Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Sci Rep ; 14(1): 15598, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971768

ABSTRACT

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , GATA6 Transcription Factor , Hepatocyte Nuclear Factor 4 , Immunohistochemistry , Pancreatic Neoplasms , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Male , Female , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Aged , Biomarkers, Tumor/metabolism , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/genetics , Prognosis , Keratin-5/metabolism , Keratin-6/metabolism , Aged, 80 and over , Adult , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Transcription Factors , Tumor Suppressor Proteins
2.
Cell Rep Med ; 5(5): 101557, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733987

ABSTRACT

This study underscores GATA6's role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6's prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , GATA6 Transcription Factor , Pancreatic Neoplasms , Phenotype , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Male , Female , Prognosis , Aged , Middle Aged , Macrophages/immunology , Macrophages/metabolism , Treatment Outcome , Neoadjuvant Therapy/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702016

ABSTRACT

BACKGROUND: Lung squamous cell carcinoma (LUSC) is associated with high mortality and has limited therapeutic treatment options. Plasminogen activator urokinase (PLAU) plays important roles in tumor cell malignancy. However, the oncogenic role of PLAU in the progression of LUSC remains unknown. GATA-binding factor 6 (GATA6), a key regulator of lung development, inhibits LUSC cell proliferation and migration, but the underlying regulatory mechanism remains to be further explored. Moreover, the regulatory effect of GATA6 on PLAU expression has not been reported. The aim of this study was to identify the role of PLAU and the transcriptional inhibition mechanism of GATA6 on PLAU expression in LUSC. METHODS: To identify the potential target genes regulated by GATA6, differentially expressed genes (DEGs) obtained from GEO datasets analysis and RNA-seq experiment were subjected to Venn analysis and correlation heatmap analysis. The transcriptional regulatory effects of GATA6 on PLAU expression were detected by real-time PCR, immunoblotting, and dual-luciferase reporter assays. The oncogenic effects of PLAU on LUSC cell proliferation and migration were evaluated by EdU incorporation, Matrigel 3D culture and Transwell assays. PLAU expression was detected in tissue microarray of LUSC via immunohistochemistry (IHC) assay. To determine prognostic factors for prognosis of LUSC patients, the clinicopathological characteristics and PLAU expression were subjected to univariate Cox regression analysis. RESULTS: PLAU overexpression promoted LUSC cell proliferation and migration. PLAU is overexpressed in LUSC tissues compared with normal tissues. Consistently, high PLAU expression, which acts as an independent risk factor, is associated with poor prognosis of LUSC patients. Furthermore, the expression of PLAU is transcriptionally regulated by GATA6. CONCLUSION: In this work, it was revealed that PLAU is a novel oncogene for LUSC and a new molecular regulatory mechanism of GATA6 in LUSC was unveiled. Targeting the GATA6/PLAU pathway might help in the development of novel therapeutic treatment strategies for LUSC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GATA6 Transcription Factor , Gene Expression Regulation, Neoplastic , Lung Neoplasms , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Humans , Cell Proliferation/genetics , Cell Movement/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Female , Male , Middle Aged , Membrane Proteins
4.
Cell Rep ; 43(5): 114159, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38676923

ABSTRACT

The traditional view of hematopoiesis is that myeloid cells derive from a common myeloid progenitor (CMP), whereas all lymphoid cell populations, including B, T, and natural killer (NK) cells and possibly plasmacytoid dendritic cells (pDCs), arise from a common lymphoid progenitor (CLP). In Max41 transgenic mice, nearly all B cells seem to be diverted into the granulocyte lineage. Here, we show that these mice have an excess of myeloid progenitors, but their CLP compartment is ablated, and they have few pDCs. Nevertheless, T cell and NK cell development proceeds relatively normally. These hematopoietic abnormalities result from aberrant expression of Gata6 due to serendipitous insertion of the transgene enhancer (Eµ) in its proximity. Gata6 mis-expression in Max41 transgenic progenitors promoted the gene-regulatory networks that drive myelopoiesis through increasing expression of key transcription factors, including PU.1 and C/EBPa. Thus, mis-expression of a single key regulator like GATA6 can dramatically re-program multiple aspects of hematopoiesis.


Subject(s)
GATA6 Transcription Factor , Hematopoiesis , Mice, Transgenic , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Animals , Mice , Cell Lineage , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Mice, Inbred C57BL , Dendritic Cells/metabolism , Cell Differentiation , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Proto-Oncogene Proteins , Trans-Activators
5.
Stem Cell Res ; 77: 103426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678980

ABSTRACT

GATA6 is expressed during early embryogenesis and localizes to endoderm- and mesoderm-derived tissues during later embryogenesis. Here, we established a human induced pluripotent stem cell (hiPSC) line expressing EGFP under GATA6 gene. EGFP coding sequence was introduced into the C-terminus of GATA6 in KSCBi017-A hiPSCs through homologous recombination using CRISPR/Cas9 system. The successfully edited line, KSCBi017-A-1, was selected and confirmed by sequencing. The line had a normal karyotype and exhibited potential to differentiate into three germ layers while it expressed EGFP upon endoderm induction. KSCBi017-A-1 cells can be used to monitor the expression of GATA6 during differentiation. This cell line is available from Korea National Stem Cell Bank.


Subject(s)
CRISPR-Cas Systems , GATA6 Transcription Factor , Green Fluorescent Proteins , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Line , Cell Differentiation
6.
Theranostics ; 14(6): 2526-2543, 2024.
Article in English | MEDLINE | ID: mdl-38646640

ABSTRACT

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Subject(s)
Clodronic Acid , Lung , Macrophages, Peritoneal , Nanoparticles , Animals , Clodronic Acid/pharmacology , Clodronic Acid/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Lung/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/drug effects , Macrophages, Alveolar/metabolism , RNA, Small Interfering/administration & dosage , GATA6 Transcription Factor/metabolism , Liposomes , Mice, Inbred C57BL , Carbocyanines/chemistry , Cell Movement/drug effects , Flow Cytometry
7.
J Biol Chem ; 300(5): 107244, 2024 May.
Article in English | MEDLINE | ID: mdl-38556087

ABSTRACT

Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.


Subject(s)
GATA6 Transcription Factor , Macrophages, Peritoneal , MicroRNAs , Transcriptome , Animals , Mice , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Gene Expression Regulation , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Organ Specificity , Proto-Oncogene Proteins , Trans-Activators/genetics , Trans-Activators/metabolism
8.
J Control Release ; 369: 573-590, 2024 May.
Article in English | MEDLINE | ID: mdl-38554773

ABSTRACT

Postoperative abdominal adhesions are a common clinical problem after surgery and can cause many serious complications. Current most commonly used antiadhesion products are less effective due to their short residence time and focus primary on barrier function. Herein, we developed a sprayable hydrogel barrier (sHA-ADH/OHA-E) with self-regulated drug release based on ROS levels at the trauma site, to serve as a smart inflammatory microenvironment modulator and GATA6+ macrophages trap for non-adherent recovery from abdominal surgery. Sulfonated hyaluronic acid (HA) conjugates modified with adipic dihydrazide (sHA-ADH), and oxidized HA conjugates grafted with epigallocatechin-3-gallate (EGCG) via ROS-cleavable boronate bonds (OHA-E) were synthesized. sHA-ADH/OHA-E hydrogel was facilely fabricated within 5 s after simply mixing sHA-ADH and OHA-E through forming dynamic covalent acylhydrazones. With good biocompatibility, appropriate mechanical strength, tunable shear-thinning, self-healing, asymmetric adhesion, and reasonable in vivo retention time, sHA-ADH/OHA-E hydrogel meets the requirements of a perfect physical barrier. Intriguingly, sulfonic acid groups endowed the hydrogel with satisfactory anti-fibroblast and macrophage attachment capability, and were demonstrated for the first time to act as polyanion traps to prevent GATA6+ macrophages aggregation. Importantly, EGCG could be intelligently released by ROS triggering to alleviate oxidative stress and promote proinflammatory M1 macrophage polarize to antiinflammatory M2 phenotype. Further, the fibrinolytic system balance was restored to reduce fibrosis. Thanks to the above advantages, the sHA-ADH/OHA-E hydrogel exhibited excellent anti-adhesion effects in a rat sidewall defect-cecum abrasion model and is expected to be a promising and clinically translatable antiadhesion barrier.


Subject(s)
GATA6 Transcription Factor , Hyaluronic Acid , Hydrogels , Macrophages , Postoperative Complications , Reactive Oxygen Species , Tissue Adhesions/prevention & control , Animals , Hydrogels/chemistry , Hydrogels/administration & dosage , Macrophages/drug effects , Macrophages/metabolism , Reactive Oxygen Species/metabolism , Hyaluronic Acid/chemistry , Postoperative Complications/prevention & control , GATA6 Transcription Factor/metabolism , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/administration & dosage , Catechin/pharmacology , Rats, Sprague-Dawley , Mice , Adipates/chemistry , Male , Abdomen/surgery , RAW 264.7 Cells , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Drug Liberation
9.
F S Sci ; 5(1): 92-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972693

ABSTRACT

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Subject(s)
Adenomyosis , GATA2 Transcription Factor , GATA6 Transcription Factor , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult , Adenomyosis/genetics , Adenomyosis/metabolism , Adenomyosis/pathology , Decidua/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/pharmacology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/pharmacology , Leiomyoma , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Prolactin/metabolism , Prolactin/pharmacology , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Transcription Factors
10.
Kidney Int ; 105(1): 115-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37914087

ABSTRACT

Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.


Subject(s)
Renal Insufficiency, Chronic , Sirtuins , Vascular Calcification , Humans , Mice , Animals , Aged , Muscle, Smooth, Vascular , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/pharmacology , Osteogenesis , Cells, Cultured , Renal Insufficiency, Chronic/pathology , DNA Damage , Cellular Senescence/genetics , Aging/genetics , Sirtuins/genetics , Sirtuins/metabolism , Vascular Calcification/genetics , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism
11.
J Transl Med ; 21(1): 882, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057853

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a hypoxic microenvironment, a high rate of heterogeneity as well as a high likelihood of recurrence. Mounting evidence has affirmed that long non-coding RNAs (lncRNAs) participate in the carcinogenesis of PDAC cells. In this study, we revealed significantly decreased expression of GATA6-AS1 in PDAC based on the GEO dataset and our cohorts, and showed that low GATA6-AS1 expression was linked to unfavorable clinicopathologic characteristics as well as a poor prognosis. Gain- and loss-of-function studies demonstrated that GATA6-AS1 suppressed the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process of PDAC cells under hypoxia. In vivo data confirm the suppressive roles of GATA6-AS1/SNAI1 in tumor growth and lung metastasis of PDAC. Mechanistically, hypoxia-driven E26 transformation-specific sequence-1 (ETS1), as an upstream modulatory mechanism, was essential for the downregulation of GATA6-AS1 in PDAC cells. GATA6-AS1 inhibited the expression of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) eraser, and repressed SNAI1 mRNA stability in an m6A-dependent manner. Our data suggested that GATA6-AS1 can inhibit PDAC cell proliferation, invasion, migration, EMT process and metastasis under hypoxia, and disrupting the GATA6-AS1/FTO/SNAI1 axis might be a viable therapeutic approach for refractory hypoxic pancreatic cancers.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Tumor Microenvironment , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
12.
Mol Biol Rep ; 50(10): 8623-8637, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37656269

ABSTRACT

BACKGROUND: The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin ß4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS: The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. ß-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and ß catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION: The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/ß-catenin.


Subject(s)
Epithelial-Mesenchymal Transition , GATA6 Transcription Factor , Integrin beta4 , MicroRNAs , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Cell Movement , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , HeLa Cells , Integrin beta4/genetics , Integrin beta4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism
13.
Mediators Inflamm ; 2023: 9340499, 2023.
Article in English | MEDLINE | ID: mdl-37273453

ABSTRACT

Gastric cancer (GC) is one of the most common and lethal cancers worldwide. In view of the prominent roles of long noncoding RNAs (lncRNAs) in cancers, we investigated the specific role and underlying mechanism of GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in GC. Quantitative real-time polymerase chain reaction (qRT-PCR) detected GATA6-AS1 expression in GC cell lines. Functional assays were conducted to explore the role of GATA6-AS1 in GC. Furthermore, mechanism investigations were implemented to uncover the interaction among GATA6-AS1, microRNA-543 (miR-543), and phosphatase and tensin homolog (PTEN). In the present study, it was found that GATA6-AS1 expression is significantly downregulated in GC cell lines. Functionally, GATA6-AS1 markedly suppresses GC cell growth and migration in vitro and in vivo tumorigenesis. Besides tumor suppressor, GATA6-AS1 serves as a miR-543 sponge. Specifically speaking, GATA6-AS1 acts as a competing endogenous RNA (ceRNA) of miR-543 to upregulate the expression of PTEN, thus inactivating AKT signaling pathway to inhibit GC progression. In conclusion, this study has manifested that GATA6-AS1 inhibits GC cell proliferation and migration as a sponge of miR-543 by regulating PTEN/AKT signaling axis, offering new perspective into developing novel GC therapies.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Signal Transduction/genetics , Cell Transformation, Neoplastic , Cell Proliferation/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism
14.
Sci Rep ; 13(1): 6593, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087509

ABSTRACT

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.


Subject(s)
Bone Morphogenetic Proteins , GATA6 Transcription Factor , Oxidative Stress , Pulmonary Arterial Hypertension , Animals , Mice , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension/pathology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Vascular Remodeling
15.
Neurochem Res ; 48(8): 2552-2567, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37059928

ABSTRACT

Ferroptosis is a newly described form of regulated necrotic cell death, which is engaged in the pathological cell death related to stroke, contributing to cerebral ischemia-reperfusion (I/R) injury. Therefore, we performed this study to clarify the role of GATA6 in neuronal autophagy and ferroptosis in cerebral I/R injury. The cerebral I/R injury-related differentially expressed genes (DEGs) as well as the downstream factors of GATA6 were predicted bioinformatically. Moreover, the relations between GATA6 and miR-193b and that between miR-193b and ATG7 were evaluated by chromatin immunoprecipitation and dual-luciferase reporter assays. Besides, neurons were treated with oxygen-glucose deprivation (OGD), followed by overexpression of GATA6, miR-193b, and ATG7 alone or in combination to assess neuronal autophagy and ferroptosis. At last, in vivo experiments were performed to explore the impacts of GATA6/miR-193b/ATG7 on neuronal autophagy and ferroptosis in a rat model of middle cerebral artery occlusion (MCAO)-stimulated cerebral I/R injury. It was found that GATA6 and miR-193b were poorly expressed in cerebral I/R injury. GATA6 transcriptionally activated miR-193b to downregulate ATG7. Additionally, GATA6-mediated miR-193b activation suppressed neuronal autophagy and ferroptosis in OGD-treated neurons by inhibiting ATG7. Furthermore, GATA6/miR-193b relieved cerebral I/R injury by restraining neuronal autophagy and ferroptosis via downregulation of ATG7 in vivo. In summary, GATA6 might prevent neuronal autophagy and ferroptosis to alleviate cerebral I/R injury via the miR-193b/ATG7 axis.


Subject(s)
Autophagy-Related Protein 7 , GATA6 Transcription Factor , Infarction, Middle Cerebral Artery , MicroRNAs , Male , Animals , Rats , Rats, Sprague-Dawley , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Disease Models, Animal , MicroRNAs/analysis , GATA6 Transcription Factor/metabolism , Autophagy-Related Protein 7/metabolism , Brain/metabolism , Brain/pathology , Neurons/metabolism , Neurons/pathology , Autophagy , Ferroptosis , Up-Regulation , Reperfusion Injury/metabolism , Gene Regulatory Networks
16.
J Oral Pathol Med ; 52(6): 493-503, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36856154

ABSTRACT

BACKGROUND: Aberrant expression of collagen type V alpha 1 chain (COL5A1) has been linked to several forms of human cancers. In this work, we focused on the interaction of the LINC00173/GATA binding protein 6 (GATA6)/COL5A1 axis in the malignant property of oral squamous cell carcinoma (OSCC) cells. METHODS: We analyzed six publicly accessible datasets GSE160042, GSE74530, GSE138206, GSE23558, GSE31853 and GSE146483 to identify aberrantly expressed genes in OSCC. The expression of COL5A1 in OSCC tissues and cell lines was examined by reverse transcription-quantitative polymerase chain reaction and/or immunohistochemistry. The regulatory mechanism responsible for COL5A1 transcription was predicted via bioinformatics systems, and the interactions of LINC00173, GATA6, and COL5A1 were identified by immunoprecipitation and luciferase assays. Overexpression or downregulation of COL5A1, GATA6, and LINC00173 were induced in OSCC cell lines to determine their roles in the malignant phenotype of the OSCC cells in vitro and in vivo. RESULTS: COL5A1 showed elevated expression in OSCC tissues and cells. The COLA51 knockdown suppressed proliferation, migration and invasiveness, apoptosis resistance, and pro-angiogenic ability of OSCC cells, and it suppressed the growth and dissemination of xenograft tumors in vivo. GATA6 bound to COL5A1 promoter to activate its transcription, whereas LINC00173 bound to GATA6 to block this transcriptional activation. Overexpression of GATA6 or COL5A1 promoted the malignant phenotype of the OSCC cells, which were blocked upon LINC00173 upregulation. CONCLUSION: This work demonstrates that LINC00173 blocks GATA6-mediated transcription of COL5A1 to affect malignant development of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Collagen Type V/genetics , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , MicroRNAs/genetics , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Up-Regulation
17.
Mol Med ; 29(1): 33, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918760

ABSTRACT

BACKGROUND: Caveolin-1 has been predicted, based on RNA transcriptome sequencing, as a key gene in rotator cuff tear (RCT) and it is related to fatty infiltration. This study aims to elucidate the upstream and downstream mechanism of Caveolin-1 in fatty infiltration and bone-tendon healing after RCT in rat models. METHODS: Differentially expressed genes related to RCT were screened, followed by functional enrichment analysis and protein-protein interaction analysis. GATA6 was overexpressed and Caveolin-1 was knocked down in tendon stem cells (TSCs) to evaluate their effects on the adipogenic differentiation of TSCs. In addition, a RCT rat model was constructed and injected with lentivirus carrying oe-GATA6, oe-Caveolin-1 alone or in combination to assess their roles in fatty infiltration and bone-tendon healing. RESULTS AND CONCLUSION: Caveolin-1 was identified as a key gene involved in the RCT process. In vitro results demonstrated that Caveolin-1 knockdown inhibited adipogenic differentiation of TSCs by activating the cAMP/PKA pathway. GATA6 inhibited the transcription of Caveolin-1 and inhibited its expression, thus suppressing the adipogenic differentiation of TSCs. In vivo data confirmed that GATA6 overexpression activated the cAMP/PKA pathway by downregulating Caveolin-1 and consequently repressed fatty infiltration, promoted bone-tendon healing, improved biomechanical properties and reduced the rupture risk of injured tendon in rats after RCT. Overall, this study provides novel insights into the mechanistic action of Caveolin-1 in the fatty infiltration and bone-tendon healing after RCT.


Subject(s)
Adipogenesis , Caveolin 1 , GATA6 Transcription Factor , Rotator Cuff Injuries , Wound Healing , Caveolin 1/metabolism , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/surgery , Animals , Rats , Tendons/cytology , Cell Differentiation , Stem Cells , GATA6 Transcription Factor/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Gene Knockdown Techniques
18.
J Crohns Colitis ; 17(6): 960-971, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-36655602

ABSTRACT

BACKGROUND AND AIMS: Widespread dysregulation of long non-coding RNAs [lncRNAs] including a reduction in GATA6-AS1 was noted in inflammatory bowel disease [IBD]. We previously reported a prominent inhibition of epithelial mitochondrial functions in ulcerative colitis [UC]. However, the connection between reduction of GATA6-AS1 expression and attenuated epithelial mitochondrial functions was not defined. METHODS: Mucosal transcriptomics was used to conform GATA6-AS1 reduction in several treatment-naïve independent human cohorts [n=673]. RNA pull-down followed by mass spectrometry was used to determine the GATA6-AS1 interactome. Metabolomics and mitochondrial respiration following GATA6-AS1 silencing in Caco-2 cells were used to elaborate on GATA6-AS1 functions. RESULTS: GATA6-AS1 showed predominant expression in gut epithelia using single cell datasets. GATA6-AS1 levels were reduced in Crohn's disease [CD] ileum and UC rectum in independent cohorts. Reduced GATA6-AS1 lncRNA was further linked to a more severe UC form, and to a less favourable UC course. The GATA6-AS1 interactome showed robust enrichment for mitochondrial proteins, and included TGM2, an autoantigen in coeliac disease that is induced in UC, CD and coeliac disease, in contrast to GATA6-AS1 reduction in these cohorts. GATA6-AS1 silencing resulted in induction of TGM2, and this was coupled with a reduction in mitochondrial membrane potential and mitochondrial respiration, as well as in a reduction of metabolites linked to aerobic respiration relevant to mucosal inflammation. TGM2 knockdown in GATA6-AS1-deficient cells rescued mitochondrial respiration. CONCLUSIONS: GATA6-AS1 levels are reduced in UC, CD and coeliac disease, and in more severe UC forms. We highlight GATA6-AS1 as a target regulating epithelial mitochondrial functions, potentially through controlling TGM2 levels.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Caco-2 Cells , Intestinal Mucosa/metabolism , Crohn Disease/metabolism , Rectum , Inflammation/metabolism , Mitochondria/metabolism , GATA6 Transcription Factor/metabolism
19.
Biochem Biophys Res Commun ; 641: 77-83, 2023 01 22.
Article in English | MEDLINE | ID: mdl-36525927

ABSTRACT

Damaging GATA6 variants can cause moderate congenital heart defects. With the application of next-generation sequencing approaches, various novel GATA6 variants with unknown significance have been identified from a broad spectrum of congenital heart defects. However, functional assessment for distinct GATA6 variants from different severity of congenital heart defects, especially from mild defects, is lacking, which hinders our understanding of the genotype-phenotype correlations and underlying mechanisms. Here, we assessed the functional consequences of nine rare GATA6 variants, which had been implicated as the most significant variants associated with mild congenital heart defects using the largest case and control cohort. We examined the effects of these variants on subcellular localization, transcriptional activity, and protein interactions in 293T or AC16 cells and their ability to rescue heart malformation in gata6 zebrafish mutant. We found that two of these nine variants, Q120X and S424I, significantly decreased transcriptional activity. Additionally, Q120X altered subcellular localization. Consistent with the in vitro results, the in vivo results showed that Q120X and S424I lost their potency to rescue ventricular malformation in gata6 -/- embryos. The results indicated that Q120X and S424I are pathogenic in mild congenital heart defects. Further, the inconsistence of severely impaired Q120X function and mild CHDs phenotype suggested the complexity of the genotype-phenotype correlation between the GATA6 variant and heart phenotype, which may help to inform prenatal genetic counseling and pre-implantation genotyping for congenital heart defects.


Subject(s)
Heart Defects, Congenital , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart , Phenotype , Genetic Association Studies , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism
20.
Biochem Genet ; 61(2): 578-596, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36001185

ABSTRACT

Circular RNAs (circRNAs) have been reported to paly roles in the progression and management of breast cancers (BC). This work aimed to detect the role and mechanism of circ_0008717 in BC tumorigenesis. Expression levels of genes and proteins were evaluated by quantitative real-time polymerase chain reaction and western blot. In vitro assays were conducted using cell counting kit-8, colony formation, transwell, tube formation, and flow cytometry assays, respectively. The interaction between miR-326 and circ_0008717 or GATA6 (GATA Binding Protein six) was confirmed by bioinformatics analysis, and dual-luciferase reporter assay and RNA immunoprecipitation assay. The murine xenograft models were established to perform in vivo assay. Circ_0008717 and GATA6 were highly expressed, while miR-326 was lowly expressed in BC tissues and cells. Functionally, knockdown of circ_0008717 not only suppressed breast cancer cell proliferation, angiogenesis, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, but also hindered tumor growth and EMT process in vivo. Mechanistically, Circ_0008717 directly bound to miR-326, which targeted GATA6. Rescue experiments showed that miR-326 reversed the anticancer action of circ_0008717 knockdown on BC cells. Moreover, miR-326 restoration repressed BC cell growth and metastasis, which were attenuated by GATA6 overexpression. In addition, we also observed that circ_0008717 could regulate GATA6 expression by sponging miR-326. Circ_0008717 promoted breast cancer growth and metastasis through miR-326/GATA6 axis, revealing a potential therapeutic target for breast cancer treatment.


Subject(s)
Breast Neoplasms , GATA6 Transcription Factor , MicroRNAs , Animals , Female , Humans , Mice , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Computational Biology , DNA-Binding Proteins , GATA6 Transcription Factor/metabolism , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...