Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.031
Filter
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(7): 849-854, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39013823

ABSTRACT

Objective: To analyze the kinematic changes of the hip joint after total hip arthroplasty (THA) through three-dimensional gait analysis. Methods: Patients with hip joint diseases admitted between October 2022 and June 2023 were selected as the subjects. The patients who met the selective criteria were finally included in the THA group. The healthy volunteers matched with the THA group in the same age were included as the control group. Baseline data including age, gender, body mass index (BMI), and laterality were compared between the two groups. The Harris hip score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were recorded preoperatively and at last follow-up in the THA group. Three-dimensional motion capture system was utilized to collect spatiotemporal parameters and kinematic data during walking, including stride length, cadence, and maximum/minimum values, range of motion (ROM) in hip joint abduction/adduction, external/internal rotation, and flexion/extension, as well as gait scores. Differences between the two groups were analyzed. Additionally, the correlation between gait scores and postoperative HHS and WOMAC scores were analyzed in the THA group. Finally, the kinematic data of each degree of freedom (DOF) were fitted into a gait diagram, and the dynamic changes of the 3-DOF of the hip joint during the gait cycle were quantitatively analyzed. Results: There was no significant difference in gender, age, laterality, and BMI between the two groups ( n=20, P>0.05). The mean follow-up time in the THA group was 9.9 months (range, 6-12 months). The HHS and WOMAC scores at last follow-up in the THA group showed significant improvement when compared with preoperative scores ( P<0.05). Gait scores were positively correlated with postoperative HHS score ( r=0.585, P=0.007) and negatively correlated with WOMAC score ( r=-0.619, P=0.004). There was no significant difference in stride length and cadence between the THA and control groups ( P>0.05), but gait score was significantly lower in the THA group than in the control group ( P<0.05). There was no significant difference in maximum and minimum values of flexion/extension, external/internal rotation, and abduction/adduction between the two groups ( P>0.05); however, ROM in the THA group was significantly lower than that in the control group ( P<0.05). There were significant differences between the two groups of flexion/extension in multiple phases of the gait cycle ( P<0.05). Conclusion: Early post-THA hip joint kinematics exhibit relative adduction, external rotation, and flexion during the gait cycle compared to normal individuals, with incomplete recovery of kinematic parameters in three degrees of freedom. Significant differences in flexion are observed at multiple phases of the gait cycle compared to normal individuals.


Subject(s)
Arthroplasty, Replacement, Hip , Gait , Hip Joint , Range of Motion, Articular , Humans , Arthroplasty, Replacement, Hip/methods , Biomechanical Phenomena , Hip Joint/surgery , Gait/physiology , Female , Male , Case-Control Studies , Osteoarthritis, Hip/surgery , Middle Aged , Gait Analysis , Postoperative Period , Aged
2.
Sci Rep ; 14(1): 16410, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013927

ABSTRACT

Gait cycle variability during steady walking, described by the stride interval time series, has been used as a gait-stability-related measure. In particular, the positive persistency in the stride intervals with 1/f-like fluctuation and reduction of the persistency are the well-documented metrics that can characterize gait patterns of healthy young adults and elderly including patients with neurological diseases, respectively. Here, we examined effects of a dual task on gait cycle variability in healthy young adults, based on the mean and standard deviation statistics as well as the positive persistency of the stride intervals during steady walking on a treadmill. Specifically, three gait conditions were examined: control condition, non-cognitive task with holding a smartphone in front of the chest using their dominant hand and looking fixedly at a blank screen of the smartphone, and cognitive motor task with holding a smartphone as in the non-cognitive task and playing a puzzle game displayed on the smartphone by one-thumb operation. We showed that only the positive persistency, not the mean and standard deviation statistics, was affected by the cognitive and motor load of smartphone usage in the cognitive condition. More specifically, the positive persistency exhibited in the control and the non-cognitive conditions was significantly reduced in the cognitive condition. Our results suggest that the decrease in the positive persistency during the cognitive task, which might represent the deterioration of healthy gait pattern, is caused endogenously by the cognitive and motor load, not necessarily by the reduction of visual field as often hypothesized.


Subject(s)
Gait , Smartphone , Walking , Humans , Male , Gait/physiology , Female , Walking/physiology , Young Adult , Adult , Cognition/physiology
3.
Article in English | MEDLINE | ID: mdl-38980789

ABSTRACT

Transfemoral amputation is a debilitating condition that leads to long-term mobility restriction and secondary disorders that negatively affect the quality of life of millions of individuals worldwide. Currently available prostheses are not able to restore energetically efficient and functional gait, thus, recently, the alternative strategy to inject energy at the residual hip has been proposed to compensate for the lack of energy of the missing leg. Here, we show that a portable and powered hip exoskeleton assisting both the residual and intact limb induced a reduction of walking energy expenditure in four individuals with above-knee amputation. The reduction of the energy expenditure, quantified using the Physiological Cost Index, was in the range [-10, -17]% for all study participants compared to walking without assistance, and between [-2, -24]% in three out of four study participants compared to walking without the device. Additionally, all study participants were able to walk comfortably and confidently with the hip exoskeleton overground at both their self-selected comfortable and fast speed without any observable alterations in gait stability. The study findings confirm that injecting energy at the hip level is a promising approach for individuals with above-knee amputation. By reducing the energy expenditure of walking and facilitating gait, a hip exoskeleton may extend mobility and improve locomotor training of individuals with above-knee amputation, with several positive implications for their quality of life.


Subject(s)
Amputation, Surgical , Amputees , Artificial Limbs , Energy Metabolism , Exoskeleton Device , Hip , Walking , Humans , Walking/physiology , Male , Adult , Amputation, Surgical/rehabilitation , Amputees/rehabilitation , Middle Aged , Gait/physiology , Female , Biomechanical Phenomena , Prosthesis Design , Knee
5.
PLoS One ; 19(7): e0307304, 2024.
Article in English | MEDLINE | ID: mdl-39012877

ABSTRACT

BACKGROUND: Parkinson's Disease (PD) affects movement and cognition, and physiotherapy, particularly treadmill gait training, has potential in addressing movement dysfunctions in PD. However, treadmill training falls short in addressing cognitive aspects and adherence. Virtual reality (VR) and gamification can enhance motor and cognitive retraining and improve adherence. People with Parkinson's Disease (PWPD) have decreased motor skill learning efficiency, but tDCS can improve motor and cognitive learning. METHODS: 78 participants with PD will be randomly allocated in a 1:1:1 ratio to one of three groups: (1) treadmill + Gamified Virtual Reality Environment (GVRE) + tDCS training group; (2) treadmill + GVRE training group or (3) treadmill training group. Participants will follow a 6-week, 12-session treadmill gait training plan, gradually increasing session duration from 20 to 45 minutes. Participants in (1) and (2) will undergo a GVRE training protocol, with (1) also receiving tDCS for the first 20 minutes of each session. Assessments will occur at baseline, post-intervention, and at a 6-week follow-up. The primary outcome measure will be gait speed during single and dual-task performance. Secondary measures will include additional gait parameters, executive tests for cognitive performance, and clinical outcomes for disease stage, cognitive status, and physical condition. DISCUSSION: This randomized clinical trial presents an innovative neurorehabilitation protocol that aims to improve gait and cognition in PWPD. The study also examines how tDCS can enhance motor and cognitive training. Results could contribute to enhancing the motor and cognitive state of PWPD through a GVRE and tDCS-based neurorehabilitation protocol. TRIAL REGISTRATION: NCT05243394. 28/02/2024 -v3.2.


Subject(s)
Exercise Therapy , Parkinson Disease , Transcranial Direct Current Stimulation , Virtual Reality , Humans , Parkinson Disease/rehabilitation , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Transcranial Direct Current Stimulation/methods , Exercise Therapy/methods , Male , Female , Middle Aged , Gait/physiology , Aged , Cognition
6.
BMC Neurol ; 24(1): 245, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009990

ABSTRACT

BACKGROUND: Improving walking ability is a key objective in the treatment of children and adolescents with cerebral palsy, since it directly affects their activity and participation. In recent years, robotic technology has been implemented in gait treatment, which allows training of longer duration and repetition of the movement. To know the effectiveness of a treatment with the robotic-assisted gait trainer Walkbot combined with physiotherapy compared to the isolated physiotherapy treatment in children and adolescents with cerebral palsy, we carried out a clinical trial. METHODS: 23 participants, were divided into two groups: experimental and control. During 5 weeks, both groups received their physiotherapy sessions scheduled, in addition experimental group received 4 sessions per week of 40 min of robot. An evaluation of the participants was carried out before the intervention, at the end of the intervention, and at follow-up (two months after the end of the intervention). Gait was assessed with the Gross Motor Function Measure-88 dimensions D and E, strength was measured with a hydraulic dynamometer, and range of motion was assessed using the goniometer. A mixed ANOVA was performed when the assumptions of normality and homoscedasticity were met, and a robust mixed ANOVA was performed when these assumptions were not met. Statistical significance was stipulated at p < 0.05. For the effect size, η2 was calculated. RESULTS: Significant differences were found regarding the time x group interaction in the Gross Motor Function Measure-88 in dimension D [η2 = 0.016], in the flexion strength of the left [η2 = 0.128] and right [η2 = 0.142] hips, in the extension strength of the right hip [η2 = 0.035], in the abduction strength of the left hip [η2 = 0.179] and right [η2 = 0.196], in the flexion strength of the left knee [η2 = 0.222] and right [η2 = 0.147], and in the range of motion of left [η2 = 0.071] and right [η2 = 0.053] knee flexion. CONCLUSIONS: Compared to treatments without walking robot, physiotherapy treatment including Walkbot improves standing, muscle strength, and knee range of motion in children and adolescents with cerebral palsy. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04329793. First posted: April 1, 2020.


Subject(s)
Cerebral Palsy , Physical Therapy Modalities , Robotics , Humans , Cerebral Palsy/rehabilitation , Child , Robotics/methods , Robotics/instrumentation , Adolescent , Female , Male , Physical Therapy Modalities/instrumentation , Exercise Therapy/methods , Exercise Therapy/instrumentation , Treatment Outcome , Gait/physiology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Range of Motion, Articular/physiology , Walking/physiology
7.
PeerJ ; 12: e17626, 2024.
Article in English | MEDLINE | ID: mdl-38948226

ABSTRACT

Background: Abnormal gait is prevalent among the elderly population, leading to reduced physical activity, increased risk of falls, and the potential development of dementia and disabilities, thus degrading the quality of life in later years. Numerous studies have highlighted the crucial roles of lower limb muscle strength asymmetry and static postural control in gait, and the reciprocal influence of lower limb muscle strength asymmetry on static postural control. However, research exploring the interrelationship between lower limb muscle strength asymmetry, static postural control, and gait performance has been limited. Methods: A total of 55 elderly participants aged 60 to 75 years were recruited. Isokinetic muscle strength testing was used to assess bilateral knee extension strength, and asymmetry values were calculated. Participants with asymmetry greater than 15% were categorized as the Asymmetry Group (AG), while those with asymmetry less than 15% were classified in the Symmetry Group (SG). Gait parameters were measured using a plantar pressure gait analysis system to evaluate gait performance, and static postural control was assessed through comfortable and narrow stance tests. Results: First, participants in the AG demonstrated inferior gait performance, characterized by slower gait speed, longer stance time and percentage of stance time in gait, and smaller swing time and percentage of swing time in gait. Spatial-temporal gait parameters of the weaker limb tended to be abnormal. Second, static postural control indices were higher in AG compared to SG in all aspects except for the area of ellipse during the comfortable stance with eyes open test. Third, abnormal gait parameters were associated with static postural control. Conclusion: Firstly, elderly individuals with lower limb muscle strength asymmetry are prone to abnormal gait, with the weaker limb exhibiting poorer gait performance. Secondly, lower limb muscle strength asymmetry contributes to diminished static postural control in the elderly. Thirdly, the mechanism underlying abnormal gait in the elderly due to lower limb muscle strength asymmetry may be linked to a decline in static postural control.


Subject(s)
Gait , Lower Extremity , Muscle Strength , Postural Balance , Humans , Aged , Muscle Strength/physiology , Male , Female , Postural Balance/physiology , Lower Extremity/physiology , Gait/physiology , Middle Aged
8.
Scand J Med Sci Sports ; 34(7): e14693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984681

ABSTRACT

BACKGROUND: Two-dimensional (2D) video is a common tool used during sports training and competition to analyze movement. In these videos, biomechanists determine key events, annotate joint centers, and calculate spatial, temporal, and kinematic parameters to provide performance reports to coaches and athletes. Automatic tools relying on computer vision and artificial intelligence methods hold promise to reduce the need for time-consuming manual methods. OBJECTIVE: This study systematically analyzed the steps required to automate the video analysis workflow by investigating the applicability of a threshold-based event detection algorithm developed for 3D marker trajectories to 2D video data at four sampling rates; the agreement of 2D keypoints estimated by an off-the-shelf pose estimation model compared with gold-standard 3D marker trajectories projected to camera's field of view; and the influence of an offset in event detection on contact time and the sagittal knee joint angle at the key critical events of touch down and foot flat. METHODS: Repeated measures limits of agreement were used to compare parameters determined by markerless and marker-based motion capture. RESULTS: Results highlighted that a minimum video sampling rate of 100 Hz is required to detect key events, and the limited applicability of 3D marker trajectory-based event detection algorithms when using 2D video. Although detected keypoints showed good agreement with the gold-standard, misidentification of key events-such as touch down by 20 ms resulted in knee compression angle differences of up to 20°. CONCLUSION: These findings emphasize the need for de novo accurate key event detection algorithms to automate 2D video analysis pipelines.


Subject(s)
Algorithms , Video Recording , Humans , Biomechanical Phenomena , Gait/physiology , Gait Analysis/methods , Knee Joint/physiology , Male , Athletic Performance/physiology , Sports/physiology , Adult
9.
Sci Rep ; 14(1): 15784, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982219

ABSTRACT

This study investigates the effects of metronome walking on gait dynamics in older adults, focusing on long-range correlation structures and long-range attractor divergence (assessed by maximum Lyapunov exponents). Sixty older adults participated in indoor walking tests with and without metronome cues. Gait parameters were recorded using two triaxial accelerometers attached to the lumbar region and to the foot. We analyzed logarithmic divergence of lumbar acceleration using Rosenstein's algorithm and scaling exponents for stride intervals from foot accelerometers using detrended fluctuation analysis (DFA). Results indicated a concomitant reduction in long-term divergence exponents and scaling exponents during metronome walking, while short-term divergence remained largely unchanged. Furthermore, long-term divergence exponents and scaling exponents were significantly correlated. Reliability analysis revealed moderate intrasession consistency for long-term divergence exponents, but poor reliability for scaling exponents. Our results suggest that long-term divergence exponents could effectively replace scaling exponents for unsupervised gait quality assessment in older adults. This approach may improve the assessment of attentional involvement in gait control and enhance fall risk assessment.


Subject(s)
Gait , Walking , Humans , Aged , Female , Male , Gait/physiology , Walking/physiology , Accelerometry/methods , Aged, 80 and over , Algorithms , Accidental Falls/prevention & control , Reproducibility of Results
10.
PLoS One ; 19(7): e0305067, 2024.
Article in English | MEDLINE | ID: mdl-38985810

ABSTRACT

Falls in older individuals often result from unexpected balance disturbances during walking, necessitating the analysis of recovery strategies for effective falls prevention. This becomes particularly crucial for individuals with cognitive impairment, who face a higher fall risk compared to cognitively healthy adults. Hence, our study aimed to compare the recovery response to standardized walking perturbations on a treadmill between older adults with cognitive impairment and cognitively healthy older adults. 36 individuals with a recent history of a severe fall, leading to an emergency department visit without subsequent admission, were stratified into two groups (with and without probable cognitive impairment) based on scores of the Montreal Cognitive Assessment. Recovery performance was quantified using force plate data from a perturbation treadmill (M-Gait, Motek Medical B.V., Amsterdam, the Netherlands), specifically evaluating the number of steps needed to restore step length and width to pre perturbation baseline across two trials of nine different perturbations. Individuals with cognitive impairment (n = 18, mean age: 74.7) required significantly (p = 0.045, Cohen's d = 0.69) more steps to recover total steps after perturbations compared to cognitively healthy individuals (n = 18, mean age: 69.7). While step width recovery was similar between the groups, those with probable cognitive impairment required significantly more steps to recover their step length (p = 0.039, Cohen's d = 0.72). Thus, our findings indicate that older adults with probable cognitive impairment manifest inferior gait adaptability, especially in adapting step length, potentially underscoring a critical aspect for effective falls prevention in this population.


Subject(s)
Accidental Falls , Cognitive Dysfunction , Postural Balance , Humans , Accidental Falls/prevention & control , Aged , Male , Female , Postural Balance/physiology , Cognitive Dysfunction/physiopathology , Aged, 80 and over , Gait/physiology , Walking/physiology , Adaptation, Physiological/physiology , Exercise Test
11.
Brain Behav ; 14(7): e3568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988039

ABSTRACT

BACKGROUND: Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD: A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS: The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION: Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.


Subject(s)
Cerebral Cortex , Gait , Hypertension , Spectroscopy, Near-Infrared , Walking , Humans , Aged , Male , Spectroscopy, Near-Infrared/methods , Female , Hypertension/physiopathology , Gait/physiology , Walking/physiology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Memory, Short-Term/physiology , Middle Aged , Cognition/physiology , Executive Function/physiology , Psychomotor Performance/physiology
12.
PLoS One ; 19(7): e0305564, 2024.
Article in English | MEDLINE | ID: mdl-38990959

ABSTRACT

People fall more often when their gait stability is reduced. Gait stability can be directly manipulated by exerting forces or moments onto a person, ranging from simple walking sticks to complex wearable robotics. A systematic review of the literature was performed to determine: What is the level of evidence for different types of mechanical manipulations on improving gait stability? The study was registered at PROSPERO (CRD42020180631). Databases Embase, Medline All, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar were searched. The final search was conducted on the 1st of December, 2022. The included studies contained mechanical devices that influence gait stability for both impaired and non-impaired subjects. Studies performed with prosthetic devices, passive orthoses, and analysing post-training effects were excluded. An adapted NIH quality assessment tool was used to assess the study quality and risk of bias. Studies were grouped based on the type of device, point of application, and direction of forces and moments. For each device type, a best-evidence synthesis was performed to quantify the level of evidence based on the type of validity of the reported outcome measures and the study quality assessment score. Impaired and non-impaired study participants were considered separately. From a total of 4701 papers, 53 were included in our analysis. For impaired subjects, indicative evidence was found for medio-lateral pelvis stabilisation for improving gait stability, while limited evidence was found for hip joint assistance and canes. For non-impaired subjects, moderate evidence was found for medio-lateral pelvis stabilisation and limited evidence for body weight support. For all other device types, either indicative or insufficient evidence was found for improving gait stability. Our findings also highlight the lack of consensus on outcome measures amongst studies of devices focused on manipulating gait.


Subject(s)
Gait , Humans , Gait/physiology , Biomechanical Phenomena , Accidental Falls/prevention & control , Postural Balance/physiology , Robotics/methods , Walking/physiology
13.
BMJ Open ; 14(7): e086555, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991684

ABSTRACT

OBJECTIVES: To explore the experiences and acceptability of music-cued motor imagery (MCMI), music-cued gait training (MCGT), and combined MCMI and MCGT (MCMI-MCGT) in people with multiple sclerosis (pwMS). We also aimed to explore participants' self-rated health status postintervention and gather recommendations for further programme development. DESIGN: Qualitative study alongside the double-blind randomised controlled real and imagined gait training with music-cueing (RIGMUC) multicentre trial of MCMI, MCGT and MCMI-MCGT. SETTING: PwMS recruited for the RIGMUC trial from Departments of Neurology at Medical Universities of Innsbruck and Graz and Clinic for Rehabilitation Muenster, Austria. PARTICIPANTS: All 132 pwMS with mild to moderate disability randomised into the trial were included in the analysis. METHODS: Participants practised home-based MCMI, MCGT or MCMI-MCGT for 30 min, 4×/week, for 4 weeks. Three trained researchers conducted weekly semistructured telephone interviews during the intervention period, supporting adherence, addressing problems, sharing experiences and assessing intervention acceptability. Follow-up interviews at 4-week postintervention aimed to understand participants' self-rated changes in walking, fatigue and overall health compared with their prestudy condition. Investigator triangulation was employed among the researchers to enhance trustworthiness and credibility. RESULTS: Using thematic analysis, we identified five themes: (1) empowerment, (2) remaining in sync, (3) interconnection between imagined and actual walking, (4) sustaining focus and (5) real-world transfer. Participants appreciated and found the imagined and actual MCGT innovative. Problems included concentration issues, early fatigue in advanced disability and difficulty synchronising with music cues. Positive changes in walking, fatigue and overall health postinterventions were reported offering valuable insights for programme development. CONCLUSIONS: A participatory study to codevelop a music-cued exercise programme for pwMS seems appropriate as participants appreciated the innovation and effectiveness of both imagined and actual MCGT. Future studies should also investigate pwMS' potential and limitations in enhancing their MCMI abilities with intensive therapist-supported practice. TRIAL REGISTRATION NUMBER: DRKS00023978.


Subject(s)
Multiple Sclerosis , Qualitative Research , Humans , Multiple Sclerosis/rehabilitation , Male , Female , Middle Aged , Adult , Music Therapy/methods , Gait , Double-Blind Method , Cues , Exercise Therapy/methods , Imagination , Walking , Fatigue/therapy , Fatigue/etiology , Fatigue/rehabilitation , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology
14.
Sci Rep ; 14(1): 16060, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992006

ABSTRACT

Predictors of rebound after correction of coronal plane deformities using temporary hemiepiphysiodesis (TH) are not well defined. The following research questions were tested: (1) Is the dynamic knee joint load useful to improve rebound prediction accuracy? (2) Does a large initial deformity play a critical role in rebound development? (3) Are BMI and a young age risk factors for rebound? Fifty children and adolescents with idiopathic knee valgus malalignment were included. A deviation of the mechanical femorotibial angle (MFA) of ≥ 3° into valgus between explantation and the one-year follow-up period was chosen to classify a rebound. A rebound was detected in 22 of the 50 patients (44%). Two predictors of rebound were identified: 1. reduced peak lateral knee joint contact force in the first half of the stance phase at the time of explantation (72.7% prediction); 2. minor initial deformity according to the MFA (70.5% prediction). The best prediction (75%) was obtained by including both parameters in the binary logistic regression method. A TH should not be advised in patients with a minor initial deformity of the leg axis. Dynamic knee joint loading using gait analysis and musculoskeletal modeling can be used to determine the optimum time to remove the plates.


Subject(s)
Gait Analysis , Knee Joint , Humans , Child , Female , Adolescent , Male , Knee Joint/physiopathology , Gait Analysis/methods , Gait/physiology , Biomechanical Phenomena
15.
Sensors (Basel) ; 24(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000860

ABSTRACT

Wearable robots are emerging as a viable and effective solution for assisting and enabling people who suffer from balance and mobility disorders. Virtual prototyping is a powerful tool to design robots, preventing the costly iterative physical prototyping and testing. Design of wearable robots through modelling, however, often involves computationally expensive and error-prone multi-body simulations wrapped in an optimization framework to simulate human-robot-environment interactions. This paper proposes a framework to make the human-robot link segment system statically determinate, allowing for the closed-form inverse dynamics formulation of the link-segment model to be solved directly in order to simulate human-robot dynamic interactions. The paper also uses a technique developed by the authors to estimate the walking ground reactions from reference kinematic data, avoiding the need to measure them. The proposed framework is (a) computationally efficient and (b) transparent and easy to interpret, and (c) eliminates the need for optimization, detailed musculoskeletal modelling and measuring ground reaction forces for normal walking simulations. It is used to optimise the position of hip and ankle joints and the actuator torque-velocity requirements for a seven segments of a lower-limb wearable robot that is attached to the user at the shoes and pelvis. Gait measurements were carried out on six healthy subjects, and the data were used for design optimization and validation. The new technique promises to offer a significant advance in the way in which wearable robots can be designed.


Subject(s)
Gait , Robotics , Walking , Wearable Electronic Devices , Humans , Robotics/methods , Walking/physiology , Gait/physiology , Biomechanical Phenomena/physiology , Equipment Design , Hip Joint/physiology , Ankle Joint/physiology
16.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000963

ABSTRACT

A 77 GHz frequency-modulated continuous wave (FMCW) radar was utilized to extract biomechanical parameters for gait analysis in indoor scenarios. By preprocessing the collected raw radar data and eliminating environmental noise, a range-velocity-time (RVT) data cube encompassing the subjects' information was derived. The strongest signals from the torso in the velocity and range dimensions and the enveloped signal from the toe in the velocity dimension were individually separated for the gait parameters extraction. Then, six gait parameters, including step time, stride time, step length, stride length, torso velocity, and toe velocity, were measured. In addition, the Qualisys system was concurrently utilized to measure the gait parameters of the subjects as the ground truth. The reliability of the parameters extracted by the radar was validated through the application of the Wilcoxon test, the intraclass correlation coefficient (ICC) value, and Bland-Altman plots. The average errors of the gait parameters in the time, range, and velocity dimensions were less than 0.004 s, 0.002 m, and 0.045 m/s, respectively. This non-contact radar modality promises to be employable for gait monitoring and analysis of the elderly at home.


Subject(s)
Gait , Radar , Humans , Gait/physiology , Biomechanical Phenomena/physiology , Male , Gait Analysis/methods , Female , Adult , Reproducibility of Results
17.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001018

ABSTRACT

Locomotor and balance disorders are major limitations for subjects with hemiparesis. The Timed Up and Go (TUG) test is a complex navigational task involving oriented walking and obstacle circumvention. We hypothesized that subjects with hemiparesis adopt a cautious gait during complex locomotor tasks. The primary aim was to compare spatio-temporal gait parameters, indicators of cautious gait, between the locomotor subtasks of the TUG (Go, Turn, Return) and a Straight-line walk in people with hemiparesis. Our secondary aim was to analyze the relationships between TUG performance and balance measures, compare spatio-temporal gait parameters between fallers and non-fallers, and identify the biomechanical determinants of TUG performance. Biomechanical parameters during the TUG and Straight-line walk were analyzed using a motion capture system. A repeated measures ANOVA and two stepwise ascending multiple regressions (with performance variables and biomechanical variables) were conducted. Gait speed, step length, and % single support phase (SSP) of the 29 participants were reduced during Turn compared to Go and Return and the Straight-line walk, and step width and % double support phase were increased. TUG performance was related to several balance measures. Turn performance (R2 = 63%) and Turn trajectory deviation followed by % SSP on the paretic side and the vertical center of mass velocity during Go (R2 = 71%) determined TUG performance time. People with hemiparesis adopt a cautious gait during complex navigation at the expense of performance.


Subject(s)
Gait , Paresis , Postural Balance , Humans , Paresis/physiopathology , Gait/physiology , Male , Female , Middle Aged , Postural Balance/physiology , Biomechanical Phenomena/physiology , Aged , Walking/physiology , Adult
18.
Sensors (Basel) ; 24(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39001051

ABSTRACT

This study aims to integrate a convolutional neural network (CNN) and the Random Forest Model into a rehabilitation assessment device to provide a comprehensive gait analysis in the evaluation of movement disorders to help physicians evaluate rehabilitation progress by distinguishing gait characteristics under different walking modes. Equipped with accelerometers and six-axis force sensors, the device monitors body symmetry and upper limb strength during rehabilitation. Data were collected from normal and abnormal walking groups. A knee joint limiter was applied to subjects to simulate different levels of movement disorders. Features were extracted from the collected data and analyzed using a CNN. The overall performance was scored with Random Forest Model weights. Significant differences in average acceleration values between the moderately abnormal (MA) and severely abnormal (SA) groups (without vehicle assistance) were observed (p < 0.05), whereas no significant differences were found between the MA with vehicle assistance (MA-V) and SA with vehicle assistance (SA-V) groups (p > 0.05). Force sensor data showed good concentration in the normal walking group and more scatter in the SA-V group. The CNN and Random Forest Model accurately recognized gait conditions, achieving average accuracies of 88.4% and 92.3%, respectively, proving that the method mentioned above provides more accurate gait evaluations for patients with movement disorders.


Subject(s)
Deep Learning , Gait , Movement Disorders , Neural Networks, Computer , Humans , Movement Disorders/rehabilitation , Movement Disorders/diagnosis , Movement Disorders/physiopathology , Gait/physiology , Male , Self-Help Devices , Adult , Female , Accelerometry/instrumentation , Accelerometry/methods , Walking/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
19.
Sensors (Basel) ; 24(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001080

ABSTRACT

Smart shoes have ushered in a new era of personalised health monitoring and assistive technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking. As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor technology enhancements and smartphones' ubiquity. Shoes have begun incorporating accelerometers, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track rehabilitation progress, and detect falls among older people, thus expanding their application beyond fitness into medical monitoring. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. This study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.


Subject(s)
Shoes , Humans , Smartphone , Surveys and Questionnaires , Wearable Electronic Devices , Accelerometry/instrumentation , Diabetic Foot/rehabilitation , Diabetic Foot/prevention & control , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/instrumentation , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Gait/physiology
20.
J Neuroeng Rehabil ; 21(1): 118, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003450

ABSTRACT

BACKGROUND: How the joints exactly move and interact and how this reflects PD-related gait abnormalities and the response to dopaminergic treatment is poorly understood. A detailed understanding of these kinematics can inform clinical management and treatment decisions. The aim of the study was to investigate the influence of different gait speeds and medication on/off conditions on inter-joint coordination, as well as kinematic differences throughout the whole gait cycle in well characterized pwPD. METHODS: 29 controls and 29 PD patients during medication on, 8 of them also during medication off walked a straight walking path in slow, preferred and fast walking speeds. Gait data was collected using optical motion capture system. Kinematics of the hip and knee and coordinated hip-knee kinematics were evaluated using Statistical Parametric Mapping (SPM) and cyclograms (angle-angle plots). Values derived from cyclograms were compared using repeated-measures ANOVA for within group, and ttest for between group comparisons. RESULTS: PD gait differed from controls mainly by lower knee range of motion (ROM). Adaptation to gait speed in PD was mainly achieved by increasing hip ROM. Regularity of gait was worse in PD but only during preferred speed. The ratios of different speed cyclograms were smaller in the PD groups. SPM analyses revealed that PD participants had smaller hip and knee angles during the swing phase, and PD participants reached peak hip flexion later than controls. Withdrawal of medication showed an exacerbation of only a few parameters. CONCLUSIONS: Our findings demonstrate the potential of granular kinematic analyses, including > 1 joint, for disease and treatment monitoring in PD. Our approach can be extended to further mobility-limiting conditions and other joint combinations. TRIAL REGISTRATION: The study is registered in the German Clinical Trials Register (DRKS00022998, registered on 04 Sep 2020).


Subject(s)
Dopamine Agents , Parkinson Disease , Range of Motion, Articular , Humans , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Male , Female , Case-Control Studies , Biomechanical Phenomena , Middle Aged , Aged , Dopamine Agents/therapeutic use , Range of Motion, Articular/physiology , Knee Joint/physiopathology , Gait/physiology , Gait/drug effects , Hip Joint/physiopathology , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Joints/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL