Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 562
Filter
1.
Phytomedicine ; 130: 155745, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38833788

ABSTRACT

BACKGROUND AND AIMS: Isogarcinol, a natural compound extracted from the fruits of Garcinia oblongifolia, has potential chemopreventive activity. This study aimed to elucidate the anti-tumor effects and mechanism of action of isogarcinol on nasopharyngeal carcinoma (NPC). METHODS: Isogarcinol was isolated from Garcinia oblongifolia by using chromatographic separation. The anti-tumor effects of isogarcinol in NPC cells were tested by MTT assay, flow cytometry, wound healing assay, western blotting, transwell assay, colony formation assay, immunofluorescence, and transmission electron microscopy (TEM). The anti-tumor efficacy in vivo was evaluated in NPC cells xenograft models. RESULTS: Functional studies revealed that isogarcinol inhibited the proliferation, colony formation, migration and invasion abilities of NPC cells in vitro. Isogarcinol caused mitochondrial damage to overproduce reactive oxygen species through reducing the mitochondrial membrane potential and ΔΨm. Isogarcinol also substantially inhibited NPC cells growth in a xenograft tumor model without any obvious toxicity when compared with paclitaxel (PTX). Mechanistic studies have illustrated that isogarcinol increased the Bax/Bcl-2 ratio, cleaved caspase-3, and cytoplasmic cytochrome C levels to induce mitochondrial apoptosis. The ROS overproduction by isogarcinol could suppress EMT pathway via decreasing the levels of p-Akt and Snail. Furthermore, isogarcinol promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, but increased p62 level to block autophagic flux, resulting in the accumulation of damaged mitochondria to promote autophagic cell death in NPC cells. CONCLUSION: This study provides a new theoretical foundation for the anti-tumor application of Garcinia oblongifolia and confirms that isogarcinol could be developed as a candidate drug for NPC treatment with low toxicity.


Subject(s)
Antineoplastic Agents, Phytogenic , Garcinia , Mice, Nude , Mitochondria , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Garcinia/chemistry , Animals , Mitochondria/drug effects , Cell Line, Tumor , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Reactive Oxygen Species/metabolism , Autophagic Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , Fruit/chemistry
2.
Planta Med ; 90(7-08): 631-640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843801

ABSTRACT

Many polyprenylated acylphloroglucinols with fascinating chemical structures and intriguing biological activities have been identified as key to phytochemicals isolated from Garcinia, Hypericum, and related genera. In the present work, two chiral, tautomeric, highly-oxygenated polyprenylated acylphloroglucinols tethered with acyl and prenyl moieties on a bicyclo[3.3.1]nonanetrione core were isolated from the 95% ethanolic extract of Garcinia gummi-gutta fruit. The structures of both compounds were elucidated based on the NMR and MS data with ambiguity in the exact position of the enol and keto functions at C-1 and C-3 of the core structure. The structures of both polyprenylated acylphloroglucinols were established as a structurally revised guttiferone J and the new iso-guttiferone J with the aid of gauge-independent atomic orbital NMR calculations, CP3 probability analyses, specific rotation calculations, and electronic circular dichroism calculations in combination with the experimental data. The structures of both compounds resemble hyperforin, a potent activator of the human pregnane X receptor. As expected, both compounds showed strong pregnane X receptor activation at 10 µM [7.1-fold (guttiferone J) and 5.0-fold (iso-guttiferone J)], explained by a molecular docking study, necessitating further in-depth investigation to substantiate the herb-drug interaction potential of G. gummi-gutta upon co-administration with pharmaceutical drugs.


Subject(s)
Garcinia , Magnetic Resonance Spectroscopy , Garcinia/chemistry , Molecular Structure , Fruit/chemistry , Benzophenones/chemistry , Benzophenones/isolation & purification , Benzophenones/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phloroglucinol/chemistry , Phloroglucinol/isolation & purification , Humans
3.
J Appl Oral Sci ; 32: e20230291, 2024.
Article in English | MEDLINE | ID: mdl-38865512

ABSTRACT

The prevalence of gingivitis is substantial within the general population, necessitating rigorous oral hygiene maintenance. OBJECTIVE: This study assessed a Garcinia indica (GI) fruit extract-based mouthrinse, comparing it to a 0.1% turmeric mouthrinse and a 0.2% Chlorhexidine (CHX) mouthrinse. The evaluation encompassed substantivity, staining potential, antimicrobial efficacy and cytocompatibility. METHODOLOGY: The study employed 182 tooth sections. For antimicrobial analysis, 64 extracted human teeth coated with a polymicrobial biofilm were divided into four groups, each receiving an experimental mouthrinse or serving as a control group with distilled water. Microbial reduction was assessed through colony forming units (CFU). Substantivity was evaluated on 54 human tooth sections using a UV spectrophotometer, while staining potential was examined on 64 tooth sections. Cytocompatibility was tested using colorimetric assay to determine non-toxic levels of 0.2% GI fruit extract, 0.1% Turmeric, and 0.2% CHX. RESULTS: Data were analysed with one-way ANOVA (α=0.05). Cell viability was highly significant (p<0.001) in the 0.2% GI group (64.1±0.29) compared to 0.1% Turmeric (40.2±0.34) and 0.2% CHX (10.95±1.40). For antimicrobial activity, both 0.2% GI (20.18±4.81) and 0.2% CHX (28.22±5.41) exhibited no significant difference (P>0.05) at end of 12 hours. However, 0.1% Turmeric showed minimal CFU reduction (P<0.001). Substantivity results at 360 minutes indicated statistically significant higher mean release rate in 0.1%Turmeric (12.47±5.84 ) when compared to 0.2% GI (5.02±3.04) and 0.2% CHX (4.13±2.25) (p<0.001). The overall discoloration changes (∆E) were more prominent in the 0.2% CHX group (18.65±8.3) compared to 0.2% GI (7.61±2.4) and 0.1% Turmeric (7.32±4.9) (P<0.001). CONCLUSION: This study supports 0.2% GI and 0.1% Turmeric mouth rinses as potential natural alternatives to chemical mouth rinses. These findings highlight viability of these natural supplements in oral healthcare.


Subject(s)
Biofilms , Chlorhexidine , Curcuma , Fruit , Garcinia , Mouthwashes , Oral Hygiene , Plant Extracts , Plant Extracts/pharmacology , Humans , Mouthwashes/pharmacology , Chlorhexidine/pharmacology , Garcinia/chemistry , Curcuma/chemistry , Biofilms/drug effects , Oral Hygiene/methods , Fruit/chemistry , Analysis of Variance , Colony Count, Microbial , Reproducibility of Results , Cell Survival/drug effects , Anti-Infective Agents, Local/pharmacology , Spectrophotometry, Ultraviolet , Colorimetry , Materials Testing , Time Factors
4.
Phytochemistry ; 224: 114166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810815

ABSTRACT

Plants of the Garcinia genus were rich in structurally diverse and naturally bioactive components, while limited studies have been reported for Garcinia pedunculata Roxb. and G. nujiangensis C. Y. Wu & Y. H. Li. Four previously undescribed compounds including three chromones, garpedunchromones A-C (1-3), and one biflavonoid, nujiangbiflavone A (14), along with fifteen known analogs (4-13, 15-19) were isolated from G. pedunculata and G. nujiangensis. The structures of the isolated compounds were determined based on their HRESIMS data, extensive NMR spectroscopic analyses, and ECD calculations. The chromone derivatives were isolated from Garcinia for the first time. Compound 14 was a rare biflavonoid with C-3─C-6″ linkage. The biological evaluation of these isolates against NO production was conducted in the LPS-induced RAW 264.7 cells, resulting in the identification of a series of potent NO inhibitors, of which garpedunchromone B (2) was the most active with an IC50 value of 18.11 ± 0.96 µM. In the network pharmacology studies, the potential targets of compounds and inflammation were obtained from PharmMapper and GeneCards database. GO and KEGG enrichment analysis revealed that the overlapped targets were closely related to the major pathogenic processes linked to inflammation. Garpedunchromone B and proteins binding sites were being predicted.


Subject(s)
Anti-Inflammatory Agents , Biflavonoids , Chromones , Garcinia , Garcinia/chemistry , Biflavonoids/chemistry , Biflavonoids/pharmacology , Biflavonoids/isolation & purification , Chromones/chemistry , Chromones/pharmacology , Chromones/isolation & purification , Mice , Animals , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Structure-Activity Relationship , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Dose-Response Relationship, Drug
5.
Phytochemistry ; 224: 114167, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810816

ABSTRACT

Garciyunnanones A-R (1-18), eighteen undescribed caged polycyclic polyprenylated acylphloroglucinols, two undescribed biogenetic congeners (19-20), and nineteen known analogues (21-39), were isolated from the stem barks of Garcinia yunnanensis Hu. All of these isolates are decorated with a C-5 lavandulyl substituent. Their structures and absolute configurations were confirmed by HRESIMS, 1D & 2D NMR spectroscopic analysis, quantum chemical calculations of electronic circular dichroism data, and single-crystal X-ray diffraction analysis. The X-ray crystallographic data of ten isolated caged compounds ascertained the absolute configuration of C-23 in the lavandulyl as S. The cytotoxicity on three cancer cell lines and the anti-nonalcoholic steatohepatitis activity of the isolates were tested. In a free fatty acid-induced L02 cell model, compounds 33 and 39 decreased intracellular lipid accumulation significantly.


Subject(s)
Antineoplastic Agents, Phytogenic , Garcinia , Phloroglucinol , Garcinia/chemistry , Humans , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor , Models, Molecular , Structure-Activity Relationship , Cell Proliferation/drug effects , Plant Bark/chemistry
6.
Phytomedicine ; 128: 155400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518641

ABSTRACT

BACKGROUND: The emergence and spread of vancomycin-resistant enterococci (VRE) have posed a significant challenge to clinical treatment, underscoring the need to develop novel strategies. As therapeutic options for VRE are limited, discovering vancomycin enhancer is a feasible way of combating VRE. Gambogic acid (GA) is a natural product derived from the resin of Garcinia hanburyi Hook.f. (Clusiaceae), which possesses antibacterial activity. PURPOSE: This study aimed to investigate the potential of GA as an adjuvant to restore the susceptibility of VRE to vancomycin. METHODS: In vitro antibacterial and synergistic activities were evaluated against vancomycin-susceptible and resistant strains by the broth microdilution method for the Minimal Inhibitory Concentrations (MICs) determination, and checkerboard assay and time-kill curve analysis for synergy evaluation. In vivo study was conducted on a mouse multi-organ infection model. The underlying antibacterial mechanism of GA was also explored. RESULTS: GA showed a potent in vitro activity against all tested strains, with MICs ranging from 2 to 4 µg/ml. The combination of GA and vancomycin exhibited a synergistic effect against 18 out of 23 tested VRE strains, with a median fractional inhibitory concentration index (FICI) of 0.254, and demonstrated a synergistic effect in the time-kill assay. The combination therapy exhibited a significant reduction in tissue bacterial load compared with either compound used alone. GA strongly binds to the ParE subunit of topoisomerase IV, a bacterial type II DNA topoisomerase, and suppresses its activity. CONCLUSIONS: The study suggests that GA has a significant antibacterial activity against enterococci, and sub-MIC concentrations of GA can restore the activity of vancomycin against VRE in vitro and in vivo. These findings indicate that GA has the potential to be a new antibacterial adjuvant to vancomycin in the treatment of infections caused by VRE.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Vancomycin , Xanthones , Xanthones/pharmacology , Animals , Vancomycin-Resistant Enterococci/drug effects , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Mice , Garcinia/chemistry , Female , Gram-Positive Bacterial Infections/drug therapy
7.
Chem Biodivers ; 21(5): e202400409, 2024 May.
Article in English | MEDLINE | ID: mdl-38459792

ABSTRACT

From Garcinia pedunculata Roxb. fruits, two undescribed aromatic compounds including a benzofuran and a depsidone derivative, and a new natural product, together with four known compounds were isolated. Through the analysis of spectroscopic data, high resolution mass spectrum and calculated nuclear magnetic resonance, their structures were determined. The α-glucosidase inhibitory activity of the isolates was evaluated. And compound 3 exhibited a moderate inhibitory effect on α-glucosidase. The molecular docking of compound 3 was performed to elucidate the interaction with α-glucosidase.


Subject(s)
Fruit , Garcinia , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Garcinia/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Fruit/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Structure-Activity Relationship , Depsides/chemistry , Depsides/isolation & purification , Depsides/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology
8.
Plant Foods Hum Nutr ; 79(1): 12-19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191770

ABSTRACT

Native species from the Amazonia are still unknown or underutilized and few information about their chemical and biological properties are available in the literature. Among the underutilized plant species in the Amazonia, Garcinia macrophylla can be seen as a promising source of bioactive compounds with relevant biological properties. The stem bark and leaves were the main investigated plant parts, mainly concerning the antioxidant, antibacterial, cytotoxicity and antidiabetic properties. However, the bioactive compounds and biological properties of the edible fruits were not yet reported. Systematic investigations covering the Amazonia biome, concerning plants and vegetables as strategic resources are of paramount importance for the sustainable development of the forest. Therefore, this review gathered the available information in the literature concerning general aspects, chemical profile and biological properties of G. macrophylla, for the first time, which highlighted that systematic and robust in vitro and in vivo research, are still needed to elucidate the phytochemical profiles and associated relevant biological properties.


Subject(s)
Garcinia , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Garcinia/chemistry , Brazil , Anti-Bacterial Agents/chemistry , Plant Leaves , Phytochemicals/pharmacology , Phytochemicals/chemistry
9.
Nat Prod Res ; 38(10): 1687-1694, 2024 May.
Article in English | MEDLINE | ID: mdl-37234037

ABSTRACT

Bioassay-guided isolation of the stems of Garcinia paucinervis led to one new adamantane-type polycyclic polyprenylated acylphloroglucinols (PPAPs), (-)-garpauvinin A (1), and four known analogues (2-5). The structure and absolute configuration of 1 was established via spectroscopic techniques and ECD method. All the isolates displayed moderate antiproliferative activity against HL-60, PC-3 and Caco-2 human cancer cell lines with IC50 values ranging from 0.81 to 19.92 µM, and exhibited low toxicity on WPMY-1 normal human cells, showing selectivity between normal and malignant prostate cells. The biosynthetic pathways of the isolated PPAPs were proposed.


Subject(s)
Garcinia , Hypericum , Humans , Molecular Structure , Caco-2 Cells , Garcinia/chemistry , HL-60 Cells , Phloroglucinol , Hypericum/chemistry
10.
Phytochemistry ; 217: 113898, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37875167

ABSTRACT

Eight previously undescribed and seven known xanthones were isolated from the fruits of Garcinia pedunculata Roxb. The structures were identified by a variety of spectroscopic methods as well as by comparison with the literature. The isolates showed appreciable cytotoxicity against three human tumor cell lines (HepG2, A549, and MCF-7). Pedunculaxanthone G exhibited inhibitory activities with IC50 values of 12.41, 16.51, and 15.45 µM against the cancer cell lines and induced cell apoptosis in HepG2 cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Garcinia , Thoracica , Xanthones , Animals , Humans , Garcinia/chemistry , Xanthones/pharmacology , Xanthones/chemistry , Fruit , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Molecular Structure
11.
Fitoterapia ; 172: 105779, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104910

ABSTRACT

Six new compounds, including two depsidones garciculendepsidones A and B (1 and 2), one prenylated xanthone garciculenxanthone (3) and three dimeric xanthones bigarciculenxanthones A-C (4-6), were isolated from the twigs and leaves of Garcinia esculenta Y. H. Li. Their structures were elucidated based on comprehensive analyses of spectral data, including HRESIMS, 1D and 2D NMR, and ECD calculation. All the isolates were tested for their cytotoxicity against five human cancer cell lines (myeloid leukemia HL-60, lung cancer A-549 cells, hepatocellular carcinoma SMMC-7721, breast cancer MDA-MB-231 and colon cancer SW480), among them, compounds 3-5 displayed cytotoxic potential, especially garciculenxanthone (3) had the lowest IC50 value of 8.2 µm for lung cancer A-549 cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Depsides , Garcinia , Lactones , Lung Neoplasms , Xanthones , Humans , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Garcinia/chemistry , Xanthones/pharmacology , Xanthones/chemistry , Lung Neoplasms/drug therapy
12.
Drug Des Devel Ther ; 17: 3625-3660, 2023.
Article in English | MEDLINE | ID: mdl-38076632

ABSTRACT

The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.


Subject(s)
Biological Products , Garcinia , Xanthones , Molecular Structure , Garcinia/chemistry , Xanthones/pharmacology , Xanthones/chemistry
13.
CuidArte, Enferm ; 17(2): 197-203, jul.-dez. 2023. graf, ilus
Article in Portuguese | BDENF - Nursing | ID: biblio-1552910

ABSTRACT

Introdução: A Garcinia gardneriana é utilizada na medicina tradicional brasileira para o tratamento de tumores, inflamações e alívio de dores, mas as informações científicas são ainda limitadas. Objetivos: Diante do uso popular e o anseio por efeitos colaterais mínimos, o objetivo geral deste estudo foi avaliar as propriedades anti-inflamatórias da G. gardneriana em modelo de peritonite induzido por lipopolissacarideo (LPS). Métodos: Ratos Wistar foram divididos aleatoriamente em 3 grupos (n= 5/ grupo): controle, induzido à peritonite e não tratado e induzido à peritonite e tratado com extrato de folhas alcoólico de G. gardneriana a 4%. A peritonite foi induzida por única injeção intraperitoneal de LPS (1 mg/kg). O tratamento com o extrato foi realizado por gavagem (1 ml), administrado antes e 12h após a injeção do LPS. Os ratos foram eutanasiados após 24h da indução de peritonite. Amostras de sangue foram coletadas para análise plasmática de histamina, o lavado intraperitoneal para quantificação de neutrófilos e o intestino delgado para processamento histológico, quantificação de mastócitos e imuno-histoquímica da expressão da proteína Anexina A1 (AnxA1). Resultados: As análises quantitativas indicaram os efeitos anti-inflamatórios do extrato, pela redução do recrutamento de neutrófilos para a cavidade peritoneal e a diminuição da quantidade de mastócitos na lâmina própria do intestino delgado, comparadas aos animais não tratados. Não houve diferença estatística dos níveis de histamina. A imuno-histoquímica indicou diminuição acentuada da expressão da AnxA1 na mucosa intestinal dos animais tratados. Conclusão: Nossos dados demonstraram que o extrato alcoólico de G. gardneriana tem forte ação anti-inflamatória e potencial terapêutico para o desenvolvimento de fitoterápicos com propriedades anti-inflamatórias


Introduction: Garcinia gardneriana is used in traditional Brazilian medicine for the treatment of tumors, inflammation and relief of pain, but scientific information is still limited. Objective: In the face of popular use and the desire for minimal side effects, the general objective of this study was to evaluate the anti-inflammatory properties of G. gardneriana in a model of lipopolysaccharide-induced peritonitis (LPS). Methods: Wistar rats were randomly divided into 3 groups (n = 5 / group): control, induced to peritonitis and untreated and induced to peritonitis and treated with 4% alcoholic extract of G. gardneriana leaves. Peritonitis was induced by single intraperitoneal injection of LPS (1 mg/kg). Treatment with the extract was performed by gavage (1 ml), given before and 12h after LPS injection. The rats were euthanized 24h after the peritonitis induction. Blood samples were collected for plasma analysis of histamine, intraperitoneal lavage for quantification of neutrophils and the small intestine for histological processing for quantification of mast cells, and immunohistochemical analysis of the expression of Annexin A1 (AnxA1) protein. Results: Quantification analyses indicated the anti-inflammatory effects of the extract by reducing the recruitment of neutrophils into the peritoneal cavity and reducing the amount of mast cells in the lamina propria of the small intestine compared to the untreated animals. There was no statistical difference in the levels of histamine. Immunohistochemical studies indicated a marked decrease of the AnxA1 expression in the intestinal mucosa of the treated animals. Conclusion: Our data demonstrated that the alcoholic extract of G. gardneriana has a strong anti-inflammatory action and therapeutic potential for the development of herbal products with anti-inflammatory properties


Introducción: Garcinia gardneriana se utiliza en la medicina tradicional brasileña para el tratamiento de tumores, inflamaciones y alivio del dolor, pero la información científica aún es limitada. Objetivo: Frente al uso popular y la búsqueda de efectos secundarios mínimos, lo objetivo general de este estudio fue evaluar las propiedades antiinflamatorias de G. gardneriana en un modelo de peritonitis inducido por lipopolisacárido (LPS). Métodos: Se dividieron aleatoriamente ratas Wistar en 3 grupos (n= 5/grupo): control, inducido a peritonitis y no tratado, e inducido a peritonitis y tratado con extracto alcohólico de hojas de G. gardneriana al 4%. La peritonitis fue inducida por una única inyección intraperitoneal de LPS (1 mg/kg). El tratamiento con el extracto se realizó por gavaje (1 ml), administrado antes y 12 horas después de la inyección de LPS. Las ratas fueron sacrificadas después de 24 horas de la inducción de peritonitis. Se recopilaron muestras de sangre para el análisis plasmático de histamina, el lavado intraperitoneal para la cuantificación de neutrófilos y el intestino delgado para el procesamiento histológico, la cuantificación de mastocitos y la inmunohistoquímica de la expresión de la proteína Anexina A1 (AnxA1). Resultados: Los análisis cuantitativos indicaron los efectos antiinflamatorios del extracto, mediante la reducción del reclutamiento de neutrófilos en la cavidad peritoneal y la disminución de la cantidad de mastocitos en la lámina propia del intestino delgado, en comparación con los animales no tratados. No hubo diferencia estadística en los niveles de histamina. La inmunohistoquímica indicó una disminución pronunciada de la expresión de AnxA1 en la mucosa intestinal de los animales tratados. Conclusión: Nuestros datos demostraron que el extracto alcohólico de G. gardneriana tiene una fuerte acción antiinflamatoria y potencial terapéutico para el desarrollo de fitoterapéuticos con propiedades antiinflamatorias.


Subject(s)
Animals , Female , Rats , Peritonitis/chemically induced , Peritonitis/drug therapy , Plant Extracts/therapeutic use , Garcinia/chemistry , Lipopolysaccharides , Rats, Wistar
14.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5817-5821, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114177

ABSTRACT

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 µmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 µmol·L~(-1).


Subject(s)
Antineoplastic Agents , Garcinia mangostana , Garcinia , Xanthones , Humans , Garcinia mangostana/chemistry , HeLa Cells , Magnetic Resonance Spectroscopy , Xanthones/pharmacology , Garcinia/chemistry , Plant Extracts/chemistry , Molecular Structure
15.
J Pharm Pharmacol ; 75(8): 1058-1065, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37307431

ABSTRACT

OBJECTIVES: We investigate the anticancer activity and human stimulator of interferon genes pathway activation by a new hydrated-prenylated tetraoxygenated xanthone, garcicowanone I (1) and two known xanthones (2 and 3) that were isolated from the root bark of Garcinia cowa Roxb. ex Choisy. METHODS: The anticancer activity of each compound was evaluated by sulforhodamine B assay in immortalized cancer cell lines. Stimulator of interferon genes pathway activation was assessed by western blot analysis using human THP-1-derived macrophages. The production of pro-inflammatory cytokines from these macrophages was also evaluated via enzyme-linked immunosorbent assay. KEY FINDINGS: Both compounds 1 and 3 displayed moderate inhibitory effects on the cancer cells, including a cisplatin-resistant cell line, with IC50 values in the range of 10-20 µM. All three xanthones activated the stimulator of interferon genes, as evidenced by phosphorylation of tank-binding kinase 1, the stimulator of interferon genes protein and interferon regulatory factor 3. Furthermore, treatment of these macrophages with compounds 1-3 led to the production of pro-inflammatory cytokines, including interleukin 6, tumour necrosis factor α and interleukin 1ß. CONCLUSIONS: In conclusion, the isolated xanthones, including the novel garcicowanone I, displayed promising anticancer and immunomodulatory activity that warrants further research.


Subject(s)
Garcinia , Xanthones , Humans , Garcinia/chemistry , Xanthones/pharmacology , Xanthones/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line , Interferons , Molecular Structure
16.
Bioorg Chem ; 138: 106651, 2023 09.
Article in English | MEDLINE | ID: mdl-37300961

ABSTRACT

Eight previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs) were isolated from the fruits of Garcinia bracteata and named garcibractinols A-H. Garcibractinols A-F (compounds 1-6) were bicyclic polyprenylated acylphloroglucinols (BPAPs) sharing a rare bicyclo[4.3.1]decane core. On the other hand, garcibractinols G and H (compounds 7 and 8) shared an unprecedented BPAP skeleton bearing a 9-oxabicyclo[6.2.1]undecane core. The structures andabsolute configurations of compounds 1-8 were determined by spectroscopic analysis,single-crystal X-ray diffraction analysis, and quantum chemical calculation. The breakage of the C-3/C-4 linkage through the retro-Claisen reaction was a key step in the biosynthesis of compounds 7 and 8. The antihyperglycemic effects of the eight compounds were evaluated in insulin-resistant HepG2 cells. At a concentration of 10 µM, compounds 2 and 5-8 significantly increased the glucose consumption in the HepG2 cells. Furthermore, compound 7 was more effective than metformin (which was used as a positive control) in promoting glucose consumption in the cells. The findings of this study suggest that compounds 2 and 5-8 have anti-diabetic effects.


Subject(s)
Garcinia , Garcinia/chemistry , Molecular Structure , Fruit , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Hypoglycemic Agents/pharmacology
17.
Phytochemistry ; 211: 113701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127017

ABSTRACT

Ten undescribed benzophenones, schomburginones A-J, together with 14 known analogs were isolated from the leaves of Garcinia schomburgkiana, an edible plant native to the Indochina region. The structures of the undescribed compounds were elucidated by NMR combined with HRMS spectroscopy, while their absolute configurations were determined using ECD and single-crystal X-ray diffraction analysis. The isolated metabolites represent benzophenone derivatives containing a modified monoterpene unit, including tri- and tetracyclic skeletons, which are rarely found in genus Garcinia. The cytotoxic evaluation on three cancerous cell lines demonstrated that schomburginone G, schomburginone H, and 3-geranyl-2,4,6-trihydroxybenzophenone were active against HeLa cells with IC50 values in the range of 12.2-15.7 µM, respectively, and selective compared to the non-cancerous L929 cells (SI > 3.5). In addition, the three cytotoxic compounds together with clusiacyclol A showed significant NO inhibitory activity in RAW 264.7 macrophage cells over 85% inhibition without obvious cytotoxicity at a final concentration of 100 µM. The promising activities of these compounds in cytotoxic and anti-inflammatory assays make them attractive for further study in the development of anticancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Garcinia , Xanthones , Humans , HeLa Cells , Molecular Structure , Garcinia/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Benzophenones/pharmacology , Benzophenones/chemistry , Xanthones/chemistry
18.
Nutrients ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986038

ABSTRACT

The study of medicinal plants, such as the genus Garcinia (Clusiaceae), in the treatment of non-communicable chronic diseases has aroused the interest of researchers. However, there are no studies in the literature that have investigated the effects of Garcinia gardneriana in experimental models of obesity for possible metabolic alterations. Swiss mice receiving a high-fat diet were supplemented with aqueous or ethanolic extract of G. gardneriana at doses of 200 or 400 mg/kg/day. It was found that there was a reduction in food consumption in experimental groups compared with the control groups, and the group supplemented with aqueous extract at a dose of 200 mg/kg/daydisplayed a reduction in weight. The results showed an increase in the values of high density lipoprotein (HDL-c), total cholesterol, triglycerides and fasting blood glucose. G. gardneriana did not protect against insulin resistance, and caused in an increase in monocyte chemoattractant protein-1 (MCP-1) concentrations and a reduction in interleukin 10 (IL-10). In addition, hepatic steatosis and microvesicular steatosis were indicated. It was revealed that, under the experimental conditions in the study, G. gardneriana did not prevent weight gain or comorbidities; that is, a different behavior was obtained from that described in the literature with regard to the medicinal potential of the Garcinia species, which is probably related to the phytochemical properties.


Subject(s)
Fatty Liver , Garcinia , Plants, Medicinal , Mice , Animals , Garcinia/chemistry , Plant Extracts/pharmacology , Ethanol , Water , Diet, High-Fat/adverse effects
19.
Fitoterapia ; 166: 105435, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731607

ABSTRACT

In order to find potential agents for treating cancer disease in naturally occurring compounds, we conducted a systematic phytochemical investigation on the endemic species of Garcinia nujiangensis. Three new biphenyl derivatives (1-3) and one new polycyclic polyprenylated benzophenone (4), together with four known benzophenone analogues (5-8), have been isolated from the CH2Cl2 extract of the twigs and leaves of G. nujiangensis. Their structures were determined by detailed spectroscopic analyses and comparison with structurally related known analogues. Experimental and calculated ECD method was used to determine the absolute configuration of 1 and 4. Moreover, compounds 5-7 were isolated for the first time from this species. The cytotoxicities of the new compounds were evaluated using HL-60, HepG2, and A549 human cancer cell lines. Compound 4 showed more significant antiproliferative effects against HepG2 cells with an IC50 value of 11.38 ± 0.79 µM than that of three biphenyl derivatives. The morphological features of apoptosis were evaluated in 4-treated HepG2 cells. Compound 4 effectively prevented the cell cycle progression of HepG2 cells in G2 phase. Additionally, western blot analysis indicated that treatment of 4 on HepG2 cells led to decreased expression of anti-apoptotic Bcl-2 and pro-Caspase-3, and increased protein expression of both pro-apoptotic Bax and cleaved PARP with reference to ß-actin. Overall, our results suggested that the active polycyclic polyprenylated benzophenone derivatives in the twigs and leaves of G. nujiangensis can be used as a valuable source of bioactive compounds for the pharmaceutical industry.


Subject(s)
Antineoplastic Agents, Phytogenic , Garcinia , Humans , Phenols/pharmacology , Cell Line, Tumor , Molecular Structure , Garcinia/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis , Benzophenones/pharmacology
20.
Biofactors ; 49(3): 584-599, 2023.
Article in English | MEDLINE | ID: mdl-36785888

ABSTRACT

Garcinia gummi-gutta, also known as Garcinia cambogia, is a member of the Guttiferae family. Garcinia is a polygamous genus consisting 200 species of trees and shrubs. It is found in different zones of the planet including Asia's tropical regions. In India alone, around 30 species have been discovered. They are widely used as a flavoring agent to garnish fish curry in southern India, particularly in Kerala and Karnataka. The fruit rind of G. gummi-gutta has traditionally been used to treat gastrointestinal problems, diarrhea, and ulcers. South Indian people have been utilizing it traditionally as evidenced by its ethnobotanical properties. In vivo and in vitro effects of the crude fruit extract showed anti-inflammatory, anti-cancer, anthelmintic, anti-microbial, and antioxidant activities. G. gummi-gutta fruit rind is medicinally significant and is frequently used in ayurvedic and traditional medicine for many diseases. Various secondary metabolites such as organic acids-hydroxycitric acid (HCA), flavonoids, terpenes, polysaccharides and polyisoprenylated benzophenones-garcinol, xanthochymol, guttiferone, benzophenone, xanthone, biflavonoids, alkaloids, tannins, phenols, and saponins isolated from the G. gummi-gutta have diverse pharmacological activities. This review provides a summary of G. gummi-gutta, including its biological activities, phytochemistry, and ethnobotanical applications.


Subject(s)
Garcinia , Animals , Garcinia/chemistry , India , Garcinia cambogia/chemistry , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...