Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Mol Metab ; 55: 101415, 2022 01.
Article in English | MEDLINE | ID: mdl-34883278

ABSTRACT

OBJECTIVE: The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis. METHODS: To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (ß2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively). RESULTS: Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of ß2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling. CONCLUSIONS: Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/drug effects , Animals , Clenbuterol/pharmacology , Diabetes Mellitus, Type 2/metabolism , Female , GTP-Binding Protein alpha Subunits, Gs/physiology , Glucose/metabolism , Glucose Intolerance/metabolism , Homeostasis/drug effects , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/physiology , Obesity/metabolism , Receptors, Adrenergic, beta-2/metabolism
2.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34864945

ABSTRACT

Gonadotropin-releasing hormone (GnRH) regulates gonadal function via its stimulatory effects on gonadotropin production by pituitary gonadotrope cells. GnRH is released from the hypothalamus in pulses and GnRH pulse frequency differentially regulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis and secretion. The GnRH receptor (GnRHR) is a G protein-coupled receptor that canonically activates Gα q/11-dependent signaling on ligand binding. However, the receptor can also couple to Gα s and in vitro data suggest that toggling between different G proteins may contribute to GnRH pulse frequency decoding. For example, as we show here, knockdown of Gα s impairs GnRH-stimulated FSH synthesis at low- but not high-pulse frequency in a model gonadotrope-derived cell line. We next used a Cre-lox conditional knockout approach to interrogate the relative roles of Gα q/11 and Gα s proteins in gonadotrope function in mice. Gonadotrope-specific Gα q/11 knockouts exhibit hypogonadotropic hypogonadism and infertility, akin to the phenotypes seen in GnRH- or GnRHR-deficient mice. In contrast, under standard conditions, gonadotrope-specific Gα s knockouts produce gonadotropins at normal levels and are fertile. However, the LH surge amplitude is blunted in Gα s knockout females and postgonadectomy increases in FSH and LH are reduced both in males and females. These data suggest that GnRH may signal principally via Gα q/11 to stimulate gonadotropin production, but that Gα s plays important roles in gonadotrope function in vivo when GnRH secretion is enhanced.


Subject(s)
Chromogranins/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Gonadotrophs/metabolism , Gonadotropins/metabolism , Animals , Castration , Cell Line , Chromogranins/genetics , Female , Fertility/genetics , Fertility/physiology , Follicle Stimulating Hormone, beta Subunit/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Gene Expression Regulation/physiology , Gonadotropin-Releasing Hormone/physiology , Gonadotropins/genetics , HEK293 Cells , Humans , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LHRH/genetics , Receptors, LHRH/physiology , Sexual Maturation , Signal Transduction/physiology
3.
Mol Pharmacol ; 100(3): 203-216, 2021 09.
Article in English | MEDLINE | ID: mdl-34158361

ABSTRACT

Norepinephrine (NE) controls many vital body functions by activating adrenergic receptors (ARs). Average core body temperature (CBT) in mice is 37°C. Of note, CBT fluctuates between 36 and 38°C within 24 hours, but little is known about the effects of CBT changes on the pharmacodynamics of NE. Here, we used Peltier element-controlled incubators and challenged murine hypothalamic mHypoA -2/10 cells with temperature changes of ±1°C. We observed enhanced NE-induced activation of a cAMP-dependent luciferase reporter at 36 compared with 38°C. mRNA analysis and subtype specific antagonists revealed that NE activates ß 2- and ß 3-AR in mHypoA-2/10 cells. Agonist binding to the ß 2-AR was temperature insensitive, but measurements of cytosolic cAMP accumulation revealed an increase in efficacy of 45% ± 27% for NE and of 62% ± 33% for the ß 2-AR-selective agonist salmeterol at 36°C. When monitoring NE-promoted cAMP efflux, we observed an increase in the absolute efflux at 36°C. However, the ratio of exported to cytosolic accumulated cAMP is higher at 38°C. We also stimulated cells with NE at 37°C and measured cAMP degradation at 36 and 38°C afterward. We observed increased cAMP degradation at 38°C, indicating enhanced phosphodiesterase activity at higher temperatures. In line with these data, NE-induced activation of the thyreoliberin promoter was found to be enhanced at 36°C. Overall, we show that physiologic temperature changes fine-tune NE-induced cAMP signaling in hypothalamic cells via ß 2-AR by modulating cAMP degradation and the ratio of intra- and extracellular cAMP. SIGNIFICANCE STATEMENT: Increasing cytosolic cAMP levels by activation of G protein-coupled receptors (GPCR) such as the ß 2-adrenergic receptor (AR) is essential for many body functions. Changes in core body temperature are fundamental and universal factors of mammalian life. This study provides the first data linking physiologically relevant temperature fluctuations to ß 2-AR-induced cAMP signaling, highlighting a so far unappreciated role of body temperature as a modulator of the prototypic class A GPCR.


Subject(s)
Cyclic AMP/metabolism , Cytosol/metabolism , Receptors, Adrenergic, beta-2/physiology , 1-Methyl-3-isobutylxanthine/pharmacology , ARNTL Transcription Factors/metabolism , Aminopyridines/pharmacology , Animals , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Forkhead Transcription Factors/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Hypothalamus/physiology , Mice , Neurons/physiology , Norepinephrine/pharmacology , Receptors, Adrenergic, beta-2/biosynthesis , Receptors, Adrenergic, beta-3/biosynthesis , Receptors, Adrenergic, beta-3/physiology , STAT Transcription Factors/metabolism , Salmeterol Xinafoate/pharmacology , Signal Transduction/physiology , Temperature , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism
4.
J Biol Chem ; 296: 100632, 2021.
Article in English | MEDLINE | ID: mdl-33865855

ABSTRACT

Nonshivering thermogenesis is essential for mammals to maintain body temperature. According to the canonical view, temperature is sensed by cutaneous thermoreceptors and nerve impulses transmitted to the hypothalamus, which generates sympathetic signals to ß-adrenergic receptors in brown adipocytes. The energy for heat generation is primarily provided by the oxidation of fatty acids derived from triglyceride hydrolysis and cellular uptake. Fatty acids also activate the uncoupling protein, UCP1, which creates a proton leak that uncouples mitochondrial oxidative phosphorylation from ATP production, resulting in energy dissipation as heat. Recent evidence supports the idea that in response to mild cold, ß-adrenergic signals stimulate not only lipolysis and fatty acid oxidation, but also act through the mTORC2-Akt signaling module to stimulate de novo lipogenesis. This opposing anabolic effect is thought to maintain lipid fuel stores during increased catabolism. We show here, using brown fat-specific Gs-alpha knockout mice and cultured adipocytes that, unlike mild cold, severe cold directly cools brown fat and bypasses ß-adrenergic signaling to inhibit mTORC2. This cell-autonomous effect both inhibits lipogenesis and augments UCP1 expression to enhance thermogenesis. These findings suggest a novel mechanism for overriding ß-adrenergic-stimulated anabolic activities while augmenting catabolic activities to resolve the homeostatic crisis presented by severe cold.


Subject(s)
Adipose Tissue, Brown/metabolism , Chromogranins/physiology , Cold Temperature , GTP-Binding Protein alpha Subunits, Gs/physiology , Mechanistic Target of Rapamycin Complex 2/metabolism , Thermogenesis , Adipose Tissue, Brown/cytology , Animals , Lipogenesis , Male , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Signal Transduction , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
5.
Proc Natl Acad Sci U S A ; 117(35): 21723-21730, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817560

ABSTRACT

G proteins are activated when they associate with G protein-coupled receptors (GPCRs), often in response to agonist-mediated receptor activation. It is generally thought that agonist-induced receptor-G protein association necessarily promotes G protein activation and, conversely, that activated GPCRs do not interact with G proteins that they do not activate. Here we show that GPCRs can form agonist-dependent complexes with G proteins that they do not activate. Using cell-based bioluminescence resonance energy transfer (BRET) and luminescence assays we find that vasopressin V2 receptors (V2R) associate with both Gs and G12 heterotrimers when stimulated with the agonist arginine vasopressin (AVP). However, unlike V2R-Gs complexes, V2R-G12 complexes are not destabilized by guanine nucleotides and do not promote G12 activation. Activating V2R does not lead to signaling responses downstream of G12 activation, but instead inhibits basal G12-mediated signaling, presumably by sequestering G12 heterotrimers. Overexpressing G12 inhibits G protein receptor kinase (GRK) and arrestin recruitment to V2R and receptor internalization. Formyl peptide (FPR1 and FPR2) and Smoothened (Smo) receptors also form complexes with G12 that are insensitive to nucleotides, suggesting that unproductive GPCR-G12 complexes are not unique to V2R. These results indicate that agonist-dependent receptor-G protein association does not always lead to G protein activation and may in fact inhibit G protein activation.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Bioluminescence Resonance Energy Transfer Techniques/methods , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/physiology , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/physiology , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Ligands , Protein Binding/physiology , Receptors, Vasopressin/metabolism , Signal Transduction/physiology , Vasopressins/metabolism , beta-Arrestins/metabolism
6.
J Mol Cell Cardiol ; 132: 49-59, 2019 07.
Article in English | MEDLINE | ID: mdl-31071332

ABSTRACT

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without an effective pharmaceutical treatment. Genetic studies have proved the involvement of smooth muscle phenotype switch in the development of AAA. The alpha subunit of the heterotrimeric G stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of smooth muscle Gsα in AAA formation remains unknown. APPROACH AND RESULTS: In this study, mice with knockout of smooth muscle-specific Gsα (GsαSMKO) were generated by cross-breeding Gsαflox/flox mice with SM22-CreERT2 transgenic mice, induced in adult mice by tamoxifen treatment. Gsα deficiency induced a smooth muscle phenotype switch from a contractile to a synthetic state. Mechanically, Gsα deletion reduced cAMP level and increased the level of human antigen R (HuR), which binds with the adenylate uridylate-rich elements of the 3' untranslated region of Krüppel-like factor 4 (KLF4) mRNA, thereby increasing the stability of KLF4. Moreover, genetic knockdown of HuR or KLF4 rescued the phenotype switch in Gsα-deficient smooth muscle cells. Furthermore, with acute infusion of angiotensin II, the incidence of AAA was markedly higher in ApoE-/-/GsαSMKO than ApoE-/-/Gsαflox/flox mice and induced increased elastic lamina degradation and aortic expansion. Finally, the levels of Gsα and SM α-actin were significantly lower while those of HuR and KLF4 were higher in human AAA samples than adjacent nonaneurysmal aortic sections. CONCLUSIONS: Gsα may play a protective role in AAA formation by regulating the smooth muscle phenotype switch and could be a potential therapeutic target for AAA disease.


Subject(s)
Angiotensin II/toxicity , Aortic Aneurysm, Abdominal/etiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Muscle, Smooth, Vascular/pathology , Vasoconstrictor Agents/toxicity , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Humans , Kruppel-Like Factor 4 , Male , Mice , Mice, Knockout, ApoE , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phenotype , Signal Transduction
8.
Gastroenterology ; 155(5): 1593-1607.e12, 2018 11.
Article in English | MEDLINE | ID: mdl-30142336

ABSTRACT

BACKGROUND & AIMS: Mutations at hotspots in GNAS, which encodes stimulatory G-protein, α subunits, are detected in approximately 60% of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. We generated mice with KRAS-induced IPMNs that also express a constitutively active form of GNAS in pancreas and studied tumor development. METHODS: We generated p48-Cre; LSL-KrasG12D; Rosa26R-LSL-rtTA-TetO-GnasR201C mice (Kras;Gnas mice); pancreatic tissues of these mice express activated KRAS and also express a mutant form of GNAS (GNASR201C) upon doxycycline administration. Mice that were not given doxycycline were used as controls, and survival times were compared by Kaplan-Meier analysis. Pancreata were collected at different time points after doxycycline administration and analyzed by histology. Pancreatic ductal adenocarcinomas (PDACs) were isolated from mice and used to generate cell lines, which were analyzed by reverse transcription polymerase chain reaction, immunoblotting, immunohistochemistry, and colony formation and invasion assays. Full-length and mutant forms of yes-associated protein (YAP) were expressed in PDAC cells. IPMN specimens were obtained from 13 patients with IPMN undergoing surgery and analyzed by immunohistochemistry. RESULTS: All Kras;Gnas mice developed pancreatic cystic lesions that resemble human IPMNs; the grade of epithelial dysplasia increased with time. None of the control mice developed cystic lesions. Approximately one third of Kras;Gnas mice developed PDACs at a median of 30 weeks after doxycycline administration, whereas 33% of control mice developed PDACs. Expression of GNASR201C did not accelerate the development of PDACs compared with control mice. However, the neoplasms observed in Kras;Gnas mice were more differentiated, and expressed more genes associated with ductal phenotypes, than in control mice. PDACs isolated from Kras;Gnas mice had activation of the Hippo pathway; in cells from these tumors, phosphorylated YAP1 was sequestered in the cytoplasm, and this was also observed in human IPMNs with GNAS mutations. Sequestration of YAP1 was not observed in PDAC cells from control mice. CONCLUSIONS: In mice that express activated KRAS in the pancreas, we found expression of GNASR201C to cause development of more differentiated tumors, with gene expression pattern associated with the ductal phenotype. Expression of mutant GNAS caused phosphorylated YAP1 to be sequestered in the cytoplasm, altering tumor progression.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Carcinoma, Pancreatic Ductal/etiology , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Mutation , Neoplasms, Cystic, Mucinous, and Serous/etiology , Pancreatic Neoplasms/etiology , Phosphoproteins/physiology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Cell Cycle Proteins , Cell Line, Tumor , Chromogranins/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Humans , Mice , Phosphoproteins/analysis , Phosphoproteins/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/physiology , YAP-Signaling Proteins
9.
Exp Hematol ; 57: 14-20, 2018 01.
Article in English | MEDLINE | ID: mdl-28939416

ABSTRACT

Genome sequencing efforts have identified virtually all of the important mutations in adult myeloid malignancies. More recently, population studies have identified cancer-associated variants in the blood of otherwise healthy individuals as they age, a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). This suggests that these mutations may occur in hematopoietic stem cells (HSCs) long before any clinical presentation but are not necessarily harbingers of transformation because only a fraction of individuals with CHIP develop hematopoietic pathologies. Delineation between CHIP variants that predispose for disease versus those that are more benign could be used as a prognostic factor to identify individuals at greater risk for transformation. To achieve this, the biological impact of CHIP variants on HSC function must be validated. One variant that has been identified recurrently in CHIP is a gain-of-function missense mutation in the imprinted gene GNAS (Guanine Nucleotide Binding Protein, Alpha Stimulating). In this study, we examined the effect of the GNASR201C variant on HSC function. Ectopic expression of GNASR201C supported transplantable HSC activity and improved lymphoid output in secondary recipients. Because declining lymphoid output is a hallmark of aging, GNASR201C mutations may sustain lymphoid-biased HSCs over time and maintain them in a developmental state favorable for transformation.


Subject(s)
Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Gain of Function Mutation , Hematopoiesis/genetics , Mutation, Missense , Animals , Bone Marrow Transplantation , Cell Count , Cellular Senescence , Chromogranins/physiology , DNA, Complementary/genetics , GTP-Binding Protein alpha Subunits, Gs/physiology , Gene Regulatory Networks , Genes, Reporter , Genetic Vectors/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells , Humans , Lentivirus/genetics , Lymphopoiesis/genetics , Mice , Mice, Inbred C57BL , Transduction, Genetic , Transplantation Chimera
10.
PLoS One ; 12(5): e0176841, 2017.
Article in English | MEDLINE | ID: mdl-28472098

ABSTRACT

We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.


Subject(s)
Adipogenesis/physiology , Chromogranins/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Microtubules/physiology , Receptors, G-Protein-Coupled/physiology , rho GTP-Binding Proteins/metabolism , 3T3-L1 Cells , Animals , Fluorescence Resonance Energy Transfer , Mice
11.
J Clin Invest ; 126(1): 40-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595811

ABSTRACT

Activation of brain melanocortin 4 receptors (MC4Rs) leads to reduced food intake, increased energy expenditure, increased insulin sensitivity, and reduced linear growth. MC4R effects on energy expenditure and glucose metabolism are primarily mediated by the G protein G(s)α in brain regions outside of the paraventricular nucleus of the hypothalamus (PVN). However, the G protein(s) that is involved in MC4R-mediated suppression of food intake and linear growth, which are believed to be regulated primarily though action in the PVN, is unknown. Here, we show that PVN-specific loss of G(q)α and G11α, which stimulate PLC, leads to severe hyperphagic obesity, increased linear growth, and inactivation of the hypothalamic-pituitary-adrenal axis, without affecting energy expenditure or glucose metabolism. Moreover, we demonstrate that the ability of an MC4R agonist delivered to PVN to inhibit food intake is lost in mice lacking G(q/11)α in the PVN but not in animals deficient for G(s)α. The blood pressure response to the same MC4R agonist was only lost in animals lacking G(s)α specifically in the PVN. Together, our results exemplify how different physiological effects of GPCRs may be mediated by different G proteins and identify a pathway for appetite regulation that could be selectively targeted by G(q/11)α-biased MC4R agonists as a potential treatment for obesity.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Paraventricular Hypothalamic Nucleus/physiology , Receptor, Melanocortin, Type 4/physiology , Animals , Cholesterol/metabolism , Female , Hypothalamo-Hypophyseal System/physiology , Insulin Resistance , Melanocortins/pharmacology , Mice , Mice, Knockout , Obesity/etiology , Pituitary-Adrenal System/physiology , Receptor, Melanocortin, Type 4/agonists
12.
Exp Cell Res ; 333(2): 289-302, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25704759

ABSTRACT

G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced Gs signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated Gs G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of Gs-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of Gs signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to Gs signaling in mature OBs.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/physiology , Osteoblasts/metabolism , Transcriptome , Animals , Bone Regeneration , Cells, Cultured , Fibroblast Growth Factor 9/genetics , Fibroblast Growth Factor 9/metabolism , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Osteogenesis , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Skull/pathology , Skull/physiopathology , Sp7 Transcription Factor , Transcription Factors/genetics , Transcription Factors/metabolism
13.
PLoS One ; 8(11): e77779, 2013.
Article in English | MEDLINE | ID: mdl-24223727

ABSTRACT

Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.


Subject(s)
Memory , Serotonin/biosynthesis , Animals , Behavior, Animal , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Dopamine/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Insulin/physiology , Motor Activity , Nerve Net , Receptors, Serotonin/physiology , Sensory Receptor Cells/physiology , Serotonin/physiology , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Signal Transduction , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
14.
Exp Physiol ; 98(10): 1432-45, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23748904

ABSTRACT

Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P ≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(-1), KO versus WT, P ≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P ≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.


Subject(s)
Blood Pressure/physiology , Body Temperature , GTP-Binding Protein alpha Subunits, Gs/deficiency , GTP-Binding Protein alpha Subunits, Gs/physiology , Heart Rate/physiology , Animals , Atropine/pharmacology , Blood Pressure/drug effects , Body Temperature/drug effects , Chromogranins , Exenatide , Glucagon-Like Peptide-1 Receptor , Heart Rate/drug effects , Male , Mice , Mice, Knockout , Peptides/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Glucagon/metabolism , Reserpine/pharmacology , Stress, Psychological , Venoms/pharmacology
15.
J Pharmacol Exp Ther ; 345(3): 404-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23516330

ABSTRACT

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), acting through the osteoblast PTH1 receptor (PTH1R), play important roles in bone remodeling. Intermittent administration of PTH(1-34) (teriparatide) leads to bone formation, whereas continuous administration paradoxically leads to bone resorption. Activation of PTH1R promotes regulation of multiple signaling pathways, including G(s)/cAMP/protein kinase A, G(q)/calcium/protein kinase C, ß-arrestin recruitment, and extracellular signal-related kinase (ERK)1/2 phosphorylation, as well as receptor internalization, but their role in promoting anabolic and catabolic actions of PTH(1-34) are unclear. In the present investigation, a collection of PTH(1-34) and PTHrP(1-34) peptide analogs were evaluated in orthogonal human PTH1R (hPTH1R) functional assays capturing G(s)- and G(q)-signaling, ß-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization to further define the patterns of PTH1R signaling that they stimulate and further establish peptide domains contributing to agonist activity. Results indicate that both N- and C-terminal domains of PTH and PTHrP are critical for activation of signaling pathways. However, modifications of both regions lead to more substantial decreases in agonist potency and efficacy to stimulate G(q)-signaling, ß-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization than to stimulate G(s)-signaling. The substantial contribution of the peptide C-terminal domain in activation of hPTH1R signaling suggests a role in positioning of the peptide N-terminal region into the receptor J-domain. Several PTH and PTHrP peptides evaluated in this study promote different patterns of biased agonist signaling and may serve as useful tools to further elucidate therapeutically relevant PTH1R signaling in osteoblasts. With a better understanding of therapeutically relevant signaling, novel biased peptides with desired signaling could be designed for safer and more effective treatment of osteoporosis.


Subject(s)
Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Receptor, Parathyroid Hormone, Type 2/agonists , Receptor, Parathyroid Hormone, Type 2/physiology , Signal Transduction/physiology , Algorithms , Animals , Arrestin/physiology , Bone Density Conservation Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Drug Design , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Humans , Inositol Phosphates/metabolism , MAP Kinase Signaling System/physiology , Parathyroid Hormone/chemistry , Parathyroid Hormone-Related Protein/pharmacology , Peptide Fragments/chemistry , Phosphorylation , Receptor, Parathyroid Hormone, Type 2/antagonists & inhibitors
16.
Minerva Endocrinol ; 37(2): 133-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22691887

ABSTRACT

Abnormalities in the cAMP/PKA signaling pathway have been linked to the formation of benign adrenal tumors, as well as a possible predisposition to adrenocortical cancer. Mutations in the G-protein coupled receptor are associated with McCune-Albright syndrome and ACTH-independent macronodular adrenal hyperplasia, while defects in cAMP-dependent protein kinase A can lead to the development of Carney's complex, as well as primary pigmented nodular adrenocortical disease (PPNAD), and micronodular adrenocortical hyperplasia (MAH). Defects in phosphodiesterases, which regulate cAMP levels, have also been demonstrated in PPNAD and MAH. The Wnt signaling pathway, which is involved in oncogenesis in a variety of tumors, has also been implicated in adrenocortical tumorigenesis. MicroRNA profiling has added to our understanding of the signaling pathways involved in tumor formation in the adrenal cortex. Will this all lead to the development of specific targets for pharmacologic therapies? In this article, we review the molecular genetics of adrenocortical tumors and refer to potential targets for pharmacologic therapy.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Carcinoma/genetics , Signal Transduction/physiology , 3',5'-Cyclic-AMP Phosphodiesterases/physiology , Adrenal Cortex Neoplasms/drug therapy , Adrenocorticotropic Hormone/physiology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma/drug therapy , Chromogranins , Cyclic AMP/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , GTP-Binding Protein alpha Subunits, Gs/deficiency , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/physiology , Humans , MicroRNAs/physiology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Receptors, Corticotropin/deficiency , Receptors, Corticotropin/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Wnt Proteins/physiology
17.
PLoS Genet ; 8(5): e1002706, 2012.
Article in English | MEDLINE | ID: mdl-22589743

ABSTRACT

It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.


Subject(s)
Cognition/physiology , GTP-Binding Protein alpha Subunits, Gs/genetics , Genomic Imprinting , Sleep, REM/genetics , Sleep, REM/physiology , Adipose Tissue, Brown , Alleles , Animals , Body Temperature , Body Temperature Regulation/genetics , Body Temperature Regulation/physiology , Chromogranins , DNA Methylation , Electroencephalography , Exons , GTP-Binding Protein alpha Subunits, Gs/physiology , Gene Expression Regulation , Ion Channels , Mice , Mitochondrial Proteins , Sequence Deletion , Uncoupling Protein 1 , Wakefulness
18.
J Clin Endocrinol Metab ; 97(7): 2404-13, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22564667

ABSTRACT

CONTEXT: McCune-Albright syndrome (MAS) is caused by sporadic mutations of the GNAS. Patients exhibit features of acromegaly. In most patients, GH-secreting pituitary adenomas have been held responsible for this presentation. However, surgical adenomectomy rarely eliminates excess GH production. OBJECTIVE: The aim of this study was to elucidate pituitary pathology in patients with MAS and to explain the basis of failure of adenomectomy to eliminate GH hypersecretion. DESIGN AND SETTING: We conducted a case series at the National Institutes of Health. INTERVENTION(S): Interventions included medical therapy and transsphenoidal surgery. PATIENTS AND MAIN OUTCOME MEASURES: We studied clinical and imaging features and the histology and molecular features of the pituitary of four acromegalic MAS patients. RESULTS: We identified widespread and diffuse pituitary gland disease. The primary pathological changes were characterized by hyperplastic and neoplastic change, associated with overrepresentation of somatotroph cells in structurally intact tissue areas. Genetic analysis of multiple microdissected samples of any type of histological area consistently revealed identical GNAS mutations in individual patients. The only patient with remission after surgery received complete hypophysectomy in addition to removal of multiple GH-secreting tumors. CONCLUSIONS: These findings indicate developmental effects of GNAS mutation on the entire anterior pituitary gland. The pituitary of individual cases contains a spectrum of changes with regions of normal appearing gland, hyperplasia, and areas of fully developed adenoma formation, as well as transitional stages between these entities. The primary change underlying acromegaly in MAS patients is somatotroph hyperplasia involving the entire pituitary gland, with or without development of somatotroph adenoma. Thus, successful clinical management, whether it is medical, surgical, or via irradiation, must target the entire pituitary, not just the adenomas evident on imaging.


Subject(s)
Acromegaly/genetics , Fibrous Dysplasia, Polyostotic/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Mutation, Missense , Pituitary Diseases/genetics , Acromegaly/blood , Acromegaly/complications , Acromegaly/etiology , Adenoma/blood , Adenoma/complications , Adenoma/genetics , Adult , Chromogranins , DNA Mutational Analysis , Female , Fibrous Dysplasia, Polyostotic/blood , Fibrous Dysplasia, Polyostotic/complications , GTP-Binding Protein alpha Subunits, Gs/physiology , Growth Hormone-Secreting Pituitary Adenoma/blood , Growth Hormone-Secreting Pituitary Adenoma/complications , Growth Hormone-Secreting Pituitary Adenoma/genetics , Human Growth Hormone/analysis , Human Growth Hormone/blood , Humans , Insulin-Like Growth Factor I/analysis , Male , Mutation, Missense/physiology , Pituitary Diseases/blood , Pituitary Diseases/complications , Pituitary Diseases/diagnosis , Young Adult
19.
J Neurosci ; 32(5): 1714-29, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22302812

ABSTRACT

Numerous physiological functions, including a role as a cell surface receptor, have been ascribed to Alzheimer's disease-associated amyloid precursor protein (APP). However, detailed analysis of intracellular signaling mediated by APP in neurons has been lacking. Here, we characterized intrinsic signaling associated with membrane-bound APP C-terminal fragments, which are generated following APP ectodomain release by α- or ß-secretase cleavage. We found that accumulation of APP C-terminal fragments or expression of membrane-tethered APP intracellular domain results in adenylate cyclase-dependent activation of PKA (protein kinase A) and inhibition of GSK3ß signaling cascades, and enhancement of axodendritic arborization in rat immortalized hippocampal neurons, mouse primary cortical neurons, and mouse neuroblastoma. We discovered an interaction between BBXXB motif of APP intracellular domain and the heterotrimeric G-protein subunit Gα(S), and demonstrate that Gα(S) coupling to adenylate cyclase mediates membrane-tethered APP intracellular domain-induced neurite outgrowth. Our study provides clear evidence that APP intracellular domain can have a nontranscriptional role in regulating neurite outgrowth through its membrane association. The novel functional coupling of membrane-bound APP C-terminal fragments with Gα(S) signaling identified in this study could impact several brain functions such as synaptic plasticity and memory formation.


Subject(s)
Amyloid beta-Protein Precursor/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Intracellular Membranes/physiology , Signal Transduction/physiology , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/physiology , Amino Acid Sequence , Amyloid beta-Protein Precursor/chemistry , Animals , COS Cells , Cell Line, Transformed , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/physiology , Cell Proliferation , Chlorocebus aethiops , Female , GTP-Binding Protein alpha Subunits, Gs/chemistry , Intracellular Membranes/chemistry , Male , Mice , Molecular Sequence Data , Neurites/physiology , Protein Structure, Tertiary , Rats
20.
Clin Exp Nephrol ; 16(1): 17-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22124804

ABSTRACT

Control of the renin system by physiological mechanisms such as the baroreceptor or the macula densa (MD) is characterized by asymmetry in that the capacity for renin secretion and expression to increase is much larger than the magnitude of the inhibitory response. The large stimulatory reserve of the renin-angiotensin system may be one of the causes for the remarkable salt-conserving power of the mammalian kidney. Physiological stimulation of renin secretion and expression relies on the activation of regulatory pathways that converge on the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. Mice with selective Gs-alpha (Gsα) deficiency in juxtaglomerular granular cells show a marked reduction of basal renin secretion, and an almost complete unresponsiveness of renin release to furosemide, hydralazine, or isoproterenol. Cyclooxygenase-2 generating prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) in MD and thick ascending limb cells is one of the main effector systems utilizing Gsα-coupled receptors to stimulate the renin-angiotensin system. In addition, ß-adrenergic receptors are critical for the expression of high basal levels of renin and for its release response to lowering blood pressure or MD sodium chloride concentration. Nitric oxide generated by nitric oxide synthases in the MD and in endothelial cells enhances cAMP-dependent signaling by stabilizing cAMP through cyclic guanosine monophosphate-dependent inhibition of phosphodiesterase 3. The stimulation of renin secretion by drugs that inhibit angiotensin II formation or action results from the convergent activation of cAMP probably through indirect augmentation of the activity of PGE(2) and PGI(2) receptors, ß-adrenergic receptors, and nitric oxide.


Subject(s)
Cyclic AMP/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Renin/metabolism , Signal Transduction/physiology , Animals , Cyclic AMP-Dependent Protein Kinases/physiology , Cyclooxygenase 2/physiology , Diuretics/pharmacology , Furosemide/pharmacology , GTP-Binding Protein alpha Subunits, Gs/deficiency , Juxtaglomerular Apparatus/cytology , Juxtaglomerular Apparatus/metabolism , Kidney Tubules, Distal/metabolism , Mice , Nitric Oxide Synthase/metabolism , Prostaglandins/physiology , Receptors, Adrenergic, beta/metabolism , Renin-Angiotensin System/physiology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...