Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 700
Filter
1.
Vaccine ; 42(7): 1549-1560, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38320931

ABSTRACT

Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.


Subject(s)
Cholera Toxin , Neoplasms , Mice , Animals , Humans , Cholera Toxin/metabolism , Cross-Priming , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/pharmacology , Recombinant Proteins/pharmacology , Adjuvants, Immunologic/pharmacology , Recombinant Fusion Proteins/genetics , Epitopes , Antigen Presentation
2.
FEBS Open Bio ; 13(12): 2324-2341, 2023 12.
Article in English | MEDLINE | ID: mdl-37885330

ABSTRACT

Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/metabolism , Glutamic Acid , Neurodegenerative Diseases/metabolism , Superoxide Dismutase/metabolism , Motor Neurons/metabolism
3.
Article in English | MEDLINE | ID: mdl-37330108

ABSTRACT

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , Parkinson Disease/drug therapy , Parkinson Disease/pathology , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/chemistry , Oligosaccharides/pharmacology
4.
J Mol Neurosci ; 73(4-5): 287-296, 2023 May.
Article in English | MEDLINE | ID: mdl-37084025

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that cannot be cured. The ASD rat model was developed in this study to demonstrate the role and mechanism of ganglioside GM1 (GM1). Rats were given valproic acid (VPA) to create the ASD rat model. The rats' behaviors were assessed using the Y-maze test, open-field test, three-chamber social interaction test, and Morris water maze test. Relative levels of glutathione (GSH), malondialdehyde (MDA), catalase (CAT), reactive oxygen species (ROS), and superoxide dismutase (SOD) were quantitated using relative kits. Nissl, TUNEL, immunofluorescent, and immunohistochemistry staining techniques were used. GM1 treatment improved the ASD model rats' behavior disorders, including locomotor activity and exploratory behavior, social interaction, learning and memory capacity, and repetitive behavior. Following GM1 injection, striatal neurons grew and apoptosis decreased. GM1 reduced the excessively elevated α-Syn in ASD by encouraging autophagy. The behavior disorder of ASD model rats was exacerbated by autophagy inhibition, which also increased α-Syn levels. By increasing autophagy, GM1 reduced α-Syn levels and, ultimately, improved behavioral abnormalities in ASD model rats.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Rats , Animals , Female , Humans , Autism Spectrum Disorder/drug therapy , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/therapeutic use , Social Behavior , Valproic Acid/pharmacology , Maze Learning , Autophagy , Disease Models, Animal
5.
Toxicon ; 229: 107129, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37086901

ABSTRACT

Plant-derived triterpenoid saponins have been shown to play a powerful role in enhancing the cytotoxic activity of protein therapeutics. However, the mechanism of how saponins are acting is not clearly understood. In this study, momordin Ic (MIC), a triterpenoid saponin derived from Kochia scoparia (L.) Schrad., specifically enhance the antiproliferative effect of recombinant MAP30 (a type I ribosome inactivating protein, RIP) in breast cancer cells. Subsequently, the possible mechanism of how MIC enhanced the cytotoxicity of MAP30 was analyzed in detail. We observed the level of intracellular labeled MAP30 using fluorescence microscopy and flow cytometry. And a reporter protein, GAL9, was used to monitor the role of MIC in promoting endosomal escape. We found endosomal escape does not play a role for the enhancer effect of MIC while the effect of MIC on MAP30 is cholesterol dependent and that ganglioside GM1, a lipid raft marker, can competitively inhibit cytotoxicity of MAP30 enhanced by MIC. Finally, we provided some insights into the correlation between the sugar side chain of MIC and its role in enhancing of RIP cytotoxicity and altering of drug cell tropism.


Subject(s)
Antineoplastic Agents , Saponins , Triterpenes , G(M1) Ganglioside/pharmacology , Recombinant Proteins , Saponins/pharmacology , Cholesterol , Triterpenes/pharmacology , Ribosome Inactivating Proteins, Type 2/pharmacology
6.
Eur J Pharm Biopharm ; 184: 50-61, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682511

ABSTRACT

Although anti-tumor strategies targeting tumor-associated immune cells were being rapidly developed, the preparations were usually limited in targeting efficiency. To overcome this barrier, this study reported a novel sialic acid-octadecylamine (SA-ODA) and monosialotetrahexosylganglioside (GM1) co-modified epirubicin liposomes (5-5-SAGL-EPI), which improved tumor-targeting ability through the active targeting of tumor-associated macrophages (TAMs) by SA-ODA and the long circulation of GM1. Thus, we evaluated 5-5-SAGL-EPI in vitro and in vivo. Analysis of cellular uptake by RAW264.7 cells using flow cytometry and confocal microscopy showed a higher rate of cellular uptake for 5-5-SAGL-EPI than for the common liposomes (CL-EPI). In pharmacokinetic studies using Wistar rats, compared to CL-EPI, 5-5-SAGL-EPI showed a higher circulation time in vivo. Tissue distribution studies in Kunming mice bearing S180 tumors revealed increased distribution of 5-5-SAGL-EPI in tumor tissues compared with liposomes modified with single ligands (SA-ODA [5-SAL-EPI] or GM1 [5-GL-EPI]). In vivo anti-tumor experiments using the S180 tumor-bearing mice revealed a high tumor inhibition rate and low toxicity for 5-5-SAGL-EPI. Moreover, freeze-dried 5-5-SAGL-EPI had good storage stability, and the anti-tumor effect was comparable to that before freeze-drying. Overall, 5-5-SAGL-EPI exhibited excellent anti-tumor effects before and after lyophilization.


Subject(s)
Liposomes , N-Acetylneuraminic Acid , Mice , Rats , Animals , Liposomes/pharmacology , N-Acetylneuraminic Acid/pharmacology , Tumor-Associated Macrophages , Tumor Microenvironment , G(M1) Ganglioside/pharmacology , Rats, Wistar , Cell Line, Tumor
7.
Toxins (Basel) ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36287918

ABSTRACT

Careya arborea, Punica granatum, Psidium guajava, Holarrhena antidysenterica, Aegle marmelos, and Piper longum are commonly used traditional medicines against diarrhoeal diseases in India. This study investigated the inhibitory activity of these plants against cytotoxicity and enterotoxicity induced by toxins secreted by Vibrio cholerae. Cholera toxin (CT) and non-membrane damaging cytotoxin (NMDCY) in cell free culture filtrate (CFCF) of V. cholerae were quantified using GM1 ELISA and cell-based assays, respectively. Hydro-alcoholic extracts of these plants and lyophilized juice of P. granatum were tested against CT-induced elevation of cAMP levels in CHO cell line, binding of CT to ganglioside GM1 receptor and NMDCY-induced cytotoxicity. Significant reduction of cAMP levels in CFCF treated CHO cell line was observed for all extracts except P. longum. C. arborea, P. granatum, H. antidysenterica and A. marmelos showed >50% binding inhibition of CT to GM1 receptor. C. arborea, P. granatum, and P. guajava effectively decreased cytotoxicity and morphological alterations caused by NMDCY in CHO cell line. Further, the efficacy of these three plants against CFCF-induced enterotoxicity was seen in adult mice ligated-ileal loop model as evidenced by decrease in volume of fluid accumulation, cAMP levels in ligated-ileal tissues, and histopathological changes in intestinal mucosa. Therefore, these plants can be further validated for their clinical use against cholera.


Subject(s)
Cholera , Plants, Medicinal , Toxins, Biological , Vibrio cholerae , Cricetinae , Mice , Animals , Cholera/drug therapy , Cholera Toxin/toxicity , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/metabolism , Vibrio cholerae/metabolism , Toxins, Biological/metabolism , Cytotoxins/metabolism , CHO Cells
8.
Mol Biol Rep ; 49(12): 12253-12258, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36180805

ABSTRACT

BACKGROUND: Huntington disease (HD) is a neurodegenerative disease where a genetic mutation leads to excessive polyglutamine (Q) repeats in the huntingtin protein. The polyglutamine repeats create toxic plaques when the protein is cleaved, leading to neuron death. The glycolipid GM1 ganglioside (GM1) has been shown to be neuroprotective in HD models, as it prevents the cleavage of the mutant huntingtin protein by phosphorylation of serine 13 and 16. Previous studies have tested GM1 in both adult-onset and juvenile-onset HD models, but this study set out to investigate whether GM1 mediated cytoprotection is influenced by the length of polyglutamine repeats. METHOD AND RESULT: This study utilized cell culture to analyze the effect of GM1 on cell viability, directly comparing the response between cells with adult-onset HD and juvenile-onset HD. HEK293 cells expressing either wild-type huntingtin (Htt) (19Q) exon 1, adult-onset HD mutant Htt exon 1 (55Q), or Juvenile HD mutant Htt exon 1 (94Q) were assessed for cell viability using the WST-1 assay. Our results suggested moderate doses of GM1 increased cell viability for all cell lines when compared to untreated cells. When comparing HEK293 55Q and 94Q cells, there was no difference in cell viability within each dose of GM1. CONCLUSION: These data suggest cellular responses to GM1 are independent of polyglutamine repeats in HD cells and provide insight on GM1's application as a therapeutic agent for HD and other diseases.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/therapeutic use , HEK293 Cells , Huntingtin Protein/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/drug therapy
9.
Eur J Med Chem ; 241: 114636, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35952400

ABSTRACT

Ganglioside GM1 is a glycosphingolipid found on mammalian cell membranes, and it is involved in ischemic encephalopathy, spinal cord injury and neurodegenerative diseases. Fatty acids, as a structure module of GM1, have been reported to affect its physiological function and neurite growth activity. Due to the limitation of preparation methods, the function of GM1 derivatives containing different fatty acids in nerve cells has not been systematically studied. To discover novel GM1 derivatives as nerve growth-promoting agents, we developed an efficient SA_SCDase enzymatic synthetic system of GM1 derivatives, yielding twenty GM1 derivatives with unsaturated fatty acid chains in high total yields (16-67%). Subsequently, the neurite outgrowth activities of GM1 derivatives were assessed on Neuro2a Cells. Among all the GM1 derivatives, GM1 (d18:1/C16:1) induced demonstrably neurite outgrowth activity. The subsequent RNA-sequencing (RNA-seq) and Western blot analysis was then performed and indicated that the mechanism of nerve cells growth involved cholesterol biosynthesis regulation by up-regulating SREBP2 expression or ERBB4 phosphorylation to activate the PI3K-mTOR pathway.


Subject(s)
G(M1) Ganglioside , Neurites , Animals , Fatty Acids/pharmacology , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/pharmacology , Mammals/metabolism , Neurites/physiology , Neuronal Outgrowth , Neurons/metabolism
10.
Biomolecules ; 12(5)2022 05 21.
Article in English | MEDLINE | ID: mdl-35625654

ABSTRACT

Exogenous ganglioside GM1 has been reported to exert an immunomodulatory effect. We investigated the anti-inflammatory effect of GM1 ganglioside on endotoxin-induced uveitis (EIU) in rats and RAW 264.7 macrophages. METHODS: EIU was induced in Lewis rats by administering a subcutaneous injection of lipopolysaccharide (LPS). GM1 was injected intraperitoneally for three consecutive days prior to the LPS injection. Twenty-four hours after the LPS injection, the integrity of the blood-aqueous barrier was evaluated by determining the protein concentration and number of infiltrating cells in the aqueous humor (AqH). Immunohistochemical and Western blot analyses of the iris-ciliary body (ICB) were performed to evaluate the effect of GM1 on the LPS-induced expression of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1). The effect of GM1 on proinflammatory mediators and signaling cascades was examined in LPS-stimulated RAW 264.7 cells using Western blotting and immunofluorescence staining to further clarify the underlying anti-inflammatory mechanism. RESULTS: GM1 significantly reduced the protein concentration and number of infiltrating cells in the AqH of rats with EIU. GM1 also decreased the LPS-induced expression of the ICAM-1 and COX-2 proteins in the ICB. In RAW 264.7 cells, GM1 inhibited the proinflammatory mediators induced by LPS, including inducible nitric oxide synthase (iNOS), COX-2, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), and this inhibitory effect was potentially mediated by suppressing transforming growth factor-ß-activated kinase 1 (TAK1) and reactive oxygen species (ROS)-mediated activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). CONCLUSIONS: Based on this study, GM1 may be a potential anti-inflammatory agent for ocular inflammatory diseases.


Subject(s)
G(M1) Ganglioside , Uveitis , Animals , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , G(M1) Ganglioside/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6 , Lipopolysaccharides , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Rats , Rats, Inbred Lew , Uveitis/chemically induced , Uveitis/drug therapy , Uveitis/pathology
11.
Neurochem Res ; 47(8): 2405-2415, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35635605

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, tau tangles, neuroinflammation, oxidative stress, and progressive memory deficits. Aß deposition could exacerbate oxidative damage and cellular apoptosis. GM-1 ganglioside (GM-1) has previously been reported to exhibit neuroprotective effects in rodents and patients with AD. However, the substantial impacts and mechanism of GM-1 on Aß-induced oxidative stress remain elusive. The present study used PC-12 pheochromocytoma cells treated with Aß25-35 peptide to construct the AD model in vitro. Aß25-35 administration alone inhibited cell viability and facilitated cell apoptosis in the range doses of 10 µM to 30 µM. At the same time, GM-1 supplementation promoted cell proliferation and rescued cell apoptosis in a dose-dependent fashion ranging from 5 to 30 µM. In parallel, GM-1 treatment alleviated Aß-induced oxidative stress by increasing the level of antioxidant enzymes and decreasing the content of malondialdehyde (MDA). The nuclear factor-E2-related factor 2 (Nrf2) is a crucial mediator of antioxidant response. We reported herein that GM-1 could activate Nrf-2 in the PC-12 cells co-treated with Aß25-35, following with the activated expression of antioxidant response elements (ARE)-mediated antioxidant and detoxifying genes. Consistently, knock-down of Nrf-2 via siRNA abolished the beneficial decrease of Aß-induced oxidative stress by GM-1 treatment, indicating that GM-1-improved oxidative stress was regulated by the Nrf-2 signaling pathway. Collectively, GM-1 could alleviate Aß25-35-induced oxidative damage mediated through the Nrf-2/ARE signaling pathway, which might be a potential agent for AD treatment.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Animals , Rats , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Antioxidant Response Elements , Antioxidants/therapeutic use , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , PC12 Cells , Peptide Fragments/metabolism , Signal Transduction
12.
Mol Cell Neurosci ; 120: 103729, 2022 05.
Article in English | MEDLINE | ID: mdl-35447351

ABSTRACT

Among the pathological events associated with the dopaminergic neurodegeneration characteristic of Parkinson's disease (PD) are the accumulation of toxic forms of α-synuclein and microglial activation associated with neuroinflammation. Although numerous other processes may participate in the pathogenesis of PD, the two factors mentioned above may play critical roles in the initiation and progression of dopamine neuron degeneration in PD. In this study, we employed a slowly progressing model of PD using adeno-associated virus-mediated expression of human A53T α-synuclein into the substantia nigra on one side of the brain and examined the microglial response in the striatum on the injected side compared to the non-injected (control) side. We further examined the extent to which administration of the neuroprotective ganglioside GM1 influenced α-synuclein-induced glial responses. Changes in a number of microglial morphological measures (i.e., process length, number of endpoints, fractal dimension, lacunarity, density, and cell perimeter) were indicative of the presence of activated microglial and an inflammatory response on the injected side of the brain, compared to the control side. In GM1-treated animals, no significant differences in microglial morphology were observed between the injected and control striata. Follow-up studies showed that mRNA expression for several inflammation-related genes was increased on the A53T α-synuclein injected side vs. the non-injected side in saline-treated animals and that such changes were not observed in GM1-treated animals. These data show that inhibition of microglial activation and potentially damaging neuroinflammation by GM1 ganglioside administration may be among the many factors that contribute to the neuroprotective effects of GM1 in this model and possibly in human PD.


Subject(s)
G(M1) Ganglioside , Microglia , Parkinson Disease , alpha-Synuclein , Animals , Disease Models, Animal , Dopamine/metabolism , G(M1) Ganglioside/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Rats , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
13.
Clinics (Sao Paulo) ; 77: 100006, 2022.
Article in English | MEDLINE | ID: mdl-35193085

ABSTRACT

OBJECTIVES: To evaluate the functional and immunohistochemical effects of ganglioside GM1 and erythropoietin following experimental spinal cord injury. METHODS: Thirty-two male BALB/c mice were subjected to experimental spinal cord injury using the NYU Impactor device and were randomly divided into the following groups: GM1 group, receiving standard ganglioside GM1 (30 mg/kg); erythropoietin group, receiving erythropoietin (1000 IU/kg); combination group, receiving both drugs; and control group, receiving saline (0.9%). Animals were evaluated according to the Basso Mouse Scale (BMS) and Hindlimb Mouse Function Score (MFS). After euthanasia, the immunohistochemistry of the medullary tissue of mice was analyzed. All animals received intraperitoneal treatment. RESULTS: The GM1 group had higher BMS and MFS scores at the end of the experiment when compared to all other groups. The combination group had higher BMS and MFS scores than the erythropoietin and control groups. The erythropoietin group had higher BMS and MFS scores than the control group. Immunohistochemical tissue analysis showed a significant difference among groups. There was a significant increase in myelinated axons and in the myelinated axon length in the erythropoietin group when compared to the other intervention groups (p < 0.01). CONCLUSIONS: Erythropoietin and GM1 have therapeutic effects on axonal regeneration in mice subjected to experimental spinal cord injury, and administration of GM1 alone had the highest scores on the BMS and MFS scales.


Subject(s)
Erythropoietin , Spinal Cord Injuries , Animals , Disease Models, Animal , Epoetin Alfa/therapeutic use , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/therapeutic use , Injections, Intraperitoneal , Male , Mice , Spinal Cord
14.
J Neuroinflammation ; 19(1): 9, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991625

ABSTRACT

BACKGROUND: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. METHODS: In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L-t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1ß, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. RESULTS: GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L-t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. CONCLUSIONS: Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically.


Subject(s)
Anti-Inflammatory Agents/pharmacology , G(M1) Ganglioside/pharmacology , Inflammation/pathology , Microglia/drug effects , Animals , Cells, Cultured , Dioxanes/pharmacology , Humans , Inflammation/metabolism , Interleukin-1beta/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Microglia/pathology , Phagocytosis/drug effects , Pyrrolidines/pharmacology , Rats
15.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884663

ABSTRACT

G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein-protein interactions, but the focus has now expanded also to protein-lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.


Subject(s)
G(M1) Ganglioside/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neuroblastoma/drug therapy , Neuroprotective Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , Cytoprotection , Down-Regulation , HEK293 Cells , Humans , Mice , Neuroblastoma/metabolism , Neuroblastoma/pathology , Receptors, G-Protein-Coupled/genetics , Signal Transduction
16.
Mol Ther ; 29(10): 3059-3071, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34111562

ABSTRACT

Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.


Subject(s)
G(M1) Ganglioside/administration & dosage , Gangliosides/administration & dosage , Parkinson Disease/drug therapy , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism , Administration, Intranasal , Animals , Cell Line , Disease Models, Animal , Down-Regulation , Epigenesis, Genetic/drug effects , G(M1) Ganglioside/pharmacology , Gangliosides/pharmacology , Gene Expression Regulation/drug effects , Humans , Male , Mice , Parkinson Disease/genetics , Parkinson Disease/metabolism , Substantia Nigra/drug effects , Substantia Nigra/enzymology , Tyrosine 3-Monooxygenase/genetics
17.
Mol Neurobiol ; 58(7): 3471-3483, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33733293

ABSTRACT

Ketamine is a widely used analgesic and anesthetic in obstetrics and pediatrics. Ketamine is known to promote neuronal death and cognitive dysfunction in the brains of humans and animals during development. Monosialotetrahexosyl ganglioside (GM1), a promoter of brain development, exerts neuroprotective effects in many neurological disease models. Here, we investigated the neuroprotective effect of GM1 and its potential underlying mechanism against ketamine-induced apoptosis of rats. Seven-day-old Sprague Dawley (SD) rats were randomly divided into the following four groups: (1) group C (control group: normal saline was injected intraperitoneally); (2) group K (ketamine); (3) group GM1 (GM1 was given before normal saline injection); and (4) GM1+K group (received GM1 30 min before continuous exposure to ketamine). Each group contained 15 rats, received six doses of ketamine (20 mg/kg), and was injected with saline every 90 min. The Morris water maze (MWM) test, the number of cortical and hippocampal cells, apoptosis, and AKT/GSK3ß pathway were analyzed. To determine whether GM1 exerted its effect via the PI3K/AKT/GSK3ß pathway, PC12 cells were incubated with LY294002, a PI3K inhibitor. We found that GM1 protected against ketamine-induced apoptosis in the hippocampus and cortex by reducing the expression of Bcl-2 and Caspase-3, and by increasing the expression of Bax. GM1 treatment increased the expression of p-AKT and p-GSK3ß. However, the anti-apoptotic effect of GM1 was eliminated after inhibiting the phosphorylation of AKT. We showed that GM1 lessens ketamine-induced apoptosis in the hippocampus and cortex of young rats by regulating the PI3K/AKT/GSK3ß pathway. Taken together, GM1 may be a potential preventive treatment for the neurotoxicity caused by continuous exposure to ketamine.


Subject(s)
Cerebral Cortex/metabolism , G(M1) Ganglioside/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Ketamine/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Anesthetics, Dissociative/toxicity , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/physiology , Cerebral Cortex/drug effects , Hippocampus/drug effects , Neuroprotection/drug effects , Neuroprotection/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology
18.
Glycoconj J ; 38(1): 101-117, 2021 02.
Article in English | MEDLINE | ID: mdl-33620588

ABSTRACT

It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named "OligoGM1". These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson's disease.


Subject(s)
G(M1) Ganglioside/chemistry , G(M1) Ganglioside/metabolism , Neurodegenerative Diseases/drug therapy , Oligosaccharides/chemistry , Animals , Cell Differentiation , G(M1) Ganglioside/pharmacology , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurons/cytology , Neurons/metabolism , Oligosaccharides/chemical synthesis , Oligosaccharides/metabolism , Receptor, trkA/metabolism
19.
FASEB J ; 35(2): e21318, 2021 02.
Article in English | MEDLINE | ID: mdl-33508158

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub-types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid-ß (Aß) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion-like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aß42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation-sensitive dyes and conformation-specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically-distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid-derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aß42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Lipids/pharmacology , Amyloid/drug effects , Animals , Cell Line, Tumor , Cell Survival/physiology , Circular Dichroism , Dynamic Light Scattering , G(M1) Ganglioside/pharmacology , Immunohistochemistry , Magnetic Resonance Spectroscopy , Mice , Mice, Transgenic , Microscopy, Atomic Force , Phosphatidylglycerols/pharmacology , Plaque, Amyloid/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared
20.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599772

ABSTRACT

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis/drug therapy , G(M1) Ganglioside/pharmacology , Quinolones/pharmacology , Adjuvants, Immunologic/chemistry , Aminophenols/chemistry , Bronchi/drug effects , Bronchi/metabolism , Bronchi/pathology , Chloride Channel Agonists/chemistry , Chloride Channel Agonists/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , G(M1) Ganglioside/chemistry , Humans , Mutation , Quinolones/chemistry , Therapies, Investigational
SELECTION OF CITATIONS
SEARCH DETAIL
...