Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34452362

ABSTRACT

The revealed prevalence of coronaviruses in wild bird populations in Poland was 4.15% and the main reservoirs were birds from orders Anseriformes and Charadriiformes, with a prevalence of 3.51% and 5.59%, respectively. Gammacoronaviruses were detected more often than deltacoronaviruses, with detection rates of 3.5% and 0.7%, respectively. Gammacoronaviruses were detected in birds belonging to six orders, including Anseriformes, Charadriiformes, Columbiformes, Galliformes, Gruiformes, and Passeriformes, indicating a relatively wide host range. Interestingly, this was the only coronavirus detected in Anseriformes (3.51%), while in Charadriiformes, the prevalence was 3.1%. The identified gammacoronaviruses belonged to the Igacovirus and Brangacovirus subgeneras. Most of these were igacoviruses and formed a common phylogenetic group with a Duck Coronavirus 2714 and two with an Avian Coronavirus/Avian Coronavirus9203, while the viruses from the pigeons formed a distinct "pigeon-like" group, not yet officially represented. The presence of deltacoronaviruses was detected in birds belonging to three orders, Charadriiformes, Galliformes, and Suliformes indicating a narrower host range. Most identified deltacoronaviruses belonged to the Buldecovirus subgenus, while only one belonged to Herdecovirus. Interestingly, the majority of buldecoviruses were identified in gulls, and they formed a distinct phylogenetic lineage not represented by any officially ratified virus species. Another separate group of buldecoviruses, also not represented by the official species, was formed by a virus identified in a common snipe. Only one identified buldecovirus (from common pheasant) formed a group with the ratified species Coronavirus HKU15. The results obtained indicate the high diversity of detected coronaviruses, and thus also the need to update their taxonomy (establishing new representative virus species). The serological studies performed revealed antibodies against an infectious bronchitis virus in the sera of white storks and mallards.


Subject(s)
Animals, Wild/virology , Biodiversity , Bird Diseases/virology , Coronavirus Infections/veterinary , Gammacoronavirus/isolation & purification , Animals , Animals, Wild/classification , Anseriformes/virology , Charadriiformes/virology , Columbiformes/virology , Coronavirus Infections/virology , Ducks/virology , Galliformes/virology , Gammacoronavirus/classification , Gammacoronavirus/genetics , Phylogeny , Poland
2.
Braz J Microbiol ; 52(1): 455-459, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33104974

ABSTRACT

Avian coronavirus (AvCoV/IBV) is a virus with high morbidity, which can cause respiratory, digestive, renal, and reproductive diseases in chickens. Molecular detection and sequencing are the main tool for identification and classification of AvCoV. Thirty-six samples were collected in three broiler farms from different regions in Colombia, due to mortality increase; ten samples were positive using RT-qPCR targeted to the 5' UTR of AvCoV, and one sample was positive and had its partial S gene sequenced. Phylogenetic analysis revealed that this strain belongs to the GI-11 lineage, similar to the Brazilian cluster. Several lineages have already been described in Colombia but, to the best of our knowledge, this is the first time that GI-11 has been detected in this country, which suggests that this subtype may be more widespread in South America than previously thought.


Subject(s)
Communicable Diseases, Emerging , Coronavirus Infections/veterinary , Gammacoronavirus/classification , Gammacoronavirus/genetics , Genotype , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Colombia/epidemiology , Phylogeny , Public Health Surveillance , RNA, Viral
3.
Emerg Infect Dis ; 26(7): 1610-1612, 2020 07.
Article in English | MEDLINE | ID: mdl-32568058

ABSTRACT

We characterized novel coronaviruses detected in US bottlenose dolphins (BdCoVs) with diarrhea. These viruses are closely related to the other 2 known cetacean coronaviruses, Hong Kong BdCoV and beluga whale CoV. A deletion in the spike gene and insertions in the membrane gene and untranslated regions were found in US BdCoVs (unrelated to severe acute respiratory syndrome coronavirus 2).


Subject(s)
Bottle-Nosed Dolphin/virology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Gammacoronavirus/classification , Gammacoronavirus/genetics , Animals , Coronavirus Infections/virology , Coronavirus M Proteins , Diarrhea/virology , Gammacoronavirus/isolation & purification , Gammacoronavirus/physiology , Genes, Viral , Genome, Viral , Mutation , Phylogeny , Sequence Deletion , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics
4.
Avian Pathol ; 49(4): 313-316, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32374218

ABSTRACT

Coronaviruses (CoVs) mainly cause enteric and/or respiratory signs. Mammalian CoVs including COVID-19 (now officially named SARS-CoV-2) belong to either the Alphacoronavirus or Betacoronavirus genera. In birds, the majority of the known CoVs belong to the Gammacoronavirus genus, whilst a small number are classified as Deltacoronaviruses. Gammacoronaviruses continue to be reported in an increasing number of avian species, generally by detection of viral RNA. Apart from infectious bronchitis virus in chickens, the only avian species in which CoV has been definitively associated with disease are the turkey, pheasant and guinea fowl. Whilst there is strong evidence for recombination between gammacoronaviruses of different avian species, and between betacoronaviruses in different mammals, evidence of recombination between coronaviruses of different genera is lacking. Furthermore, the recombination of an alpha or betacoronavirus with a gammacoronavirus is extremely unlikely. For recombination to happen, the two viruses would need to be present in the same cell of the same animal at the same time, a highly unlikely scenario as they cannot replicate in the same host!


Subject(s)
Bird Diseases/virology , Coronavirus Infections/veterinary , Coronavirus/classification , Gammacoronavirus/classification , Animals , Birds , Chickens , Coronavirus Infections/virology , Galliformes , Humans , Turkeys
5.
Viruses ; 11(10)2019 09 26.
Article in English | MEDLINE | ID: mdl-31561462

ABSTRACT

Porcine deltacoronavirus (δ-CoV) is the object of extensive research in several countries including the United States. In contrast, the epidemiology of δ-CoVs in wild birds in the US is largely unknown. Our aim was to comparatively assess the prevalence of δ- and γ-CoVs in wild migratory terrestrial and aquatic birds in Arkansas, Illinois, Indiana, Maryland, Mississippi, Missouri, Ohio, Tennessee and Wisconsin. A total of 1236 cloacal/fecal swabs collected during the period 2015-2018 were tested for γ- and δ-CoVs using genus-specific reverse transcription-PCR assays. A total of 61 (4.99%) samples were γ-CoV positive, with up to 29 positive samples per state. In contrast, only 14 samples were positive for δ-CoV (1.14%) with only 1-4 originating from the same state. Thus, unlike previous reports from Asia, γ-CoVs are more prevalent than δ-CoVs in the US, suggesting that δ-CoVs may spread in birds with lower efficiency. This may indicate δ-CoV emerging status and incomplete adaptation to new host species limiting its spread. Phylogenetic analysis of the partial N gene revealed that the newly identified δ-CoV strains were most closely related to the HKU20 (wigeon) strain. Further studies are necessary to investigate the role of aquatic bird δ-CoVs in the epidemiology of δ-CoVs in swine and terrestrial birds.


Subject(s)
Bird Diseases/epidemiology , Birds/virology , Coronavirus Infections/veterinary , Coronavirus/isolation & purification , Animals , Animals, Wild , Bird Diseases/virology , Coronavirus/classification , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Gammacoronavirus/classification , Gammacoronavirus/genetics , Gammacoronavirus/isolation & purification , Host Specificity , Phylogeny , Prevalence , RNA, Viral/genetics , United States/epidemiology
6.
Viruses ; 11(9)2019 08 21.
Article in English | MEDLINE | ID: mdl-31438486

ABSTRACT

Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species. One GuMPV-GuCoV co-infection was detected. A novel duck calicivirus (DuCV-2 B6) was identified in mallards (2/5, 40%) and American black ducks (7/26, 26.9%). This virus, of which we identified two different types, was fully sequenced and was genetically closest to other caliciviruses identified in Anatidae, but more distant to other caliciviruses from birds in the genus Anas. These discoveries increase our knowledge about avian virus diversity and host distributions.


Subject(s)
Birds/virology , Gammacoronavirus , Metapneumovirus , Animals , Animals, Wild/virology , Charadriiformes/virology , Coinfection/virology , Coronavirus Infections , Ducks/virology , Gammacoronavirus/classification , Gammacoronavirus/genetics , Gammacoronavirus/isolation & purification , Genome, Viral , Influenza in Birds/virology , Metapneumovirus/classification , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , United States/epidemiology
7.
Viruses ; 11(1)2019 01 14.
Article in English | MEDLINE | ID: mdl-30646528

ABSTRACT

Avian coronaviruses (ACoVs) are continuously evolving and causing serious economic consequences in the poultry industry and around the globe. Owing to their extensive genetic diversity and high mutation rates, controlling ACoVs has become a challenge. In this context, the potential contribution of wild birds in the disease dynamics, especially in domesticated birds, remains largely unknown. In the present study, five hundred fifty-seven (n = 557) cloacal/fecal swabs were collected from four different wild bird species from eight Egyptian governorates during 2016 and a total of fourteen positive isolates were used for phylodynamics and evolutionary analysis. Genetic relatedness based on spike (S1) gene demonstrated the clustering of majority of these isolates where nine isolates grouped within Egy/variant 2 (IS/885 genotype) and five isolates clustered within Egy/variant 1 (IS/1494/06 genotype). Interestingly, these isolates showed noticeable genetic diversity and were clustered distal to the previously characterized Egy/variant 1 and Egy/variant 2 in Egyptian commercial poultry. The S1 gene based comparison of nucleotide identity percentages revealed that all fourteen isolates reported in this study were genetically related to the variant GI-23 lineage with 92⁻100% identity. Taken together, our results demonstrate that ACoVs are circulating in Egyptian wild birds and highlight their possible contributions in the disease dynamics. The study also proposes that regular monitoring of the ACoVs in wild birds is required to effectively assess the role of wild birds in disease spread, and the emergence of ACoVs strains in the country.


Subject(s)
Animals, Wild/virology , Birds/virology , Coronavirus Infections/veterinary , Gammacoronavirus/genetics , Genetic Variation , Phylogeny , Animals , Coronavirus Infections/epidemiology , Egypt/epidemiology , Evolution, Molecular , Feces/virology , Gammacoronavirus/classification , Genome, Viral , Genotype
8.
Infect Genet Evol ; 51: 89-97, 2017 07.
Article in English | MEDLINE | ID: mdl-28323070

ABSTRACT

Urbanization is intensifying worldwide, and affects the epidemiology of infectious diseases. However, the effect of urbanization on natural host-pathogen systems remains poorly understood. Urban ducks occupy an interesting niche in that they directly interact with both humans and wild migratory birds, and either directly or indirectly with food production birds. Here we have collected samples from Mallards (Anas platyrhynchos) residing in a pond in central Uppsala, Sweden, from January 2013 to January 2014. This artificial pond is kept ice-free during the winter months, and is a popular location where the ducks are fed, resulting in a resident population of ducks year-round. Nine hundred and seventy seven (977) fecal samples were screened for RNA viruses including: influenza A virus (IAV), avian paramyxovirus 1, avian coronavirus (CoV), and avian astrovirus (AstroV). This intra-annual dataset illustrates that these RNA viruses exhibit similar annual patterns to IAV, suggesting similar ecological factors are at play. Furthermore, in comparison to wild ducks, autumnal prevalence of IAV and CoV are lower in this urban population. We also demonstrate that AstroV might be a larger burden to urban ducks than IAV, and should be better assessed to demonstrate the degree to which wild birds contribute to the epidemiology of these viruses. The presence of economically relevant viruses in urban Mallards highlights the importance of elucidating the ecology of wildlife pathogens in urban environments, which will become increasingly important for managing disease risks to wildlife, food production animals, and humans.


Subject(s)
Astroviridae Infections/veterinary , Astroviridae/genetics , Coronavirus Infections/veterinary , Gammacoronavirus/genetics , Influenza A virus/genetics , Influenza in Birds/epidemiology , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Animal Migration/physiology , Animals , Animals, Wild , Anseriformes , Astroviridae/classification , Astroviridae/isolation & purification , Astroviridae Infections/epidemiology , Astroviridae Infections/virology , Cities , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Feces/virology , Gammacoronavirus/classification , Gammacoronavirus/isolation & purification , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/virology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Phylogeny , Ponds , RNA, Viral/genetics , Sweden/epidemiology , Urbanization
9.
Sci Rep ; 6: 27126, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27255716

ABSTRACT

Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts.


Subject(s)
Cell Membrane/virology , Chickens/virology , Endoplasmic Reticulum/virology , Gammacoronavirus/pathogenicity , Animals , Cells, Cultured , Endoplasmic Reticulum/chemistry , Gammacoronavirus/classification , Gammacoronavirus/physiology , Organ Culture Techniques , Phenotype , Trachea/virology , Virulence , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...