Ph+ALL. SLC2A5 expression correlated with childhood B-ALL clinical factors, such as MRD status. Given that TKIs could inhibit SLC2A5 expression, repression of fructose utility after TKI treatment contributes to TKI-induced Ph+ALL cytotoxicity. Targeting SLC2A5 might be promising in B-ALL treatment, especially for Ph+ALL patients with high SLC2A5 expression.


Subject(s)
Glucose Transporter Type 5/biosynthesis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adolescent , Child , Child, Preschool , Female , Fructose/metabolism , Fusion Proteins, bcr-abl/physiology , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic , Glucose Transporter Type 5/genetics , Humans , Infant , Male , Mutation , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Recurrence , Tumor Cells, Cultured , Up-Regulation
6.
Exp Hematol ; 64: 71-83.e8, 2018 08.
Article in English | MEDLINE | ID: mdl-29733872

ABSTRACT

The BCR-ABL oncogene, the hallmark of chronic myeloid leukemia (CML), has been shown to activate several signaling pathways in leukemic cells. The natural history of this disease has been radically modified by tyrosine kinase inhibitors (TKIs). However, resistance to several lines of TKI therapies and progression to blast crisis (BC) remain significant concerns. To identify novel signaling pathways induced by BCR-ABL, we performed a transcriptome analysis in a BCR-ABL-expressing UT-7 cell line. More than 2000 genes differentially expressed between BCR-ABL-expressing and parental UT-7 cells were identified and ETS1 was found to be the most upregulated. ETS1 protein expression was also shown to be highly increased in UT-7 cells expressing BCR-ABL either constitutively or under the control of TET-inducible promoters. ETS1 expression is tyrosine-kinase dependent because it was reduced by TKIs. A significant increase of ETS1 messenger RNA (mRNA) expression was observed in blood cells from CML patients at diagnosis compared with healthy controls. Integration of publicly available chromatin immunoprecipitation sequencing and transcriptomic data with our results allowed us to identify potential ETS1 targets, some of which are involved in the progression of CML. The messenger RNA expression of two of these genes (DNM3 and LIMS1) was found to be associated with the absence of major cytogenetic response after 1 year of imatinib therapy. The present work demonstrates for the first time the involvement of the ETS1 transcriptional program in the experimental UT-7 model and a large cohort of CML patients.


Subject(s)
Fusion Proteins, bcr-abl/physiology , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Proto-Oncogene Protein c-ets-1/physiology , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Blast Crisis/genetics , Cell Line, Tumor , Cohort Studies , Disease Progression , Female , Fusion Proteins, bcr-abl/antagonists & inhibitors , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Promoter Regions, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA, Messenger/biosynthesis , RNA, Messenger/blood , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/blood , Random Allocation , Signal Transduction , Transcriptome
7.
Leukemia ; 31(11): 2376-2387, 2017 11.
Article in English | MEDLINE | ID: mdl-28366933

ABSTRACT

Tyrosine kinase inhibitor (TKI) therapies induce clinical remission with remarkable effects on chronic myeloid leukemia (CML). However, very few TKIs completely eradicate the leukemic clone and persistence of leukemic stem cells (LSCs) remains challenging, warranting new, distinct targets for improved treatments. We demonstrated that the scaffold protein AHI-1 is highly deregulated in LSCs and interacts with multiple proteins, including Dynamin-2 (DNM2), to mediate TKI-resistance of LSCs. We have now demonstrated that the SH3 domain of AHI-1 and the proline rich domain of DNM2 are mainly responsible for this interaction. DNM2 expression was significantly increased in CML stem/progenitor cells; knockdown of DNM2 greatly impaired their survival and sensitized them to TKI treatments. Importantly, a new AHI-1-BCR-ABL-DNM2 protein complex was uncovered, which regulates leukemic properties of these cells through a unique mechanism of cellular endocytosis and ROS-mediated autophagy. Thus, targeting this complex may facilitate eradication of LSCs for curative therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Autophagy , Dynamins/physiology , Endocytosis , Fusion Proteins, bcr-abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport , Cell Line, Tumor , Dynamin II , Dynamins/genetics , Dynamins/metabolism , Endosomes/metabolism , Fusion Proteins, bcr-abl/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Phosphorylation , RNA, Messenger/metabolism
8.
Leukemia ; 31(7): 1532-1539, 2017 07.
Article in English | MEDLINE | ID: mdl-28232743

ABSTRACT

Drug resistance to BCR-ABL1 tyrosine kinase inhibitor (TKI) and disease progression to blast crisis (BC) are major clinical problems in chronic myeloid leukemia (CML); however, underlying mechanisms governing this process remain to be elucidated. Here, we report Cordon-bleu protein-like 1 (Cobll1) as a distinct molecular marker associated with drug resistance as well as progression to BC. In detail, Cobll1 increases IKKγ stability, leading to NF-κB activation and reduction of nilotinib-dependent apoptosis, suggesting Cobll1-mediated NF-κB could be involved in drug resistance. Recently, NF-κB signalling has been highlighted as a core mechanism for chronic phase (CP)-BC progression, stem cell survival and tyrosine kinase inhibitor resistance. We also demonstrated that high expression of Cobll1 confers drug resistance to tyrosine kinase inhibitors in CML cell line as well as patient samples. The analysis of large sets of primary CML samples (n=90) shows that Cobll1 expression is dramatically increased in BC but not in CP, which is correlated with a poor survival rate (P=0.002). Moreover, our studies show that Cobll1 is highly expressed in CD34+ primitive stem cell populations, and the zebrafish paralog Cobll1b is important for normal hematopoiesis during embryonic development. Based on these results, we propose that Cobll1 is a novel biomarker and potential therapeutic target for CML-BC.


Subject(s)
Blast Crisis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Transcription Factors/physiology , Cell Line, Tumor , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/physiology , Humans , I-kappa B Kinase/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , MicroRNAs/physiology , NF-kappa B/physiology , Pyrimidines/therapeutic use
9.
Leukemia ; 31(7): 1513-1524, 2017 07.
Article in English | MEDLINE | ID: mdl-28210003

ABSTRACT

Two major types of leukemogenic BCR-ABL fusion proteins are p190BCR-ABLand p210BCR-ABL. Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190BCR-ABL and p210BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210BCR-ABL, we observed an increased engagement of molecules active proximal to the membrane and in the case of p190BCR-ABL, an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.


Subject(s)
Fusion Proteins, bcr-abl/physiology , Signal Transduction/physiology , Cytoskeletal Proteins/metabolism , Humans , Leukemia/etiology , Phosphorylation , STAT Transcription Factors/physiology
10.
Leukemia ; 31(7): 1502-1512, 2017 07.
Article in English | MEDLINE | ID: mdl-28111465

ABSTRACT

The two major isoforms of the oncogenic Bcr-Abl tyrosine kinase, p210 and p190, are expressed upon the Philadelphia chromosome translocation. p210 is the hallmark of chronic myelogenous leukemia, whereas p190 occurs in the majority of B-cell acute lymphoblastic leukemia. Differences in protein interactions and activated signaling pathways that may be associated with the different diseases driven by p210 and p190 are unknown. We have performed a quantitative comparative proteomics study of p210 and p190. Strong differences in the interactome and tyrosine phosphoproteome were found and validated. Whereas the AP2 adaptor complex that regulates clathrin-mediated endocytosis interacts preferentially with p190, the phosphatase Sts1 is enriched with p210. Stronger activation of the Stat5 transcription factor and the Erk1/2 kinases is observed with p210, whereas Lyn kinase is activated by p190. Our findings provide a more coherent understanding of Bcr-Abl signaling, mechanisms of leukemic transformation, resulting disease pathobiology and responses to kinase inhibitors.


Subject(s)
Fusion Proteins, bcr-abl/physiology , Leukemia/enzymology , Proteomics/methods , Signal Transduction/physiology , Humans , Phosphorylation , STAT5 Transcription Factor/physiology
11.
Leukemia ; 31(1): 65-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27220663

ABSTRACT

Although tyrosine kinase inhibitors (TKIs) efficiently cure chronic myeloid leukemia (CML), they can fail to eradicate CML stem cells (CML-SCs). The mechanisms responsible for CML-SC survival need to be understood for designing therapies. Several previous studies suggest that TKIs could modulate CML-SC quiescence. Unfortunately, CML-SCs are insufficiently available. Induced pluripotent stem cells (iPSCs) offer a promising alternative. In this work, we used iPSCs derived from CML patients (Ph+). Ph+ iPSC clones expressed lower levels of stemness markers than normal iPSCs. BCR-ABL1 was found to be involved in stemness regulation and ERK1/2 to have a key role in the signaling pathway. TKIs unexpectedly promoted stemness marker expression in Ph+ iPSC clones. Imatinib also retained quiescence and induced stemness gene expression in CML-SCs. Our results suggest that TKIs might have a role in residual disease and confirm the need for a targeted therapy different from TKIs that could overcome the stemness-promoting effect caused by TKIs. Interestingly, a similar pro-stemness effect was observed in normal iPSCs and hematopoietic SCs. These findings could help to explain CML resistance mechanisms and the teratogenic side-effects of TKIs in embryonic cells.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Fusion Proteins, bcr-abl/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , MAP Kinase Signaling System/physiology , Neoplastic Stem Cells/pathology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Tumor Cells, Cultured
12.
Acta Biochim Pol ; 64(1): 1-10, 2017.
Article in English | MEDLINE | ID: mdl-27904889

ABSTRACT

Chronic myeloid leukemia (CML) results from the t(9;22) reciprocal chromosomal translocation producing the BCR-ABL1 gene, conferring growth and proliferation advantages in the CML cells. CML progresses from chronic, often syndrome-free, to blast phase, fatal if not treated. Although the involvement of BCR-ABL1 in some signaling pathways is considered as the cause of CML, the mechanisms resulting in its progression are not completely known. However, BCR-ABL1 stimulates the production of reactive oxygen species (ROS), which levels increase with CML progression and induce BCR-ABL1 self-mutagenesis. Introducing imatinib and other tyrosine kinase inhibitors (TKIs) to CML therapy radically improved its outcome, but TKIs-resistance became an emerging problem. TKI resistance can be associated with even higher ROS production than in TKI-sensitive cells. Therefore, ROS-induced self-mutagenesis of BCR-ABL1 can be crucial for CML progression and TKI resistance and in this way should be taken into account in therapeutic strategies. As a continuous production of ROS by BCR-ABL1 would lead to its self-destruction and death of CML cells, there must be mechanisms controlling this phenomenon. These can be dependent on DNA repair, which is modulated by BCR-ABL1 and can be different in CML stem and progenitor cells. Altogether, the mechanisms of the involvement of BCR-ABL1 in ROS signaling can be engaged in CML progression and TKI-resistance and warrant further study.


Subject(s)
Fusion Proteins, bcr-abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Reactive Oxygen Species/metabolism , Disease Progression , Drug Resistance, Neoplasm , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use
13.
J Exp Med ; 214(1): 165-181, 2017 01.
Article in English | MEDLINE | ID: mdl-27998927

ABSTRACT

Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin- SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.


Subject(s)
Actin Cytoskeleton/physiology , Hematopoietic Stem Cells/physiology , Wnt-5a Protein/physiology , Animals , Fusion Proteins, bcr-abl/physiology , Haploinsufficiency/physiology , Leukemia/etiology , Mice , Mice, Inbred C57BL , Regeneration , Wnt-5a Protein/genetics
14.
Oncotarget ; 7(43): 69945-69960, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27564101

ABSTRACT

Chronic myeloid leukemia (CML) treatment with BCR-ABL inhibitors is often hampered by development of drug resistance. In a screen for novel chemotherapeutic drug candidates with genotoxic activity, we identified a bisindolylmaleimide derivative, IX, as a small molecule compound with therapeutic potential against CML including drug-resistant CML. We show that Bisindolylmaleimide IX inhibits DNA topoisomerase, generates DNA breaks, activates the Atm-p53 and Atm-Chk2 pathways, and induces cell cycle arrest and cell death. Interestingly, Bisindolylmaleimide IX is highly effective in targeting cells positive for BCR-ABL. BCR-ABL positive cells display enhanced DNA damage and increased cell cycle arrest in response to Bisindolylmaleimide IX due to decreased expression of topoisomerases. Cells positive for BCR-ABL or drug-resistant T315I BCR-ABL also display increased cytotoxicity since Bisindolylmaleimide IX inhibits B-Raf and the downstream oncogene addiction pathway. Mouse cancer model experiments showed that Bisindolylmaleimide IX, at doses that show little side effect, was effective in treating leukemia-like disorders induced by BCR-ABL or T315I BCR-ABL, and prolonged the lifespan of these model mice. Thus, Bisindolylmaleimide IX presents a novel drug candidate to treat drug-resistant CML via activating BCR-ABL-dependent genotoxic stress response and inhibiting the oncogene addiction pathway activated by BCR-ABL.


Subject(s)
Indoles/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Maleimides/therapeutic use , Animals , Cell Cycle Checkpoints/drug effects , DNA Damage , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/physiology , HCT116 Cells , Humans , Indoles/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Maleimides/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proto-Oncogene Proteins B-raf/physiology , Topoisomerase Inhibitors/pharmacology
15.
Leukemia ; 29(12): 2328-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26202934

ABSTRACT

Activation of nuclear ß-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear ß-catenin has a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, ß-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples ß-catenin expression from BCR-ABL1 kinase activity. In ß-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of ß-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic ß-catenin levels, arguing against a role for ß-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than ß-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear ß-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment.


Subject(s)
Fusion Proteins, bcr-abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , beta Catenin/physiology , Cadherins/physiology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Imatinib Mesylate/therapeutic use , Proto-Oncogene Proteins/physiology , Wnt Proteins/physiology , Wnt-5a Protein
16.
Biochem Biophys Res Commun ; 463(4): 825-31, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26102025

ABSTRACT

Chronic myeloid leukemia is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We previously reported that in murine hematopoietic Ba/F3 cells, signal transducing adaptor protein-2 (STAP-2) binds to BCR-ABL and up-regulates BCR-ABL phosphorylation, leading to enhanced activation of its downstream signaling molecules. The binding of STAP-2 to BCR-ABL also influenced the expression levels of chemokine receptors, such as CXCR4 and CCR7. For the induction of CCR7 expression, signals mediated by the MAPK/ERK pathway were critical in Ba/F3 cells expressing BCR-ABL and STAP-2. In addition, STAP-2 cooperated with BCR-ABL to induce the production of CCR7 ligands, CCL19 and CCL21. Our results demonstrate a contribution of CCR7 to STAP-2-dependent enhancement of BCR-ABL-mediated cell growth in Ba/F3 cells.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Bone Marrow Cells/cytology , Cell Division/physiology , Fusion Proteins, bcr-abl/physiology , Receptors, CCR7/physiology , Animals , Base Sequence , Cell Line , DNA Primers , Mice , Mice, Inbred BALB C , Protein Kinases/metabolism , Real-Time Polymerase Chain Reaction
17.
Exp Hematol ; 43(7): 514-23.e1-2, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25951974

ABSTRACT

Inactivating mutations in IKZF1, the gene that encodes the transcription factor IKAROS, are recurrent in poor-prognosis human B-cell leukemias, in which these mutations co-exist with BCR-ABL1 or other genetic changes that activate similar intracellular signaling pathways. However, little is known about the mechanism(s) by which loss of IKAROS activity may co-operate with BCR-ABL1 to transform lymphoid cells. To investigate this question, we used expression of a dominant-negative isoform of IKAROS (IK6) to suppress endogenous IKAROS activity in the interleukin-3 (IL-3)-dependent mouse pro-B BA/F3 cell line and in an IL-3-independent BCR-ABL1(+) derivative. We then used intracellular phospho-flow cytometry to assess the effects of BCR-ABL1 and IK6, alone and in combination, on the signaling state of the cells before and after their stimulation with IL-3. BCR-ABL1 and IK6 each produced a constitutively activated signaling phenotype and also enhanced the signaling responses of BA/F3 cells to IL-3. These effects, however, were neither equivalent nor additive, and IK6 alone was insufficient to confer the IL-3-independent growth characteristic of BCR-ABL1(+) BA/F3 cells. In addition to its effects on lymphoid cells, IK6 also induced constitutively activated signaling in a subset of myeloid leukemia cell lines. Together, these studies indicate an ability of IK6 to enhance intracellular signaling in both lymphoid and myeloid cells, but not to synergize with BCR-ABL1 in this model system.


Subject(s)
B-Lymphocytes/metabolism , Ikaros Transcription Factor/physiology , Interleukin-3/agonists , Signal Transduction/genetics , Animals , B-Lymphocytes/drug effects , Cell Division , Cell Line, Transformed , Cell Lineage , Cell Survival/drug effects , Cell Transformation, Neoplastic , Cells, Cultured , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/physiology , Genes, Dominant , Humans , Ikaros Transcription Factor/antagonists & inhibitors , Ikaros Transcription Factor/genetics , Lymphocytes/cytology , Lymphocytes/metabolism , Mice , Mutation , Myeloid Cells/cytology , Myeloid Cells/metabolism , Phenotype , Recombinant Fusion Proteins/metabolism , Signal Transduction/drug effects , Transduction, Genetic
18.
Cell Cycle ; 14(7): 973-9, 2015.
Article in English | MEDLINE | ID: mdl-25608112

ABSTRACT

The tumor suppressive function of PTEN is exerted within 2 different cellular compartments. In the cytosol-membrane, it negatively regulates PI3K-AKT pathway through the de-phosphorylation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), therefore blocking one of the major signaling transduction pathways in tumorigenesis. In the nucleus, PTEN controls genomic stability and cellular proliferation through phosphatase independent mechanisms. Importantly, impairments in PTEN cellular compartmentalization, changes in protein levels and post-transductional modifications affect PTEN tumor suppressive functions. Targeting mechanisms that inactivate PTEN promotes apoptosis induction of cancer cells, without affecting normal cells, with appealing therapeutic implications. Recently, we have shown that BCR-ABL promotes PTEN nuclear exclusion by favoring HAUSP mediated PTEN de-ubiquitination in Chronic Myeloid Leukemia. Here, we show that nuclear exclusion of PTEN is associated with PTEN inactivation in the cytoplasm of CML cells. In particular, BCR-ABL promotes Casein Kinase II-mediated PTEN tail phosphorylation with consequent inhibition of the phosphatase activity toward PIP3. Targeting Casein Kinase II promotes PTEN reactivation with apoptosis induction. We therefore propose a novel BCR-ABL/CKII/PTEN pathway as a potential target to achieve synthetic lethality with tyrosine kinase inhibitors.


Subject(s)
Casein Kinase II/metabolism , Fusion Proteins, bcr-abl/physiology , PTEN Phosphohydrolase/metabolism , Protein Processing, Post-Translational , Animals , Enzyme Activation , Humans , Mice , NIH 3T3 Cells , Phosphatidylinositol Phosphates/metabolism , Phosphorylation
19.
Nat Commun ; 5: 5470, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25399951

ABSTRACT

The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.


Subject(s)
Oncogene Proteins v-abl/physiology , src Homology Domains/physiology , Enzyme Activation/physiology , Fusion Proteins, bcr-abl/physiology , Oncogene Proteins v-abl/metabolism , Phosphorylation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcr/physiology
20.
Blood ; 124(22): 3260-73, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25293778

ABSTRACT

Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a well-characterized malignancy caused by the BCR-ABL1 tyrosine kinase. p27 is predominantly cytoplasmic in CML and nuclear in normal cells. BCR-ABL1 regulates nuclear and cytoplasmic p27 abundance by kinase-dependent and -independent mechanisms, respectively. p27 knockdown in CML cell lines with predominantly cytoplasmic p27 induces apoptosis, consistent with a leukemogenic role of cytoplasmic p27. Accordingly, a p27 mutant (p27(CK-)) devoid of Cdk inhibitory nuclear functions enhances leukemogenesis in a murine CML model compared with complete absence of p27. In contrast, p27 mutations that enhance its stability (p27(T187A)) or nuclear retention (p27(S10A)) attenuate leukemogenesis over wild-type p27, validating the tumor-suppressor function of nuclear p27 in CML. We conclude that BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. These findings suggest that cytoplasmic mislocalization of p27 despite BCR-ABL1 inhibition by tyrosine kinase inhibitors may contribute to drug resistance, and effective therapeutic strategies to stabilize nuclear p27 must also prevent cytoplasmic mislocalization.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cytoplasm/metabolism , Fusion Proteins, bcr-abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Animals , Cells, Cultured , Genes, Tumor Suppressor , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins/metabolism , Protein Transport/genetics
SELECTION OF CITATIONS
SEARCH DETAIL