Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Sci Rep ; 14(1): 10651, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724545

ABSTRACT

Herpesviruses are large double-stranded DNA viruses that cause infections in animals and humans with a characteristic of latent infectious within specific tissues. Bats are natural hosts of variety human-infecting viruses and recently have been described as hosts for herpesviruses in several countries around the world. In this study we collected 140 insectivorous bats in the neighboring urban areas of Wuhan City, Hubei Province in the central China between 2020 and 2021. Nested PCR targeting the dpol gene sequence indicated that a total of 22 individuals (15.7% of the sample) tested positive for herpesvirus with 4 strains belonging to the genus Betaherpesvirus and the remaining 18 strains classified as Gammahersvirus. Furthermore, the herpesvirus prevalence in Rhinolophus pusillus was higher at 26.3%, compared to 8.4% in Myotis davidii. The RP701 strain from R. pusillus was the predominant gammaherpesvirus strain detected in bats, accounting for 94.4% (17/18) of all strains. The variations in γ-herpesviruses genomic sequences was evident in phylogenetic tree, where RP701 strain was clustered together with ruminant γ-herpesviruses, while MD704 strain formed a distinct clade with a hedgehog γ-herpesvirus. Four betaherpesviruses exclusively identified from M. davidii, with nucleotide identities ranging from 79.7 to 82.6% compared to known betaherpesviruses. Our study provided evidence that M. davidii can sever as natural host for ß-herpesviruses, which extended the host species range. In conclusion, we found that bats from central China harbored novel ß-herpesviruses and γ-herpesviruses which were phylogenetically related to ruminant γ-herpesvirus and hedgehog γ-herpesvirus. Our study indicates that bats are natural hosts of ß- and γ-herpesviruses and further studies are needed to determine whether there is cross-species transmission of herpesviruses between bats and other animals, or humans.


Subject(s)
Betaherpesvirinae , Chiroptera , Gammaherpesvirinae , Herpesviridae Infections , Phylogeny , Animals , Chiroptera/virology , China/epidemiology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/classification , Betaherpesvirinae/genetics , Betaherpesvirinae/isolation & purification , Betaherpesvirinae/classification , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology , Genome, Viral , DNA, Viral/genetics
2.
Viruses ; 13(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34452391

ABSTRACT

Equid and asinine gammaherpesviruses (GHVs; genus Percavirus) are members of the Herpesviridae family. Though GHVs have been reported in horse populations, less studies are available on gammaherpesviral infections in donkeys. This study reports the co-infection with two GHVs in Pantesco breed donkeys, an endangered Italian donkey breed. Samples (n = 124) were collected on a breeding farm in Southern Italy from 40 donkeys, some of which were healthy or presented erosive tongue lesions and/or mild respiratory signs. Samples were analysed by using a set of nested PCRs targeting the DNA polymerase, glycoprotein B, and DNA-packaging protein genes, and sequence and phylogenetic analyses were performed. Twenty-nine donkeys (72.5%) tested positive, and the presence of Equid gammaherpesvirus 7 and asinine herpesvirus 5 was evidenced. In 11 animals, we found evidence for co-infection with viruses from the two species. Virions with herpesvirus-like morphology were observed by electron microscopic examination, and viruses were successfully isolated in RK-13-KY cell monolayers. The histological evaluation of tongue lesions revealed moderate lympho-granulocytic infiltrates and rare eosinophilic inclusions. The detection of GHVs in this endangered asinine breed suggests the need long-life monitoring within conservation programs and reinforces the need for further investigations of GHV's pathogenetic role in asinine species.


Subject(s)
Coinfection/veterinary , Disease Outbreaks , Equidae/virology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Respiratory Tract Diseases/veterinary , Animals , Coinfection/virology , DNA, Viral/genetics , Gammaherpesvirinae/classification , Herpesviridae Infections/epidemiology , Italy/epidemiology , Phylogeny , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/virology
3.
PLoS One ; 15(12): e0243180, 2020.
Article in English | MEDLINE | ID: mdl-33259561

ABSTRACT

This study investigates the occurrence of erythematous lip lesions in a captive sun bear population in Cambodia, including the progression of cheilitis to squamous cell carcinoma, and the presence of Ursid gammaherpesvirus 1. Visual assessment conducted in 2015 and 2016 recorded the prevalence and severity of lesions. Opportunistic sampling for disease testing was conducted on a subset of 39 sun bears, with histopathological examination of lip and tongue biopsies and PCR testing of oral swabs and tissue biopsies collected during health examinations. Lip lesions were similarly prevalent in 2015 (66.0%) and 2016 (68.3%). Degradation of lip lesion severity was seen between 2015 and 2016, and the odds of having lip lesions, having more severe lip lesions, and having lip lesion degradation over time, all increased with age. Cheilitis was found in all lip lesion biopsies, with histological confirmation of squamous cell carcinoma in 64.5% of cases. Single biopsies frequently showed progression from dysplasia to neoplasia. Eighteen of 31 sun bears (58.1%) had at least one sample positive for Ursid gammaherpesvirus 1. The virus was detected in sun bears with and without lip lesions, however due to case selection being strongly biased towards those showing lip lesions it was not possible to test for association between Ursid gammaherpesvirus 1 and lip squamous cell carcinoma. Given gammaherpesviruses can play a role in cancer development under certain conditions in other species, we believe further investigation into Ursid gammaherpesvirus 1 as one of a number of possible co-factors in the progression of lip lesions to squamous cell carcinoma is warranted. This study highlights the progressively neoplastic nature of this lip lesion syndrome in sun bears which has consequences for captive and re-release management. Similarly, the detection of Ursid gammaherpesvirus 1 should be considered in pre-release risk analyses, at least until data is available on the prevalence of the virus in wild sun bears.


Subject(s)
Lip Diseases/veterinary , Lip/pathology , Ursidae , Animals , Cambodia/epidemiology , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/veterinary , Disease Progression , Erythema/epidemiology , Erythema/pathology , Erythema/veterinary , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Lip Diseases/epidemiology , Lip Diseases/pathology , Lip Neoplasms/epidemiology , Lip Neoplasms/pathology , Lip Neoplasms/veterinary , Male , Phylogeny , Prevalence , Risk Factors , Ursidae/virology
4.
Annu Rev Virol ; 7(1): 309-331, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32991266

ABSTRACT

Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.


Subject(s)
Carcinogenesis/genetics , Epigenesis, Genetic , Gammaherpesvirinae/genetics , Genome, Viral , Herpesviridae Infections/virology , Tumor Virus Infections/virology , Gammaherpesvirinae/classification , Gammaherpesvirinae/pathogenicity , Herpesviridae Infections/complications , Herpesvirus 4, Human/genetics , Herpesvirus 8, Human/genetics , Humans , Tumor Virus Infections/complications , Virus Latency/genetics
5.
Viruses ; 12(8)2020 08 11.
Article in English | MEDLINE | ID: mdl-32796534

ABSTRACT

Gammaherpesvirus infections have been described in cervids worldwide, mainly the genera Macavirus or Rhadinovirus. However, little is known about the gammaherpesviruses species infecting cervids in Norway and Fennoscandia. Blood samples from semi-domesticated (n = 39) and wild (n = 35) Eurasian tundra reindeer (Rangifer tarandus tarandus), moose (Alces alces, n = 51), and red deer (Cervus elaphus, n = 41) were tested using a panherpesvirus DNA polymerase (DPOL) PCR. DPOL-PCR-positive samples were subsequently tested for the presence of glycoprotein B (gB) gene. The viral DPOL gene was amplified in 28.2% (11/39) of the semi-domesticated reindeer and in 48.6% (17/35) of the wild reindeer. All moose and red deer tested negative. Additionally, gB gene was amplified in 4 of 11 semi-domesticated and 15 of 17 wild Eurasian reindeer DPOL-PCR-positive samples. All the obtained DPOL and gB sequences were highly similar among them, and corresponded to a novel gammaherpesvirus species, tentatively named Rangiferine gammaherpesvirus 1, that seemed to belong to a genus different from Macavirus and Rhadinovirus. This is the first report of a likely host-specific gammaherpesvirus in semi-domesticated reindeer, an economic and cultural important animal, and in wild tundra reindeer, the lastpopulation in Europe. Future studies are required to clarify the potential impact of this gammaherpesvirus on reindeer health.


Subject(s)
Animals, Domestic/virology , Gammaherpesvirinae/classification , Herpesviridae Infections/veterinary , Reindeer/virology , Animals , Animals, Wild/virology , Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/blood , Norway , Phylogeny
6.
Braz J Microbiol ; 51(3): 1405-1432, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32542424

ABSTRACT

Sheep-associated malignant catarrhal fever (SA-MCF), the form of MCF that occurs in Brazil, is a severe, frequently fatal, infectious disease caused by ovine gammaherpesvirus-2 (OvHV-2), in which sheep are the asymptomatic hosts and cattle and other cloven-hoofed animals are the accidental hosts. This review provides a critical analysis of the historical, epidemiological aspects and the estimated economic impacts associated with SA-MCF in Brazil. Moreover, the clinical manifestations and pathological lesions associated with SA-MCF in cattle are reviewed and discussed and the phylogenetic distribution of OvHV-2 in Brazil is presented. OvHV-2 is the only MCF virus identified in animals from Brazil. It is recommended that a histopathologic diagnosis of SA-MCF be based on all aspects of vascular disease in the affected animal and not only lymphocytic/necrotizing vasculitis and/or fibrinoid change. Conformation of the intralesional participation of OvHV-2 in these alterations can be achieved by immunohistochemistry and/or in situ hybridization assays. Additionally, it is proposed that OvHV-2 should be considered as a possible infectious disease agent associated with the development of bovine respiratory disease in cattle. Furthermore, the possible role of the small intestine in the dissemination of OvHV-2 is discussed.


Subject(s)
Gammaherpesvirinae/isolation & purification , Malignant Catarrh/virology , Sheep Diseases/virology , Animals , Brazil/epidemiology , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Gammaherpesvirinae/physiology , Malignant Catarrh/epidemiology , Malignant Catarrh/pathology , Phylogeny , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/pathology
7.
Virus Res ; 276: 197801, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31722243

ABSTRACT

Malignant Catarrhal Fever (MCF) is a generalized, definitive lethal disease affecting the epithelial and lymphoid tissues of the respiratory and digestive tract, mainly cattle and some wild ruminants such as deer, buffalo or antelope. The sheep-related form of MCF is known to be present in Turkey and is caused by ovine herpesvirus 2 (OvHV-2). The aim of this study was to reveal the genetic diversity of OvHV-2 strains obtained from MCF cases in Eastern Turkey where the livestock industry has an important impact on economic activities. For this purpose, RTA (Replication and transcription activator), FGARAT (formylglycineamide ribotide amidotransferase) and some of glycoprotein genes (Ov7, Ov8 ex2, ORF27 and Ov9.5) were investigated in blood samples from 24 cattles, clinically diagnosed with MCF. Genomic data of chosen samples were furthermore used to characterize and undergo combined phylogenetic analysis to determine possible alleles and subvariants. The results showed that high level of OvHV-2 diversity existed in selected genes and strains carrying allelic variants might circulate both in two geographically distinct regions and in a region itself. Moreover, three different OvHV-2 types and various subtypes were identified based on multi locus approach. This study provides important data to epidemiological research and thereby helps to determine the source of the virus and understand the spread of the disease.


Subject(s)
Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Genetic Variation , Malignant Catarrh/virology , Phylogeny , Viral Proteins/genetics , Alleles , Animals , Cattle/virology , Genome, Viral , Malignant Catarrh/blood , Open Reading Frames/genetics , Turkey
8.
Viruses ; 11(8)2019 08 06.
Article in English | MEDLINE | ID: mdl-31390829

ABSTRACT

Recently, a gammaherpesvirus was described in domestic cats (FcaGHV1). The goal of the present study was to investigate the presence of FcaGHV1 in Swiss domestic cats and analyze potential risk factors. Blood samples from 881 cats presented to veterinarians in all Swiss cantons and from 91 stray cats and neoplastic tissue samples from 17 cats with lymphoma were evaluated. FcaGHV1 was detected by real-time PCR targeting the glycoprotein B gene, followed by sequencing. Blood samples were also tested for feline hemoplasmas, feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV). The molecular prevalence of FcaGHV1 was 6.0% (95% confidence interval (CI), 4.5-7.8%) in cats presented to veterinarians and 5.5% (95% CI, 1.8-12.4%) in stray cats. FcaGHV1 PCR-positive cats originated from 19/26 Swiss cantons. Factors significantly associated with FcaGHV1 detection included male sex, age >3 years, nonpedigree status and co-infection with FIV and hemoplasmas. Moreover, FeLV viremia tended to be associated with FcaGHV1 detection. High FcaGHV1 blood loads were found more frequently in FeLV-viremic cats and less frequently in hemoplasma-infected cats than in uninfected cats. Clinical information was unavailable for most of the 881 cats, but leukemia, carcinoma and cardiomyopathy were reported in FcaGHV1-positive cats. None of the tissue samples from the 17 cats with lymphoma tested positive for FcaGHV1. Sequence analyses revealed homogeneity among the Swiss isolates and >99.7% identity to published FcaGHV1 sequences. In conclusion, FcaGHV1 is present in Switzerland with a similar prevalence in cats presented to veterinarians and in stray cats. The pathogenic potential of FcaGHV1 needs further evaluation.


Subject(s)
Animals, Domestic , Cat Diseases/epidemiology , Cat Diseases/virology , Coinfection/veterinary , Gammaherpesvirinae , Herpesviridae Infections/veterinary , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cat Diseases/immunology , Cats , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Geography, Medical , Immunodeficiency Virus, Feline/immunology , Leukemia Virus, Feline/immunology , Male , Phylogeny , Prevalence , Public Health Surveillance , Real-Time Polymerase Chain Reaction , Switzerland/epidemiology
9.
Virus Res ; 272: 197729, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31445104

ABSTRACT

The genus Macavirus of the subfamily Gammaherpesvirinae comprises two genetically distinct lineages of lymphotropic viruses. One of these lineages includes viruses that can cause malignant catarrhal fever (MCF), which are known as MCF viruses (MCFV). All MCFVs are genetically and antigenically related but carried by different hosts. In this study, we report the recognition of new MCFV carried by bighorn sheep. The virus was first identified in a bighorn sheep from Banff National Park, Alberta, Canada. Analysis of a conserved region of the viral DNA polymerase gene of the virus carried by this bighorn sheep showed 85.88% nucleotide identity to the MCFV carried by domestic sheep, ovine herpesvirus 2 (OvHV-2). Further investigation of bighorn samples obtained from animals in the US and Canada showed 98.87-100% identity to the DNA polymerase sequence of the first bighorn in the study. Phylogenetic analysis indicated that the MCFV carried by bighorn sheep is closely related but distinct from OvHV-2. Epidemiological and virulence features of the newly recognized MCFV are still unknown and warrant further investigation. Considering the current nomenclature for MCFVs, we suggest a tentative designation of ovine herpesvirus-3 (OvHV-3) for this newly identified bighorn sheep MCFV.


Subject(s)
Carrier State , Gammaherpesvirinae/classification , Sheep, Bighorn/virology , Sheep, Domestic/virology , Animals , DNA, Viral , Genes, Viral , Phylogeny , Sheep , Sheep Diseases/virology
10.
Braz J Microbiol ; 50(3): 875-878, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31187445

ABSTRACT

Equid gammaherpesvirus 2 (EHV-2) and 5 (EHV-5) are members of the Herpesviridae family and have been reported in horse populations worldwide. This study aimed to evaluate the presence of herpesvirus DNA in the upper respiratory tract of horses. Twenty-six nasal swabs were collected from asymptomatic adult horses of two different horse farms (A, n = 18; B, n = 8), both located in Southern Brazil. The EHV-1, EHV-2, EHV-4, and EHV-5 DNA analyses were performed using nested PCR assays targeting the glycoprotein B gene. Four (15.3%) and 12 (46.1%) of the 26 nasal swab samples were positive for the EHV-2 and EHV-5, respectively. Four (15.3%) horses were detected with both viruses simultaneously. DNA of EHV-2 and EHV-5 in both single and mixed infections was identified in horses from both herds. All swab samples were negative for EHV-1 and EHV-4. This study reports the first detection of EHV-2 and EHV-5 in the upper respiratory tracts of horses in Brazil. The high detection rate of EHV-2 and EHV-5 in asymptomatic adult horses demonstrates that these gammaherpesviruses are circulating in Brazil.


Subject(s)
Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/veterinary , Horse Diseases/virology , Nose/virology , Animals , Asymptomatic Diseases , Brazil , DNA, Viral/genetics , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Herpesviridae Infections/virology , Horses , Male
11.
Viruses ; 11(4)2019 04 20.
Article in English | MEDLINE | ID: mdl-31010021

ABSTRACT

Gammaherpesviruses (GHVs) infect many animal species and are associated with lymphoproliferative disorders in some. Previously, we identified several novel GHVs in North American felids; however, a GHV had never been identified in Canada lynx (Lynx canadensis). We, therefore, hypothesized the existence of an unidentified GHV in lynx. Using degenerate nested and subsequently virus-specific PCR, we amplified and sequenced 3.4 kb of DNA from a novel GHV in lynx, which we named Lynx canadensis gammaherpesvirus 1 (LcaGHV1). Phylogenetic analysis determined that LcaGHV1 is a distinct GHV species belonging to the genus Percavirus. We then estimated the prevalence of LcaGHV1 in lynx by developing a PCR-based assay and detected LcaGHV1 DNA in 36% (95% CI: 22-53%) of lynx spleen DNA samples from Maine, USA and 17% (95% CI: 8-31%) from Newfoundland, Canada. The LcaGHV1 DNA sequences from Maine and Newfoundland lynx were nearly identical to each other (two nucleotide substitutions in 3.4 kb), suggesting that the unique lynx subspecies present on the island of Newfoundland (Lynx canadensis subsolanus) is infected with virus that very closely resembles virus found in mainland lynx. The potential ecologic and pathologic consequences of this novel virus for Canada lynx populations warrant further study.


Subject(s)
Gammaherpesvirinae/classification , Lynx/virology , Phylogeny , Animals , Canada , DNA Polymerase III/genetics , DNA, Viral/genetics , Female , Gammaherpesvirinae/isolation & purification , Male
12.
Med Microbiol Immunol ; 208(1): 109-129, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30291474

ABSTRACT

Herpesvirus Macaca arctoides (HVMA) has the propensity to transform macaque lymphocytes to lymphoblastoid cells (MAL-1). Inoculation of rabbits with cell-free virus-containing supernatant resulted in the development of malignant lymphomas and allowed isolation of immortalised HVMA-transformed rabbit lymphocytes (HTRL). In this study, the HVMA genome sequence (approx. 167 kbp), its organisation, and novel aspects of virus latency are presented. Ninety-one open reading frames were identified, of which 86 were non-repetitive. HVMA was identified as a Lymphocryptovirus closely related to Epstein-Barr virus, suggesting the designation as 'Macaca arctoides gammaherpesvirus 1' (MarcGHV-1). In situ lysis gel and Southern blot hybridisation experiments revealed that the MAL-1 cell line contains episomal and linear DNA, whereas episomal DNA is predominantly present in HTRL. Integration of viral DNA into macaque and rabbit host cell genomes was demonstrated by fluorescence in situ hybridisation on chromosomal preparations. Analysis of next-generation sequencing data confirmed this finding. Approximately 400 read pairs represent the overlap between macaque and MarcGHV-1 DNA. Both, MAL-1 cells and HTRL show characteristics of a polyclonal tumour with B- and T-lymphocyte markers. Based on analysis of viral gene expression and immunohistochemistry, the persistence of MarcGHV-1 in MAL-1 cells resemble the latency type III, whereas the expression pattern observed in HTRL was more comparable with latency type II. There was no evidence of the presence of STLV-1 proviral DNA in MAL-1 and HTRL. Due to the similarity to EBV-mediated cell transformation, MarcGHV-1 expands the available in vitro models by simian and rabbit cell lines.


Subject(s)
Cell Transformation, Viral , Gammaherpesvirinae/genetics , Genome, Viral , Herpesviridae Infections/veterinary , Macaca , Phylogeny , Sequence Analysis, DNA , Animals , Cell Line , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/pathogenicity , Gene Order , Genes, Viral , Herpesviridae Infections/virology , Lymphocytes/virology , Lymphoma/veterinary , Lymphoma/virology , Open Reading Frames , Rabbits , Virus Latency
13.
Virus Res ; 259: 46-53, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30385363

ABSTRACT

Herpesvirus infection was investigated in black bears (Ursus americanus) with neurological signs and brain lesions of nonsuppurative encephalitis of unknown cause. Visible cytopathic effects (CPE) could only be observed on days 3-5 post-infection in HrT-18G cell line inoculated with bear tissue extracts. The observed CPE in HrT-18G cells included syncytia, intranuclear inclusions, and cell detachments seen in herpesvirus infection in vitro. Herpesvirus-like particles were observed in viral culture supernatant under the electron microscope, however, capsids ranging from 60 nm to 100 nm in size were often observed in viral cultures within the first two passages of propagation. Herpesvirus infection in the bear tissues and tissue cultures were detected by PCR using degenerate primers specific to the DNA polymerase gene (DPOL) and glycoprotein B gene (gB). DNA sequencing of the amplicon revealed that the detected herpesvirus has 94-95% identity to Ursid gammaherpesvirus 1 (UrHV-1) DNA sequences of DPOL. Phylogenetic analysis of DPOL sequences indicates that black bear herpesviruses and UrHV-1 are closely related and have small distances to members of Rhadinovirus. Interestingly, black bear herpesvirus infections were also found in bears without neurological signs. The DPOL DNA sequence of black bear herpesviruses detected in neurological bears were similar to the those detected in the non-neurological bears. However, the gB DNA sequence detected from the neurological bear is different from non-neurological bear and has only 64.5%-70% identity to each other. It is possible that at least two different types of gammaherpesviruses are present in the U. americanus population or several gammaherpesviruses exist in ursine species.


Subject(s)
Animal Diseases/virology , Gammaherpesvirinae/physiology , Herpesviridae Infections/veterinary , Ursidae/virology , Animal Diseases/pathology , Animals , Cell Line , Cytopathogenic Effect, Viral , DNA, Viral , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/ultrastructure , Male , Phylogeny , Sequence Analysis, DNA
14.
Virol J ; 15(1): 90, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29792207

ABSTRACT

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Subject(s)
Gammaherpesvirinae/genetics , Genome, Viral , Luteoviridae/genetics , Potyviridae/genetics , Potyvirus/genetics , Zea mays/virology , Amino Acid Sequence , Capsid Proteins/genetics , Chromosome Mapping , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/pathogenicity , High-Throughput Nucleotide Sequencing , Kenya , Luteoviridae/classification , Luteoviridae/isolation & purification , Luteoviridae/pathogenicity , Metagenomics/methods , Phylogeny , Plant Diseases/virology , Plant Leaves/virology , Polymorphism, Genetic , Potyviridae/classification , Potyviridae/isolation & purification , Potyviridae/pathogenicity , Potyvirus/classification , Potyvirus/isolation & purification , Potyvirus/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Sorghum/virology
15.
Virology ; 516: 227-238, 2018 03.
Article in English | MEDLINE | ID: mdl-29407381

ABSTRACT

Little is known about the relationship of Gammaherpesviruses with their bat hosts. Gammaherpesviruses are of interest because of their long-term infection of lymphoid cells and their potential to cause cancer. Here, we report the characterization of a novel bat herpesvirus isolated from a big brown bat (Eptesicus fuscus) in Canada. The genome of the virus, tentatively named Eptesicus fuscus herpesvirus (EfHV), is 166,748 base pairs. Phylogenetically EfHV is a member of Gammaherpesvirinae, in which it belongs to the Genus Rhadinovirus and is closely related to other bat Gammaherpesviruses. In contrast to other known Gammaherpesviruses, the EfHV genome contains coding sequences similar to those of class I and II host major histocompatibility antigens. The virus is capable of infecting and replicating in human, monkey, cat and pig cell lines. Although we detected EfHV in 20 of 28 big brown bats tested, these bats lacked neutralizing antibodies against the virus.


Subject(s)
Chiroptera/virology , Gammaherpesvirinae/isolation & purification , Animals , Canada , Cats , Cell Line , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Gammaherpesvirinae/physiology , Haplorhini , Humans , Phylogeny , Swine , United States , Virus Replication
16.
J Med Microbiol ; 67(3): 415-422, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29458559

ABSTRACT

Bats are an important natural reservoir of zoonotic viral pathogens. We previously isolated an alphaherpesvirus in fruit bats in Indonesia, and here establish the presence of viruses belonging to other taxa of the family Herpesviridae. We screened the same fruit bat population with pan-herpesvirus PCR and discovered 68 sequences of novel gammaherpesvirus, designated 'megabat gammaherpesvirus' (MgGHV). A phylogenetic analysis of approximately 3.4 kbp of continuous MgGHV sequences encompassing the glycoprotein B gene and DNA polymerase gene revealed that the MgGHV sequences are distinct from those of other reported gammaherpesviruses. Further analysis suggested the existence of co-infections of herpesviruses in Indonesian fruit bats. Our findings extend our understanding of the infectious cycles of herpesviruses in bats in Indonesia and the phylogenetic diversity of the gammaherpesviruses.


Subject(s)
Chiroptera/virology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/veterinary , Animals , Coinfection/epidemiology , Coinfection/veterinary , Coinfection/virology , DNA, Viral/genetics , Disease Reservoirs , Gammaherpesvirinae/classification , Herpesviridae/genetics , Herpesviridae/isolation & purification , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Humans , Indonesia/epidemiology , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Viral Proteins/genetics
17.
Virus Res ; 242: 30-36, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28870469

ABSTRACT

Horses commonly develop gastric mucosal ulcers, similar to humans, a condition known as equine gastric ulcer syndrome (EGUS) that can lead to poor performance and lost training time and care expenses. Unlike humans, however, an infectious bacterial cause of ulcers has not been conclusively identified. Herpesviruses, while well-established causative agents of diseases such as cold sores, genital lesions, and certain types of cancer, have also been implicated in the development of a subset of gastric ulcers in humans. The presence of equid herpesviruses in the gastrointestinal tract and their potential contribution to EGUS has not been evaluated. Here, we provide the first evidence of equid gammaherpesviruses 2 and 5 (EHV-2 and -5) within the epithelium of the gastric mucosa of horses. These viruses were initially detected by a nested PCR screen of gastric tissue samples obtained from client- and university-owned horses with and without ulcers; however, no association with EGUS was found in this limited sample set. We then validated a highly sensitive in situ hybridization (ISH) assay and used this assay to characterize the distribution of these viruses in necropsy gastric tissue samples from five racehorses. Analyses revealed frequent EHV-2 and EHV-5 co-infections within the gastric mucosal epithelium, regardless of the ulcer status. These results are the first to demonstrate the presence of equid gammaherpesviruses in the gastric mucosa of horses and warrants further investigation to determine the contribution of these viruses to the development of EGUS and/or other gastrointestinal diseases.


Subject(s)
Epithelium/virology , Gammaherpesvirinae/isolation & purification , Gastric Mucosa/virology , Herpesviridae Infections/veterinary , Horse Diseases/virology , Stomach Ulcer/veterinary , Animals , Coinfection/veterinary , Coinfection/virology , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Herpesviridae Infections/virology , Horses , Nucleic Acid Hybridization , Polymerase Chain Reaction , Stomach Ulcer/virology
18.
Sci Rep ; 7: 39960, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059116

ABSTRACT

Maize chlorotic mottle virus (MCMV) was first reported in maize in China in 2009. In this study we further analyzed the epidemiology of MCMV and corn lethal necrosis disease (CLND) in China. We determined that CLND observed in China was caused by co-infection of MCMV and sugarcane mosaic virus (SCMV). Phylogenetic analysis using four full-length MCMV cDNA sequences obtained in this study and the available MCMV sequences retrieved from GenBank indicated that Chinese MCMV isolates were derived from the same source. To screen for maize germplasm resistance against MCMV infection, we constructed an infectious clone of MCMV isolate YN2 (pMCMV) and developed an Agrobacterium-mediated injection procedure to allow high throughput inoculations of maize with the MCMV infectious clone. Electron microscopy showed that chloroplast photosynthesis in leaves was significantly impeded by the co-infection of MCMV and SCMV. Mitochondria in the MCMV and SCMV co-infected cells were more severely damaged than in MCMV-infected cells. The results of this study provide further insight into the epidemiology of MCMV in China and shed new light on physiological and cytopathological changes related to CLND in maize.


Subject(s)
Gammaherpesvirinae/pathogenicity , Plant Diseases/virology , Potyvirus/pathogenicity , Zea mays/virology , China , Chloroplasts/physiology , Chloroplasts/virology , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Mitochondria/virology , Photosynthesis , Phylogeny , Potyvirus/classification , Potyvirus/genetics , Potyvirus/isolation & purification
19.
Arch Virol ; 162(2): 449-456, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27778101

ABSTRACT

Herpesviruses (HVs) have a wide range of hosts in the animal kingdom. The result of infection with HVs can vary from asymptomatic to fatal diseases depending on subtype, strain, and host. To date, little is known about HVs naturally circulating in wildlife species and the impact of these viruses on other species. In our study, we used genetic and comparative approaches to increase our understanding of circulating HVs in Canadian wildlife. Using nested polymerase chain reaction targeting a conserved region of the HV DNA polymerase gene, we analyzed material derived from wildlife of western and northern Canada collected between February 2009 and Sept 2014. For classification of new virus sequences, we compared our viral sequences with published sequences in GenBank to identify conserved residues and motifs that are unique to each subfamily, alongside phylogenetic analysis. All alphaherpesviruses shared a conserved tryptophan (W856) and tyrosine (Y880), betaherpesviruses all shared a serine (S836), and gammaherpesviruses had a conserved glutamic acid (E835). Most of our wildlife HV sequences grouped together with HVs from taxonomically related host species. From Martes americana, we detected previously uncharacterized alpha- and beta-herpesviruses.


Subject(s)
Alphaherpesvirinae/genetics , Animals, Wild/virology , Betaherpesvirinae/genetics , DNA-Directed DNA Polymerase/genetics , Gammaherpesvirinae/genetics , Viral Proteins/genetics , Alphaherpesvirinae/classification , Alphaherpesvirinae/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Betaherpesvirinae/classification , Betaherpesvirinae/isolation & purification , Canada , Conserved Sequence , DNA-Directed DNA Polymerase/metabolism , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gene Expression , Phylogeny , Phylogeography , Sequence Alignment , Viral Proteins/metabolism
20.
PLoS One ; 11(12): e0169153, 2016.
Article in English | MEDLINE | ID: mdl-28036408

ABSTRACT

A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken from most of the bat species present in the Iberian Peninsula from the Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit bats from the Pteropodidae family. By using two degenerate consensus PCR methods targeting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses were identified for the most of the tested species. All together a total of 42 potentially novel bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gammaherpesvirinae subfamily. Significant diversity was observed among the novel sequences when compared with type herpesvirus species of the ICTV-approved genera. The inferred phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a well-supported unique monophyletic clade and support the recognition of a new betaherpesvirus genus. This clade is subdivided into three major clades, corresponding to the families of bats studied. This supports the hypothesis of a species-specific parallel evolution process between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the betaherpesviruses' sequences detected in rhinolophid bats clustered together apart from the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a putative third roseolo lineage. On the contrary, no phylogenetic structure was detected among several potentially novel bat-hosted gammaherpesviruses found in the study. Remarkably, all of the possible novel bat herpesviruses described in this study are linked to a unique bat species.


Subject(s)
Betaherpesvirinae/growth & development , Betaherpesvirinae/genetics , Chiroptera/virology , DNA, Viral/genetics , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Animals , Base Sequence , Betaherpesvirinae/classification , Betaherpesvirinae/isolation & purification , Biological Evolution , Gammaherpesvirinae/isolation & purification , Genetic Variation/genetics , Phylogeny , Polymerase Chain Reaction , Portugal , Roseolovirus/classification , Roseolovirus/genetics , Sequence Alignment , Sequence Analysis, DNA , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...